
LTL Model Checking using Coinductive Answer Set
programming
Sarat Chandra Varanasi1, Neda Saeedloei2, Elmer Salazar1, Joaquín Arias3 and
Gopal Gupta1

1The University of Texas at Dallas, Richardson, TX, USA
2Towson University, Towson, MD, USA
3CETINIA, Universidad Rey Juan Carlos, Madrid, Spain

Abstract
We present a model checker for Linear Temporal Logic using Goal-Directed Answer Set Programming
under Costable model semantics (CoASP). Costable model semantics allows for positive loops to succeed
unlike Stable model semantics where positive loops fail. Therefore, by using the Costable model semantics,
LTL formulas involving the 𝒢 and ℛ operator can be proved coinductively.

Keywords
Goal-Directed Answer Set Programming, LTL Model Checking, Coinductive ASP

1. Introduction

We present an LTL model checker expressed in Coinductive Answer Set Programming. Coin-
ductive Answer Set Programming is to be distinguished from Answer Set Programming by
its underlying Costable model semantics where positive loops are allowed to succeed coin-
ductively [1]. Allowing positive loops to succeed allows one to elegantly perform LTL model
checking. Verifying LTL formulas involving the 𝒢 operator can be mapped to looking for
coinductive success in Coinductive Logic programming. Prior works exist in literature that
provide an LTL interpreter using Coinductive Logic Programming [2]. In this work, we show
how Coinductive ASP (CoASP) can be used to evaluate LTL formulas. Our work shows an
important application of CoASP. Further, we use the implementation of CoASP incorporated
in s(CASP) [3], a goal-directed Constraint ASP system, to evaluate LTL formulas. We assume
familiarity with LTL syntax and semantics.

2nd Workshop on Goal-directed Execution of Answer Set Programs (GDE’22), August 1, 2022
$ sxv153030@utdallas.edu (S. C. Varanasi); nsaeedloei@towson.edu (N. Saeedloei); elmer.salazar@utdallas.edu
(E. Salazar); joaquin.arias@urjc.es (J. Arias); gupta@utdallas.edu (G. Gupta)
� 0000-0002-4620-4266 (S. C. Varanasi); 0000-0003-4148-311X (J. Arias); 0000-0001-9727-0362 (G. Gupta)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:sxv153030@utdallas.edu
mailto:nsaeedloei@towson.edu
mailto:elmer.salazar@utdallas.edu
mailto:joaquin.arias@urjc.es
mailto:gupta@utdallas.edu
https://orcid.org/0000-0002-4620-4266
https://orcid.org/0000-0003-4148-311X
https://orcid.org/0000-0001-9727-0362
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Background

2.1. Coinductive Logic Programming and Goal-Directed ASP

Coinductive Logic Programming allows for circular terms to be constructed when performing
unification [4]. This deviates from traditional least-fix point semantics-based logic programming
where the occurs check prevents the construction of circular terms (which are equivalent to an
infinite term). For performance reasons, Logic Programming systems do not perform an occurs
check but fail to terminate when a circular term is to be printed. Making programs terminate
when a circular term is constructed marked the birth of Coinductive Logic Programming
(CoLP) [4]. A lot of work has been done in (constraint) CoLP towards verification of safety and
liveness of cyber physical systems [5, 6, 2, 7, 8]. The development of Goal-Directed ASP was
inspired from CoLP [6, 9]. The goal-directed ASP search succeeds coinductively when a goal
unifies with itself in the call-stack through an even number of negations. This is similar to
coinductive success in CoLP except that the negations are not counted. Goal-directed ASP was
first developed for propositional answer set programs[10] and has been extended to predicate
ASP programs [9, 11] and more recently to predicate ASP programs with constraints over
reals [3]. The s(CASP) system implements goal-directed solving of predicate ASP programs with
support for CLP(Q), with many applications in Knowledge Representation and Reasoning [12,
13, 14] to the modeling and verification of timed systems [15].

2.2. Costable Model semantics

The Costable model semantics was introduced in 2012 [1] and formalized by Elmer Salazar
in the context of providing proof-theoretic foundations to negation-as-failure (NAF) in logic
programming [16]. Costable model semantics allows positive loops to succeed. For example, a
loop such as

p :- p.

is a positive loop. This loop does not succeed under the stable model semantics, because the
last step of the Gelfond-Lifschitz transform [17] computes the least fixpoint (LFP) semantics of
the residual program. Alternatively, we could compute the greatest fixpoint (GFP) semantics of
the residual program in the last step of the transform. With the GFP semantics, the program

p :- p.

will produce an additional stable model, namely, {p}, in addition to the one corresponding to
the LFP, namely, {}. The GFP-based stable model assumes that there is in infinite (coinductive)
proof for p. The Costable model semantics precisely formulates this notion and finds GFP-based
stable models for such positive loops. This property of the Costable model semantics lends
itself well to LTL model checking. LTL formulas are defined over infinite sequences of states
in a state transition system and verifying properties that are globally true can naturally be
verified via a coinductive proof. More details about the costable model semantics can be found
elsewhere [1, 16].

2.3. CoASP in s(CASP)

CoLP enables assumption-based reasoning. Given the rule

p :- p.

if we accept that p is entailed by this program, then essentially we are stating that p holds if
we assume p to be true. There are instances where this may appear counter-intuitive as the
following example shows. Consider the program for reachability of nodes in a graph:

reach(X,Y) :- edge(X,Y).
reach(X,Y) :- edge(X,Z), reach(Z,Y).
edge(1,2). edge(2,1). edge(3,3).

If we ask the query ?- reach(1,3). then it will succeed under coLP and coASP, even though
it is clear that node 3 cannot be reached from node 1. If we look at the coinductive proof trace
we see the following:

reach(1,3) → edge(1,Z),reach(Z,3) → reach(2,3) →
edge(2,Z’),reach(Z’,3) → reach(1,3) [coinductive success]

Not only reach(1,3) holds because we assume reach(1,3), the subgoal reach(2,3) also
holds because of this assumption. To make this assumption explicit, s(CASP) always prints all
such assumptions upon termination of the query when it is called with coinductive execution
option (with the –co flag).

3. LTL Model Checker in CoASP

The LTL model checker is succinctly described in CoASP as well as CoLP [5]. The transition
system over which LTL propositions are checked is captured as a set of trans/2 facts. For
example, trans(s1, s2) means that state s2 is the next state from state s1. For atomic
propositions, holds(s, p) is used to denote that the atomic proposition p is true in state s.
Compound propositions involve the standard LTL operators over atomic propositions. An
interesting way to describe atomic propositions is by using NAF over non-atomic propositions
as shown in Code 1.

not_atomic(and(_, _)). % and operator
not_atomic(or(_,_)). % or operator
not_atomic(f(_)). % future operator
not_atomic(g(_)). % always operator
not_atomic(x(_)). % next operator
atomic(X) :- not not_atomic(X).

Code 1: Atomic propositions as NAF over compound LTL formulas

The model checker itself is found in Code 2. The verification is achieved by verify/3 predicate,
where verify(s, f, path) means that the formula f is true on the (infinite) path starting

𝑠1 {q}

𝑠2 {p} 𝑠3 {p}

𝑠4 {p}

Figure 1: State transition system, q holds in s1, p holds in s2, s3, s4

at state s. The proposition true is unconditionally true in every state. An atomic proposition p
is true at state s, if holds(s,p) is a fact. Negation of a formula is proved by using NAF.
Other rules follow from the semantics of LTL formulas. When considering the g(p) for some
formula p, an infinite path is first chosen using the co_path predicate. The predicate co_path
non-deterministically returns paths that contain a cycle in the transition graph. The definitions
of co_path are typical list processing rules over the trans/2 terms and are not shown for
brevity. Once the infinite path is selected, the proof of g(p) succeeds if and only if there is a
coinductive success under the costable model semantics.
The interpreter can be similarly described in CoLP. In CoLP, the co_path can be removed as
an infinite path is found automatically by finding a circular term involving states. Because,
s(CASP) does not support circular terms, the co_path predicate is used.

4. An example

Consider the following transition system as shown in Figure 1. The atomic proposition q is true in
state s1, and the proposition p holds in states s2, s3 and s4. By observing the transition system
it is easy to follow that x(p) holds in state s1, similarly f(g(p)) holds in s1. These formulas
can be checked by asking s(CASP) the query ?- verify(s1, x(p)). Before querying s(CASP),
it should be launched using the –co option to execute the queries in CoASP mode. If the formula
x(p) is true in s1, the query would succeed and the path along which the formula holds would
be returned in the s(CASP) model. Alternatively, an infinite path can be chosen and then a
formula can be checked as follows: ?- co_path(s1, Path), verify(s1, x(p), Path).
Due to s(CASP)’s support to print the justification tree for a query, one can alternatively explore
why a certain formula holds at a certain state. A fragment of the justification tree of the previous
query is shown in Code 3. Similarly to f(g(p)) being true at s1, the formula f(g(neg(q)))
succeeds at s1. Note that we use NAF to indicate that a certain atomic proposition does not
hold in a state. Since, q is not mentioned in states s2, s3 and s4, it is always true in the
infinite sequence s2, s3, s4, s2, s3, s4..... The source files are available in this
github repo [18].
Consider another query that uses the G operator. It is clear that g(f(p)) is true in state s1.
This is because f(p) is true in the infinite path s1, s2, s3, s4, s2, s3, s4..... In this
case, the proof has to succeed by coinduction and s(CASP) prints a warning to the user that a
proof by coinduction using a positive loop was performed. s(CASP) flags this as a warning as

verify(S, P) :- co_path(S, Path), verify(S, P, Path).

verify(_, true, _). % true holds unconditionally

verify(S, P, _) :- atomic(P), holds(S, P). % atomic propositions

verify(S, neg(P), Path) :- not verify(S, P, Path).% negation uses NAF
verify(S, or(P, Q), Path) :- verify(S, P, Path). % disjunction
verify(S, or(P, Q), Path) :- verify(S, Q, Path). % disjunction

verify(S, x(P), Path) :- % next operator
member(trans(S, S1), Path), verify(S1, P, Path).

verify(S, f(P), Path) :- verify(S, P, Path). % future operator
verify(S, f(P), Path) :-
member(trans(S, S1), Path), verify(S1, P, Path).

verify(S, g(P), Path) :- coverify(S, g(P), Path).
coverify(S, g(P), Path) :- % always operator: relies on coinduction
verify(S, and(P, x(g(P))), Path).

verify(S, and(P, Q), Path) :- % conjunction
verify(S, P, Path), verify(S, Q, Path).

% co_path and its auxiliary definitions
co_path(S, P) :-

co_path(S, [], P).

co_path(S, V, [trans(S, S1)|V]) :- trans(S, S1), member_state(S1, V).

co_path(S, V, P) :-
trans(S, S1),
has_trans(S1),
not member_state(S1, V),
co_path(S1, [trans(S, S1)|V], P).

member_state(S,[trans(S, _)|_]).
member_state(S,[trans(_, S)|_]).
member_state(S,[trans(S1, S2)|T]) :-

S \= S1, S \= S2,member_state(S,T).

has_trans(S) :- trans(S, _).

Code 2: LTL Model Checker in CoASP, rules directly capture LTL semantics

verify(s1,x(p),[trans(s1,s2),trans(s2,s3),trans(s3,s4),trans(s4,s2)]) :-
member(trans(s1,s2),[trans(s1,s2),trans(s2,s3),trans(s3,s4),trans(s4,s2)]),
verify(s2,p,[trans(s1,s2),trans(s2,s3),trans(s3,s4),trans(s4,s2)]) :-

atomic(p) :-
not not_atomic(p).

holds(s2,p).

Code 3: Proof tree for why x(p) is true in state s1 as printed by s(CASP)

WARNING: Coinductive success due to a positive loop
verify(s2,g(f(p)),
[trans(s4,s2),trans(s3,s4),trans(s2,s3),trans(s1,s2)])
verify(s2,g(f(p)),
[trans(s4,s2),trans(s3,s4),trans(s2,s3),trans(s1,s2)])

Code 4: A message printed to user upon success due to costable models

the primary use of s(CASP) is geared towards Stable model semantics and the application of
Co-stable model semantics is novel and recent. Because the infinite path is due to the repeating
states: s2, s3, s4..., verify/2 succeeds by Costable model semantics starting at state s2,
as shown in 4.

5. Conclusion and Future Work

This work reports a novel application of CoASP in LTL model checking. The rules currently
are quite inefficient. Formulas involving the and operator generate a lot of unnecessary paths
before proving that both the sub-formulas contained within the and operator are satisfied on
the same path. This can be improved by implementing the rules in a fail early manner, where
the CoASP execution fails and backtracks upon finding the first state where both sub-formulas
within a conjunction fail to hold. Due to s(CASP)’s support for CLP(R), the LTL model checker
can be extended to support LTL formulas with real-time constraints (RT-LTL). Developing the
RT-LTL checker in CoASP is part of future work.

References

[1] K. M. Gopal Gupta, et al., Coinductive answer set programming or consistency-based
computing, in: Proc. ICLP’12 Workshop on Coinductive Logic Programming, 2012.

[2] N. Saeedloei, Verification of Complex Real-time Systems., Ph.D. thesis, Department of
Computer Science, The University of Texas at Dallas, 2011.

[3] J. Arias, M. Carro, E. Salazar, K. Marple, G. Gupta, Constraint answer set programming
without grounding, Theory and Practice of Logic Programming 18 (2018) 337–354.

[4] L. E. Simon, Extending logic programming with coinduction, Ph.D. thesis, Department of
Computer Science, The University of Texas at Dallas, 2006.

[5] G. Gupta, N. Saeedloei, B. W. DeVries, R. Min, K. Marple, F. Kluzniak, Infinite computation,
co-induction and computational logic, in: Proc. Algebra and Coalgebra in Computer
Science - CALCO 2011, volume 6859 of Lecture Notes in Computer Science, Springer, 2011,
pp. 40–54.

[6] A. Bansal, Towards next Generation Logic Programming Systems, Ph.D. thesis, Department
of Computer Science, The University of Texas at Dallas, 2007.

[7] N. Saeedloei, G. Gupta, Timed definite clause 𝜔-grammars, in: M. V. Hermenegildo,
T. Schaub (Eds.), Technical Communications of the 26th International Conference on Logic
Programming, ICLP 2010, July 16-19, 2010, Edinburgh, Scotland, UK, volume 7 of LIPIcs,
2010, pp. 212–221.

[8] N. Saeedloei, G. Gupta, A logic-based modeling and verification of CPS, SIGBED Rev. 8
(2011) 31–34. doi:10.1145/2000367.2000374.

[9] R. K. Min, Predicate answer set programming with coinduction, The University of Texas
at Dallas, 2009.

[10] K. Marple, G. Gupta, Galliwasp: A goal-directed answer set solver, in: International
Symposium on Logic-Based Program Synthesis and Transformation, Springer, 2012, pp.
122–136.

[11] K. Marple, E. Salazar, G. Gupta, Computing stable models of normal logic programs
without grounding, preprint arXiv:1709.00501 (2017).

[12] Z. Chen, K. Marple, E. Salazar, G. Gupta, L. Tamil, A physician advisory system for chronic
heart failure management based on knowledge patterns, Theory and Practice of Logic
Programming 16 (2016) 604–618.

[13] K. Basu, S. Varanasi, F. Shakerin, J. Arias, G. Gupta, Knowledge-driven natural language
understanding of english text and its applications, in: Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 2021, pp. 12554–12563.

[14] K. Basu, S. C. Varanasi, F. Shakerin, G. Gupta, Square: Semantics-based question answering
and reasoning engine, arXiv preprint arXiv:2009.10239 (2020).

[15] S. C. Varanasi, J. Arias, E. Salazar, F. Li, K. Basu, G. Gupta, Modeling and verification of
real-time systems with the event calculus and s(CASP), in: International Symposium on
Practical Aspects of Declarative Languages, Springer, 2022, pp. 181–190.

[16] E. E. Salazar, G. Gupta, Proof-theoretic foundations of normal logic programs, 2019. Tech-
nical Report, University of Texas at Dallas.

[17] M. Gelfond, Y. Kahl, Knowledge representation, reasoning, and the design of intelligent
agents: The answer-set programming approach, Cambridge University Press, 2014.

[18] S. C. Varanasi, Ltl in coasp, https://github.com/sarat-chandra-varanasi/LTL-CoASP, 2022.

http://dx.doi.org/10.1145/2000367.2000374
https://github.com/sarat-chandra-varanasi/LTL-CoASP

	1 Introduction
	2 Background
	2.1 Coinductive Logic Programming and Goal-Directed ASP
	2.2 Costable Model semantics
	2.3 CoASP in s(CASP)

	3 LTL Model Checker in CoASP
	4 An example
	5 Conclusion and Future Work

