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Abstract
The context of the paper is developing logic-based components for hybrid – machine learning
plus logic – commonsense question answering systems. The paper presents the main principles
and several lessons learned from implementing an automated reasoner able to handle both
undecidable exceptions and numerical confidences for full first order logic. Although the
described reasoner is based on the resolution method, some of these lessons may be useful for
the further development of ASP systems.
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1. Introduction
The focus of the paper is on several aspects of devising symbolic systems for commonsense
reasoning, particularly for problems stated in natural language. Although it is commonly
accepted that during the last decade the machine learning systems have achieved signifi-
cantly more successes than symbolic reasoning systems, it is often argued (see [1], [2])
that hybrid systems have more potential for the future than either pure symbolic or pure
machine learning systems. In order to research and experiment with hybrid systems, we
need symbolic systems which are suited for the task.

We are developing a symbolic reasoning system GK for exactly this purpose: to obtain
a symbolic reasoning component suitable for commonsense reasoning tasks, which could
then be integrated with the machine learning components. As a complement to GK we are
developing a semantic parser for natural language, which outputs logical statements and
questions suitable for GK. The semantic parser first uses the Stanza parser [3] producing
a Universal Dependencies graph for natural language sentences and then converts this
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graph to first order predicate calculus enhanced with constructions for “softening” the
logic.

The logical statements thus created and then handled by GK are currently softened in
two separate ways. First, in [4] we introduce a CONFER framework were each clause
obtained from the statements can have a probability-like confidence number 0...1 attached.
Second, in [5] we describe the mechanisms for handling clauses which contain blocker
atoms: atoms whose derivability is checked for each finished proof containing such atoms,
and the provability of which disqualifies the proof containing the atom. The blocker
atoms are essentially a mechanism of implementing default logic as introduced by R.
Reiter in [6].

2. Standard and nonstandard reasoning by GK
The GK reasoning system available at https://logictools.org/gk/ is a significantly extended
version of the high performance resolution prover GKC [7] for classical logic. GK, as well
as GKC, is written in C. A tutorial and a set of default logic and confidence calculation
example problems along with proofs from GK are also available at http://logictools.org/gk,
along with the large integrated knowledge bases built from WordNet, Quasimodo [8] and
ConceptNet [9] knowledge bases, usable by GK.

GKC, in turn, is optimized for large problems. Some of these optimization principles
are:

• Pervasive use of hash indexes instead of tree indexes commonly used in automated
reasoners.

• Highly efficient forward subsumption algorithms using feature vectors based on
hashes.

• Focus on using goal-directed search, i.e. the variations of the set-of-support algo-
rithm.

• Clause selection queues aimed at spreading the clause selection during search
relatively uniformly over different important categories of derived clauses, like the
query, assumptions, more relevant rules/facts, less relevant rules/facts.

The nonstandard features of GK are:

• Finding answer substitutions by using a variation of the well-known answer literal
mechanism.

• Surviving inconsistent knowledge bases by discarding proofs not containing goal
clauses.

• Searching for derivations of both positive and negative instances of queries/answers.
• Calculating the diminishing-or-equal confidences of the results of rule applications.
• Calculating the increasing-or-equal cumulative confidences from different derivations

of a clause.
• Handling and checking the blocker literal expressing exceptions to rules: essentially,

default logic.



Consider a typical example for default logic: birds can normally fly, but penguins
cannot fly. The classical logic part

𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑝) & 𝑏𝑖𝑟𝑑(𝑏) & ∀𝑥.𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑥) ⇒ 𝑏𝑖𝑟𝑑(𝑥) & ∀𝑥.𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑥) ⇒ ¬𝑓𝑙𝑦(𝑥).

is extended with the default rule 𝑏𝑖𝑟𝑑(𝑥) : 𝑓𝑙𝑦(𝑥) ⊢ 𝑓𝑙𝑦(𝑥).
From here we can derive that an arbitrary bird 𝑏 can fly, but a penguin 𝑝 cannot. The

default rule cannot be applied to 𝑝, since a contradiction is derivable from 𝑓𝑙𝑦(𝑝). For
example, the “birds can fly” default rule is represented as a clause

¬bird(X) ∨ fly(X) ∨ block(0, neg(fly(X)))

where X is a variable and neg(fly(X)) encodes the negated justification. The first
argument of the blocker (0 above) encodes priority information covered later.

Since first order logic is not decidable, it is in general impossible to guarantee that
some blocker literal is not derivable. Hence, the standard approach for handling default
logic has been creating a large ground instance KB𝑔 of the KB, and then performing
decidable propositional reasoning on the KB𝑔.

Almost all the existing implementations of default logic like DeReS [10], DLV2 [11]
or CLINGO [12], with the exception of s(CASP) [13], follow the same principle. More
generally, the field of Answer Set Programming (ASP), see [14], is devoted to this approach.
As an exception, the s(CASP) system [13] solves queries without the grounding step and
is thus better suited for large domains.

The approach implemented in GK accepts the lack of logical omniscience. Justification
checking of blockers (i.e. exceptions) is delayed until a first-order proof is found; after
that recursively deepening checks are performed with diminishing time limits. Thus, GK
first produces a potentially large number of different candidate proofs and then enters a
recursive checking phase. The results produced by GK thus depend on the time limits
and are not stable.

The search algorithm integrates exception checking with confidence calculations and
searching for derivations of both a positive version and a negated version of a query or a
particular answer substitution. A blocker is considered to be proved in case the resulting
confidence is over a pre-determined configurable threshold, by default 0.5. Thus, the
whole search tree for a query consists of two types of interleaved layers: positive/negative
confidence searches and blocker checking searches, the latter type potentially making the
tree arbitrarily deep up to the minimal time limit threshold.

3. Priorities
The concept of priorities for default rules has been well investigated, with several
mechanisms proposed: see [15]. Typically an ordering of defaults is introduced, based on
specificity: default rules for a more specific class of objects should take priority over rules
for more general classes. For example, since birds (who typically do fly) are physical
objects and physical objects typically do not fly, we have contradictory default rules



describing the flying capability of arbitrary birds. Since birds are a subset of physical
objects, the flying rule of birds should have a higher priority than the non-flying rule of
physical objects.

The usage of priorities in proof search by GK is simple: when checking a blocker with
a given priority, it is not allowed to use default rules with a lower priority. We encode
priority information as a first argument of the blocker literal, offering several ways to
determine priority: either as an integer, a taxonomy class number, a string in a taxonomy
or a combination of these with an integer. For automatically using specificity we employ
taxonomy classes: a class has a higher prirority than those above it on the taxonomy
branch. To enable more fine-grained priorities, an integer can be added to the term like
$(”bird”, 2) generating a lexicographic order.

From our experiments with the commonsense reasoning tasks it has become clear that
the question of encoding and assigning priorities is critical for any nontrivial questions
posed. For example, consider “Birds can fly” and “Baby birds cannot fly”: there is no
class taxonomy involved. Moreover, we clearly see that there is a need to be able to attach
a potentially arbitrarily deep list of lecixographically comparable priority information to
each exception. Consider “Birds can eat meat” and “Baby birds cannot eat raw meat”.
As an another nontrivial example for encoding exceptions and priorities, consider the
following commonsense observation: birds and airplanes without wings cannot fly. This
can be generalized to a plausible rule: if a class has a component used for some capability,
then an instance of the class without this component does not have this capability. A
naive usage of priorities for encoding this rule will lead to unstable results.

4. A Comparison with the ASP approach
The following small example illustrates the fundamental difference of GK from the
existing ASP systems for default logic. Although the example is favorable to GK, we
argue that serious commonsense reasoning knowledge bases almost certainly have to
contain both function terms and a large numbers of constants and facts/rules containing
these constants, similarly to the following minimalistic examples. For example, a proper
logical representation of even relatively simple natural language sentences tends to require
interleaved nested general and existential aquantifiers, from which Skolemization generates
function symbols. Also, axiomatizing uniqueness of the properties of objects is most
naturally achieved with the help of function symbols. The standard penguins and birds
example presented above in the ASP syntax is
bird(b1).
penguin(p1).
bird(X) :- penguin(X).
flies(X) :- bird(X), not -flies(X).
-flies(X) :- penguin(X).

Both GK and the ASP systems clingo 5.4.0, dlv 2.1.1 and s(CASP) 0.21.10.09 give an
expected answer to the queries flies(b1) and flies(p1). However, when we add the
rules (not really used by these queries)



bird(father(X)) :- bird(X).
penguin(father(X)) :- penguin(X).

none of these ASP systems terminate for these queries, while GK does solve the queries as
expected. Notably, as pointed out by the author of s(CASP), this system does terminate
for the reformulation of the same problem with the two replacement rules

flies(X) :- bird(X), not abs(X).
abs(X) :- penguin(X).

while clingo and dlv do not terminate. When we instead add the following facts and
rules (again, not actually used by the query)

father(b1,b2).
father(p1,p2).
...
father(bN-1,bN).
father(pN-1,pN).

ancestor(X,Y):- father(X,Y).
ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).

for a large 𝑁 , s(CASP) does not terminate and clingo and dlv become slow for flies(b1):
ca 8 seconds for 𝑁 = 500 and ca 1 minute for 𝑁 = 1000 on a laptop with a 10-th generation
i7 processor. GK solves the same question with 𝑁 = 1000 under half a second and with
𝑁 = 100000 under three seconds: the latter problem size is clearly out of scope of the
capabilities of existing ASP systems.
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