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Abstract
Hybrid probabilistic logic programs extends probabilistic logic programs by adding the possibility to
manage continuous random variables. Despite the maturity of the field, a semantics that unifies discrete
and continuous random variables and function symbols was still missing. In this paper, we summarize the
main concepts behind a new proposed semantics for hybrid probabilistic logic programs with function
symbols.
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1. Contribution

This paper is a technical summary of [1]. Probabilistic Logic Programming [2] extends Logic
Programming with probabilistic facts, i.e., logical atoms with an associated probability. These
are usually indicated with the syntax [3]:

Π :: 𝑓

where 𝑓 is an atom and Π ∈]0, 1]. Intuitively, 𝑓 is true with probability Π and false with
probability 1−Π. To illustrate probabilistic logic programs, let us start with a simple example:

Example 1. Card single round.

1 1/3 :: spades(X).
2 1/2 :: clubs(X).
3 pick(0,spades) :- spades(0).
4 pick(0,clubs) :- \+ spades(0), clubs(0).
5 pick(0,hearts) :- \+ spades(0), \+ clubs(0).
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This program describes a game of card with only 1 round (identified with 0) and 3 cards. A player
draws a card that can be either of spades, clubs, or hearts. These have all the same probability.
Note that, to describe three possible cards we only need 2 (probabilistic) facts, since the third can
be represented with the negation of the other two (see line 5). The predicate pick/2 describes the
three possible outcomes.

The probability of a query asked on the program of Example 1 is easy to compute. For
example, the probability of pick(0,hearts) is (1 − 1/3) · (1 − 1/2) = 1/3. However, we
can make the program more interesting by adding multiple rounds. To do this, we introduce a
function symbol s/1 to the program of Example 1.

Example 2. Cards with multiple rounds. We extend Example 1 by considering multiple rounds.
We introduce the function symbol s/1 to indicate a round and with s(X) we indicate the round
after the round X. So, starting from 0 (first round), we have s(0) for the second round, s(s(0))
for the third round and so on. We introduce an additional rule: the game stops when the player
picks a card of hearts. The program thus became:

1 1/3 :: spades(X).
2 1/2 :: clubs(X).
3 pick(0,spades) :- spades(0).
4 pick(0,clubs) :- \+ spades(0), clubs(0).
5 pick(0,hearts) :- \+ spades(0), \+ clubs(0).
6 pick(s(X),spades):- \+ pick(X,hearts), spades(s(X)).
7 pick(s(X),clubs):- \+ pick(X,hearts), \+ spades(s(X)), clubs(s(X)).
8 pick(s(X),hearts):- \+ pick(X,hearts), \+ spades(s(X)),
9 \+ clubs(s(X)).
10
11 at_least_once_spades :- pick(_,spades).
12 never_spades :- \+ at_least_once_spades.

A possible question could be: “what is the probability that the player picks at least one time
spades?” This probability can be computed by asking the query 𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑐𝑒_𝑠𝑝𝑎𝑑𝑒𝑠.

To compute the probability of the query 𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑐𝑒_𝑠𝑝𝑎𝑑𝑒𝑠 from Example 2, we need to
consider pairwise incompatible covering set of explanations [4]. If we replace spades with 𝑓1
and clubs with 𝑓2 and we use 0 and 1 to indicate respectively not selected and selected, we get
a pairwise incompatible covering set of explanations 𝐾 = {𝜅0, 𝜅1, . . .} with

𝜅0 = {(𝑓1, {𝑋/0}, 1)}
𝜅1 = {(𝑓1, {𝑋/0}, 0), (𝑓2, {𝑋/0}, 1), (𝑓1, {𝑋/𝑠(0)}, 1)}

. . .

𝜅𝑖 = {(𝑓1, {𝑋/0}, 0), (𝑓2, {𝑋/0}, 1), . . . , (𝑓1, {𝑋/𝑠𝑖−1(0)}, 0),
(𝑓2, {𝑋/𝑠𝑖−1(0)}, 1), (𝑓1, {𝑋/𝑠𝑖(0)}, 1)}

. . .



From here, we can compute the probability of the query 𝑞 = 𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑐𝑒_𝑠𝑝𝑎𝑑𝑒𝑠 as
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since we have a sum of a geometric series.
We can even further extend the previous example by also considering continuous random

variables. To represent these, we use the syntax

𝑎 : 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

where 𝑎 is an atom and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 is a special atom that denotes its probability density.

Example 3. Cards multiple rounds and continuous random variables. We extend Example 2 by
adding another rule: the player still draws a card but, in addition, he/she need to spin a wheel. If
the axis of the wheel is between 0 and 180 degrees the game stops. This scenario can be encoded
with:

1 angle(_,X) : uniform_dens(X,0,360).
2 1/3 :: spades(X).
3 1/2 :: clubs(X).
4 pick(0,spades) :- spades(0), angle(0,V), V > 180.
5 pick(0,clubs) :- \+ spades(0), clubs(0), angle(0,V), V > 180.
6 pick(0,hearts) :- \+ spades(0), \+ clubs(0), angle(0,V), V > 180.
7 pick(s(X),spades):- \+ pick(X,hearts), spades(s(X)), angle(s(X),V),

V > 180.
8 pick(s(X),clubs):- \+ pick(X,hearts), \+ spades(s(X)), clubs(s(X)),

angle(s(X),V), V > 180.
9 pick(s(X),hearts):- \+ pick(X,hearts), \+ spades(s(X)),
10 \+ clubs(s(X)), angle(s(X),V), V > 180.
11
12 at_least_once_spades :- pick(_,spades).
13 never_spades :- \+ at_least_once_spades.

In line 1 we have a continuous probabilistic fact angle/2 where its argument X follows a
uniform distribution between 0 and 360.

We may be still interested in computing the probability of the query 𝑎𝑡_𝑙𝑒𝑎𝑠𝑡_𝑜𝑛𝑐𝑒_𝑠𝑝𝑎𝑑𝑒𝑠
from Example 3. Differently from Example 2, we now need to consider a mutually disjoint
covering set of worlds 𝜔. First, we partition the random variables in two sets: a countable set
X of continuous random variables (identified by 0, 𝑠(0), . . . , where each element has a range



[0, 360]) and a countable set Y of discrete random variables (where each element can be true or
false). The set 𝜔 = 𝜔0 ∪ 𝜔1 . . . is such that:

𝜔0 = {(𝑤X, 𝑤Y) | 𝑤X = (𝑥0, 𝑥1, . . .), 𝑤Y = (𝑦𝑐0, 𝑦
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𝑥0 ∈]180, 360], 𝑦𝑠0 = 0, 𝑦𝑐0 = 1, 𝑥1 ∈]180, 360], 𝑦𝑠1 = 1}
. . .

In other words: for 𝜔0, spades was selected at round 0 (𝑦𝑠0 = 1) and the wheel (𝑥0) in the same
round was in the range ]180, 360]; for 𝜔1, spades was not selected at round 0 (𝑦𝑠0 = 0), clubs
was selected at round 0 (𝑦𝑐0 = 1), the wheel (𝑥0) was in the range ]180, 360] at round 0, spades
was selected at round 𝑠(0) (𝑦𝑠1 = 1) and the wheel (𝑥1) was in the range ]180, 360] at round
𝑠(0), and so on.

The probability for each 𝜔𝑖 can be computed by multiplying the discrete and continuous
components. For 𝜔0 (the process is similar for all the 𝜔𝑖 ∈ 𝜔) we have:
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5 as probability for the query

at_least_once_spades.
In [1], we prove that this semantics is well defined, i.e., it assigns a probability value to queries

for a large class of programs. However, as discussed in [5], these programs must met some
requirements, mainly needed to ensure the existence of the sets of discrete and continuous
random variables. These requirements are: 1) the set of random variables must be countable; 2)
clauses with the same head but different bodies must be mutually exclusive; 3) the value of a
continuous random variable must be used only as a parameter for another distribution, and not
as a variable for another term; 4) clauses must be range restricted (every variable in the head
also appears in a positive literal in the body): this ensures that answers to queries are ground
instantiations of it. For a more in-depth discussion see [5].

References

[1] D. Azzolini, F. Riguzzi, E. Lamma, A semantics for hybrid probabilistic logic programs with
function symbols, Artificial Intelligence 294 (2021) 103452. doi:10.1016/j.artint.2021.
103452.

[2] F. Riguzzi, Foundations of Probabilistic Logic Programming: Languages, semantics, inference
and learning, River Publishers, Gistrup, Denmark, 2018.

http://dx.doi.org/10.1016/j.artint.2021.103452
http://dx.doi.org/10.1016/j.artint.2021.103452


[3] L. De Raedt, A. Kimmig, H. Toivonen, Problog: A probabilistic prolog and its application in
link discovery, in: M. M. Veloso (Ed.), IJCAI, 2007, pp. 2462–2467.

[4] F. Riguzzi, The distribution semantics for normal programs with function symbols, Interna-
tional Journal of Approzimate Reasoning 77 (2016) 1–19. doi:10.1016/j.ijar.2016.05.
005.

[5] D. Azzolini, F. Riguzzi, Syntactic requirements for well-defined hybrid probabilistic logic
programs, in: A. Formisano, Y. A. Liu, B. Bogaerts, A. Brik, V. Dahl, C. Dodaro, P. Fodor,
G. L. Pozzato, J. Vennekens, N.-F. Zhou (Eds.), Proceedings 37th International Conference on
Logic Programming (Technical Communications), Open Publishing Association, Waterloo,
Australia, 2021, pp. 14–26. doi:10.4204/EPTCS.345.

http://dx.doi.org/10.1016/j.ijar.2016.05.005
http://dx.doi.org/10.1016/j.ijar.2016.05.005
http://dx.doi.org/10.4204/EPTCS.345

	1 Contribution

