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Abstract
The paper studies defeasible reasoning in rule-based systems, in particular about legal norms and

contracts. We identify rule modifiers that specify how rules interact and how they can be overridden.

We then define rule transformations that eliminate these modifiers, leading in the end to a translation of

rules to formulas. For reasoning with and about rules, we contrast two approaches, one in a classical

logic with SMT solvers, which is only briefly sketched, and one using non-monotonic logic with Answer

Set Programming solvers, described in more detail.
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1. Introduction

Computer-supported reasoning about law is a longstanding effort of researchers from different

disciplines such as jurisprudence, artificial intelligence, logic and philosophy. What originally

may have appeared as an academic playground is now evolving into a realistic scenario, for

various reasons.

On the demand side, there is a growing number of human-machine or machine-machine

interactions where compliance with legal norms or with a contract is essential, such as in sales,

insurance, banking and finance or digital rights management, to name but a few. Innumerable

“smart contract” languages attest to the interest to automate these processes, even though many

of them are dedicated programming languages rather than formalisms intended to express and

reason about regulations.

On the supply side, decisive advances have been made in fields such as automated reasoning

and language technologies, both for computerised domain specific languages (DSLs) and natural

languages. Even though a completely automated processing of traditional law texts capturing

the subtleties of natural language is currently out of scope, one can expect to code a law text in

a DSL that is amenable to further processing.

This “rules as code” approach is the working hypothesis of our CCLAW project
1
: law texts are

formalised in a DSL called L4 that is sufficiently precise to avoid ambiguities of natural languages
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and at the same time sufficiently close to a traditional law text with its characteristic elements

such as cross references, prioritisation of rules and defeasible reasoning. Indeed, presenting

these features is one of the main topics of this paper. Once a law has been coded in L4, it can

be further processed: it can be converted to natural language [1] to be as human-readable as a

traditional law text, and efficient executable code can be extracted, for example to perform tax

calculations (all this is not the topic of the present paper). It can also be analysed, to find faults

in the law text on the meta level (such as consistency and completeness of a rule set), but also

on the object level, to decide individual cases.

Overview of the paper The main emphasis of this paper is on the L4 DSL that is currently

under definition, which in particular features a formalism for transcribing rules and reasoning

support for verifying their properties. The rule language will be dissected in Section 2. We will

in particular describe mechanisms for prioritisation and defeasibility of rules that are encoded

via specific keywords in law texts. We then define a precise semantics of these mechanisms,

by a translation to logic. Classical, monotonic logic has received surprisingly little attention

in this area, even though proof support in the form of SAT/SMT solvers has made astounding

progress in recent years. It is not developed in detail here, but see [2]. An alternative approach,

based on Answer Set Programming, is described in Section 3. In Section 3 we show how to

handle defeasibility operators via encodings in Answer Set Programming (ASP) which has only

negation as failure, interpreted under the stable model semantics as the core non-monotonic

operator. We conclude in Section 4.

Related work There is a huge body of work both on computer-assisted legal reasoning and

(not necessarily related) defeasible reasoning. In a seminal work, Sergot and Kowalski [3, 4]

code the British Nationality Act in Prolog, exploiting Prolog’s negation as failure for default

reasoning.

The Catala language [5], extensively used for coding tax law and resembling more a high-level

programming language than a reasoning formalism, includes default rules, which are however

not entirely disambiguated during compile time so that run time exceptions can be raised.

An entirely different approach to tool support is taken with the LogiKEy [6] workbench

that codes legal reasoning in the Isabelle interactive proof assistant, paving the way for a very

expressive formalism. In contrast, we have opted for a DSL with fully automated proofs which

are provided by SMT respectively ASP solvers. These do not permit for human intervention in

the proof process, which would not be adequate for the user group we target. Symboleo [7] and

the NAI Suite [8] emphasise deontic logic rather than defeasible reasoning (the former is so far

not considered in our L4 version).

As a result of a long series of logics, [9] and colleagues have developed the Turnip system

that is based on a combination of defeasible and deontic logic and which is applied, among

others, to modelling traffic rules [10].

It seems vain to attempt an exhaustive review of defeasible reasoning. Before the backdrop

of foundational law theory [11], there are sometimes diverging proposals for integrating defea-

sibility, sometimes opting for non-monotonic logics [12], sometimes taking a more classical

stance [13].



On a more practical side, Answer Set Programming (ASP) [14, 15] goes beyond logic pro-

gramming and increasingly integrates techniques from constraint solving, such as in the sCASP

system [16]. In spite of a convergence of SMT and CASP technologies, there are few attempts

to use SMT for ASP, see [17]. For the technologies used in our own implementation, please see

Section 4.

This paper is an excerpt of a longer publication [2] that contrasts SMT and CASP technologies

in more detail and provides full proofs – we here concentrate on the ASP aspect.

2. Reasoning with and about Rules

We can only give a brief outline of the L4 rule format here and defer a more thorough discussion

of the L4 language to the full paper [2]. We will illustrate the main concepts with an example, a

(fictitious) regulation of speed limits for different types of vehicles, subdivided into class Car
and its subclass SportsCar, furthermore classes Day and Road. We will in particular be

interested in specifying the maximal speed maxSp of a vehicle on a particular day and type of

road, and this will be the purpose of the rules.

In its most complete form, a rule is composed of a list of variable declarations introduced by

the keyword for, a precondition introduced by if and a post-condition introduced by then.

Figure 1 gives an example of rules of our speed limit scenario, stating, respectively, that the

maximal speed of cars is 90 km/h on a workday, and that they may drive at 130 km/h if the road

is a highway. Note that in general, both pre- and post-conditions are Boolean formulas that can

be arbitrarily complex, thus are not limited to conjunctions of literals in the preconditions or

atomic formulas in the post-conditions. Rules whose precondition is true can be written as

fact.

rule <maxSpCarWorkday>
for v: Vehicle, d: Day, r: Road if isCar v && isWorkday d then maxSp v d r

90
rule <maxSpCarHighway>
for v: Vehicle, d: Day, r: Road if isCar v && isHighway r then maxSp v d r

130

Figure 1: Rules of speed limit example

assert <maxSpFunctional> {SMT: {valid}}
maxSp instCar instDay instRoad instSpeed1 &&
maxSp instCar instDay instRoad instSpeed2
--> instSpeed1 == instSpeed2

Figure 2: Assertions of speedlimit example

The purpose of our formalization efforts is to be able to make assertions and prove them, such

as the statement in Figure 2 which claims that the predicate maxSp behaves like a function,

i.e. given the same car, day and road, the speed will be the same. Instead of a universal

quantification, we here use variables inst... that have been declared globally, because they



produce more readable (counter-)models.

Given a plethora of different notions of defeasibility, we had to make a choice as to which

notions to support, and which semantics to give to them. We will here concentrate on two

concepts, which we call rule modifiers, that limit the applicability of rules and make them

“defeasible”. They will be presented informally in the following. A semantics based on Answer

Set Programming will be provided in Section 3.

We will concentrate on two rule modifiers that restrict the applicability of rules and that

frequently occur in law texts: subject to and despite, further illustrated by our running example.

Example 1. The rules maxSpCarHighway and maxSpCarWorkday are not mutually exclu-
sive and contradict another because they postulate different maximal speeds. For disambiguation,
we would like to say: maxSpCarHighway holds despite rule maxSpCarWorkday. In L4, rule
modifiers are introduced with the aid of rule annotations, with a list of rule names following the
keywords subjectTo and despite. Thus, we modify rule maxSpCarHighway of Figure 1
with

rule <maxSpCarHighway> {restrict: {despite: maxSpCarWorkday}}
# rest of rule unchanged

Furthermore, to the delight of the public of the country with the highest density of sports cars, we
also introduce a new rule maxSpSportsCar that holds subject to maxSpCarWorkday and
despite maxSpCarHighway:

rule <maxSpSportsCar>
{restrict: {subjectTo: maxSpCarWorkday, despite: maxSpCarHighway}}
for v: Vehicle, d: Day, r: Road
if isSportsCar v && isHighway r then maxSp v d r 320

We will now give an informal characterization of these modifiers:

• 𝑟1 subject to 𝑟2 and 𝑟1 despite 𝑟2 are complementary ways of expressing that one rule

may override the other rule. They have in common that 𝑟1 and 𝑟2 have contradicting

conclusions. The conjunction of the conclusions can either be directly unsatisfiable (such

as: “may hold” vs. “must not hold”) or unsatisfiable w.r.t. an intended background

theory (obtaining different maximal speeds is inconsistent when expecting maxSp to be

functional in its fourth argument).

• Both modifiers differ in that subject to modifies the rule to which it is attached, whereas

despite has a remote effect on the rule given as argument.

• They permit to structure a legal text, favouring conciseness and modularity: In the case of

despite, the overridden, typically more general rule need not be aware of the overriding,

typically subordinate rules.

• Even though these modifiers appear to be mechanisms on the meta-level in that they

reasoning about rules, they can directly be reflected on the object-level.



3. Defeasible Reasoning with Answer Set Programming

3.1. Introduction

The purpose of this section is to give an account of the work we have been doing using

Answer Set Programming (ASP) to formalize and reason about legal rules. This approach is

complementary to the one described before using SMT solvers. Our intention is to present

how some core legal reasoning tasks can be implemented in ASP while keeping the ASP

representation readable and intuitive and respecting the idea of having an ‘isomorphism’

between the rules and the encoding. Please see the appendix for a brief overview of ASP and

references for further reading.

Our work in this section is inspired by [18] and we borrow some of their notation/terminology.

Readers will note that there are similarities between the use of predicates such as 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔_𝑡𝑜,

𝑑𝑒𝑓𝑒𝑎𝑡𝑒𝑑, 𝑜𝑝𝑝𝑜𝑠𝑒𝑠 in our ASP encoding, to reason about rules interacting with each other, and

similar predicates that the authors of [18] use in their work. However our ASP implementation

is much more specific to legal reasoning whereas they seek to implement very general logic

based reasoning mechanisms. We independently developed our ‘meta theory’ for how rule

modifiers interact with the rules and with each other and there are further original contributions

like a proposed axiom system for what we call ‘legal models’. An interesting avenue of future

work could be to compare our approaches within the framework of legal reasoning.

The work in this section builds on the work in [19] and hence uses many of the same

predicates/notation and terminology.

3.2. Formal Setup

Let the tuple 𝐶𝑜𝑛𝑓𝑖𝑔 = (𝑅,𝐹,𝑀, 𝐼) denote a 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 of legal rules. The set 𝑅 denotes

a set of rules of the form 𝑝𝑟𝑒_𝑐𝑜𝑛(𝑟) → 𝑐𝑜𝑛𝑐𝑙(𝑟). These are ‘naive’ rules with no information

pertaining to any of the other rules in 𝑅. 𝐹 is a set of positive atoms that describe facts of the

legal scenario we wish to consider. 𝑀 is a set of the binary predicates 𝑑𝑒𝑠𝑝𝑖𝑡𝑒, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜 and

𝑠𝑡𝑟𝑜𝑛𝑔_𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜. 𝐼 is a collection of minimal inconsistent sets of positive atoms. Henceforth

for a rule 𝑟, we may write 𝐶𝑟 for its conclusion 𝐶𝑜𝑛𝑐𝑙(𝑟).
Note that, throughout this section, given any rule 𝑟, 𝐶𝑟 is assumed to be a single positive

atom. That is, there are no disjunctions or conjunctions in rule conclusions. Also any rule

pre-condition (𝑝𝑟𝑒_𝑐𝑜𝑛(𝑟)) is assumed to be a conjunction of positive and negated atoms. Here

negation denotes ‘negation as failure’.

Throughout this document, whenever we use an uppercase or lowercase letter (like 𝑟, 𝑟1, 𝑅
etc.) to denote a rule that is an argument, in a binary predicate, we mean the unique integer

rule id associated with that rule. The binary predicate 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟, 𝑐) intuitively means

that the rule 𝑟 is ‘in force’ and it has conclusion 𝑐. Here 𝑟 typically is an integer referring to the

rule id and 𝑐 is the atomic conclusion of the rule. The unary predicate 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑐) intuitively

means that the atom 𝑐 legally holds/has legal status. The predicates 𝑑𝑒𝑠𝑝𝑖𝑡𝑒, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜 and

𝑠𝑡𝑟𝑜𝑛𝑔_𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜 all cause some rules to override others. Their precise properties will be

given next.



3.3. Semantics

A set 𝑆 of 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙 and 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑 predicates is called a legal model of 𝐶𝑜𝑛𝑓𝑖𝑔 =
(𝑅,𝐹,𝑀, 𝐼), if and only if

(A1) ∀𝑓 ∈ 𝐹 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑓) ∈ 𝑆.

(A2) ∀𝑟 ∈ 𝑅, if 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟, 𝐶𝑟) ∈ 𝑆. then 𝑆 |= 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑝𝑟𝑒_𝑐𝑜𝑛(𝑟)) and 𝑆 |=
𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝐶𝑟)

2

(A3) ∀𝑐, if 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑐) ∈ 𝑆, then either 𝑐 ∈ 𝐹 or there exists 𝑟 ∈ 𝑅 such that

𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟, 𝐶𝑟) ∈ 𝑆 and 𝑐 = 𝐶𝑟 .

(A4) ∀𝑟𝑖, 𝑟𝑗 ∈ 𝑅, if 𝑑𝑒𝑠𝑝𝑖𝑡𝑒(𝑟𝑖, 𝑟𝑗) ∈ 𝑀 and 𝑆 |= 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑝𝑟𝑒_𝑐𝑜𝑛(𝑟𝑗)), then

𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟𝑖, 𝐶𝑟𝑖) /∈ 𝑆

(A5) ∀𝑟𝑖, 𝑟𝑗 ∈ 𝑅, if 𝑠𝑡𝑟𝑜𝑛𝑔_𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜(𝑟𝑖, 𝑟𝑗) ∈ 𝑀 and 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟𝑖, 𝐶𝑟𝑖) ∈ 𝑆, then

𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟𝑗 , 𝐶𝑟𝑗 ) /∈ 𝑆

(A6) ∀𝑟𝑖, 𝑟𝑗 ∈ 𝑅 if 𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜(𝑟𝑖, 𝑟𝑗) ∈ 𝑀 , and 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟𝑖, 𝐶𝑟𝑖) ∈ 𝑆 and there exists a

minimal conflicting set 𝑘 ∈ 𝐼 such that 𝐶𝑟𝑖 ∈ 𝑘 and 𝐶𝑟𝑗 ∈ 𝑘 and 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑘 ∖ {𝐶𝑟𝑗 )}) ⊆
𝑆, then 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟𝑗 , 𝐶𝑟𝑗 ) /∈ 𝑆. Note than in our system, any minimal inconsistent

set must contain at least 2 atoms.
3

(A7) ∀𝑟 ∈ 𝑅, if 𝑆 |= 𝑝𝑟𝑒_𝑐𝑜𝑛(𝑟), but 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟, 𝐶𝑟) /∈ 𝑆, then it must be the case that

at least one of A4 or A5 or A6 has caused the exclusion of 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟, 𝐶𝑟). That is

if 𝑆 |= 𝑝𝑟𝑒_𝑐𝑜𝑛(𝑟), then unless this would violate one of A5, A6 or A7, it must be the

case that 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑(𝑟, 𝐶𝑟) ∈ 𝑆.

3.4. Some remarks on axioms A1–A7

We now give some informal intuition behind some of the axioms and their intended effects.

A1 says that all facts in 𝐹 automatically gain legal status, that is, they legally hold. The set 𝐹
represents indisputable facts about the legal scenario we are considering.

A2 says that if a rule is ‘in force’ then it must be the case that both the pre-condition and

conclusion of the rule have legal status. Note that it is not enough if simply require that the

conclusion has legal status as more than one rule may enforce the same conclusion or the

conclusion may be a fact, so we want to know exactly which rules are in force as well as their

conclusions.

A3 says that anything that has legal status must either be a fact or be a conclusion of some

rule that is in force.

A4–A6 describe the semantics of the three modifiers. The intuition for the three modifiers

will be discussed next. Firstly, it may help the reader to read the modifiers in certain ways.

𝑑𝑒𝑠𝑝𝑖𝑡𝑒(𝑟𝑖, 𝑟𝑗) should be read as ‘despite 𝑟𝑖, 𝑟𝑗 ’. Thus 𝑟𝑖 here is the ‘subordinate rule’ and

2

By 𝑆 |= 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑝𝑟𝑒_𝑐𝑜𝑛(𝑟)) we mean that for each positive atom 𝑏𝑖 in the conjunction, 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑏𝑖) ∈ 𝑆
and for each negation-as-failure body atom 𝑛𝑜𝑡 𝑏𝑗 in the conjunction 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑏𝑗) /∈ 𝑆

3

For a set of atoms 𝐴, by 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝐴), we mean the set {𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑎) | 𝑎 ∈ 𝐴}



𝑟𝑗 is the ‘dominating’ rule. The idea here is that once the precondition of the dominating

rule 𝑟𝑗 is true, it invalidates the subordinate rule 𝑟𝑖 regardless of whether the dominating

rule itself is then invalidated by some other rule. For strong subject to, the intended reading

for 𝑠𝑡𝑟𝑜𝑛𝑔_𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜(𝑟𝑖, 𝑟𝑗) is something like ‘(strong) subject to 𝑟𝑖, 𝑟𝑗 ’. Here 𝑟𝑖 can be

considered the dominating rule and 𝑟𝑗 the subordinate. Once the dominating rule is in force,

then it invalidates the subordinate rule. The intended reading for 𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜(𝑟𝑖, 𝑟𝑗) is ‘subject

to 𝑟𝑖, 𝑟𝑗 ’. For the subordinate rule 𝑟𝑗 to be invalidated, it has to be the case that the dominating

rule 𝑟𝑖 is in force and there is a minimal inconsistent set 𝑘 in 𝐼 that contains the two atoms in

the conclusions of the two rules and, 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑘 ∖ {𝐶𝑟𝑗 )}) ⊆ 𝑆. These minimal inconsistent

sets along with the subject to modifier give us a way to incorporate a classical-negation-like

effect into our system. We are able to say which things contradict each other. Note that in

our system, if say {𝑎, 𝑏} is a minimal inconsistent set, then it is possible for both 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑎)
and 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑏) to be in a single legal model, if they are both facts or they are conclusions of

rules that have no modifiers linking them. These minimal inconsistent sets only play a role

where a 𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜 modifier is involved. The reason for doing this is that this offers greater

flexibility rather than treating 𝑎 and 𝑏 as pure logical negatives of each other that cannot be

simultaneously true in a legal model. We will give examples later on to illustrate these modifiers.

A7 says essentially that A4–A6 represent the only ways in which a rule whose pre-condition

is true may nevertheless be invalidated, and any rule whose precondition is satisfied and is not

invalidated directly by some instance of A4–A6, must be in force.

Note that there maybe legal rule configurations for which no legal models exist. See the

appendix for a discussion of some ’pathological’ rule configurations.

3.5. ASP encoding

Here is an ASP encoding scheme for a configuration 𝐶𝑜𝑛𝑓𝑖𝑔 = (𝑅,𝐹,𝑀, 𝐼) of legal rules.

1 % For any f in F, we have:
2 is_legal(f).
3 % All the modifiers get added as facts like for example:
4 despite(1,2).
5 % Any rule r in R is encoded using the general schema:
6 according_to(r,C_r):-is_legal(pre_con(r)).
7 % Given a minimal inconsistent set {a_1,a_2,...,a_n}, this corresponds to a

set of rules:
8 opposes(a_1,a_2):-is_legal(a_2),is_legal(a_3),...,is_legal(a_n).
9 opposes(a_1,a_3):-is_legal(a_2),is_legal(a_4)...,is_legal(a_n). % etc ...

10 opposes(a_n-1,a_n):-is_legal(a_1),...,is_legal(a_n-2).
11 % Opposes is a symmetric relation
12 opposes(X,Y):-opposes(Y,X).
13 % Encoding for ’despite’
14 defeated(R,C,R1) :-
15 according_to(R,C), according_to(R1,C1), despite(R,R1).
16 %Encoding for ’subject_to’
17 defeated(R,C,R1) :-
18 according_to(R,C), legally_valid(R1,C1),
19 opposes(C,C1), subject_to(R1,R).
20 % Encoding for ’strong_subject_to’



21 defeated(R,C,R1) :-
22 according_to(R,C), legally_valid(R1,C1),
23 strong_subject_to(R1,R).
24

25 not_legally_valid(R) :- defeated(R,C,R1).
26 legally_valid(R,C):-according_to(R,C),not not_legally_valid(R).
27 is_legal(C):-legally_valid(R,C).

3.6. Proposition

Proposition 1. For a configuration 𝐶𝑜𝑛𝑓𝑖𝑔 = (𝑅,𝐹,𝑀, 𝐼), let the above encoding be the
program 𝐴𝑆𝑃𝐶𝑜𝑛𝑓𝑖𝑔 . Then given an answer set 𝐴𝐶𝑜𝑛𝑓𝑖𝑔 of 𝐴𝑆𝑃𝐶𝑜𝑛𝑓𝑖𝑔 let 𝑆𝐴𝐶𝑜𝑛𝑓𝑖𝑔

be the set of
𝑖𝑠_𝑙𝑒𝑔𝑎𝑙 and 𝑙𝑒𝑔𝑎𝑙𝑙𝑦_𝑣𝑎𝑙𝑖𝑑 predicates in 𝐴𝐶𝑜𝑛𝑓𝑖𝑔 . Then 𝑆𝐴𝐶𝑜𝑛𝑓𝑖𝑔

is a legal model of 𝐶𝑜𝑛𝑓𝑖𝑔.

𝑃𝑟𝑜𝑜𝑓 See Appendix of full paper. □

3.7. Example

Let us see how the running example would work in the ASP setting. We have 3 rules en-

coded as below, there are no minimal inconsistent sets. There are 3 modifiers: 𝑑𝑒𝑠𝑝𝑖𝑡𝑒(2, 3),
𝑠𝑡𝑟𝑜𝑛𝑔_𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜(1, 3), 𝑠𝑡𝑟𝑜𝑛𝑔_𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜(1, 2)

1 despite(2,3).
2 strong_subject_to(1,3).
3 strong_subject_to(1,2).
4 according_to(1,max_spd(v,d,r,90)):-is_legal(is_workday(d)),
5 is_legal(is_car(v)).
6 according_to(2,max_spd(v,d,r,130)):-is_legal(is_highway(r)),
7 is_legal(is_car(v)).
8 according_to(3,max_spd(v,d,r,320)):-is_legal(is_highway(r)),
9 is_legal(is_sports_car(v)).

10

11 % Encoding for ’despite’
12 defeated(R,C,R1) :-
13 according_to(R,C), according_to(R1,C1), despite(R,R1).
14 %Encoding for ’subject_to’
15 defeated(R,C,R1) :-
16 according_to(R,C), legally_valid(R1,C1),
17 opposes(C,C1), subject_to(R1,R).
18 % Encoding for ’strong_subject_to’
19 defeated(R,C,R1) :-
20 according_to(R,C), legally_valid(R1,C1),
21 strong_subject_to(R1,R).
22

23 not_legally_valid(R) :- defeated(R,C,R1).
24 legally_valid(R,C):-according_to(R,C),not not_legally_valid(R).
25 is_legal(C):-legally_valid(R,C).

When the initial set of facts 𝐹 is the set



is_legal(is_workday(d)).
is_legal(is_car(v)).
is_legal(is_highway(r)).
is_legal(is_sports_car(v)).

we get exactly one legal max speed given by

is_legal(max_spd(v,d,r,90)).

One can check this by adding the rule

legal_max_spd(X):- is_legal(max_spd(v,d,r,X)).

and running the s(CASP) query ?− 𝑙𝑒𝑔𝑎𝑙_𝑚𝑎𝑥_𝑠𝑝𝑑(𝑋)., which returns the binding 𝑋 = 90.

This is the unique legal maximum speed which can be seen via use of the rule

legal_max_spd(X):- X > 90, is_legal(max_spd(v,d,r,X)).

Now running the query as above we see that there is no solution. When removing

𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑖𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦(𝑑)) from 𝐹 , we get exactly one legal max speed of 320, and when

𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑖𝑠_𝑠𝑝𝑜𝑟𝑡𝑠_𝑐𝑎𝑟(𝑣)), and 𝑖𝑠_𝑙𝑒𝑔𝑎𝑙(𝑖𝑠_𝑤𝑜𝑟𝑘𝑑𝑎𝑦(𝑑)) are both removed from 𝐹 we get

exactly one exactly legal max speed of 130.

4. Conclusions

This paper has discussed different approaches for representing defeasibility as used in law texts,

by annotating rules with modifiers that explicate their relation to other rules. We have notably

presented encodings based on Answer Set Programming, in Section 3. All the encodings are

motivated by the need to explore the implementation of various forms of defeasibility in logics

for which well developed and powerful solvers such as SMT solvers and ASP solvers already

exist. The ASP based and SMT based approaches are complimentary to each other. ASP’s closed-

world-assumption is useful when a legal verdict must be reached with potentially incomplete

information, when the truth value of every atom is not explicitly known. For example in the

speed limit example, unless it is known explicitly that the car in question was a sports car, the

ASP solver would always return a speed limit lower than 320. The SMT solver would generate

two models, one in which the car is a sports car and one in which it is not. This could lead to

two different speed limits, hence requiring human intervention to determine the true speed

limit in the scenario being considered. On the other hand, when one does model checking or

wants to reason about meta-properties of the rules such as soundness of the rule-set, the SMT

solver approach is more suited than the ASP approach. Intuitively, here we want to reason

over all possible scenarios rather than restricting the reasoning to a particular scenario being

considered.

However, we are still at the beginning of the journey. To allow the two approaches to work

together coherently and seamlessly, a theoretical comparison of the classical and ASP semantics

presented here still has to be carried out, and it has to be propped up by an empirical evaluation.

For this purpose, we are currently in the process of coding some real-life law texts in L4, such



as Singapore’s Personal Data Protection Act
4
. An implementation of the L4 ecosystem is under

way
5
, providing a transpilation of L4 rules to both the SMT and the ASP world. The interaction

with SMT solvers is done through an SMT-LIB [20] interface. Advanced solvers, such as Z3 [21],

provide good support for quantification.
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