
The Usage of Negation in Real-World JSON Schema
Documents
Mohamed-Amine Baazizi1, Dario Colazzo2, Giorgio Ghelli3, Carlo Sartiani4 and
Stefanie Scherzinger5

1Sorbonne Université, LIP6 UMR 7606, France
2Université Paris-Dauphine, PSL Research University, France
3Dipartimento di Informatica, Università di Pisa, Italy
4DIMIE, Università della Basilicata, Italy
5Universität Passau, Passau, Germany

Abstract
Many software tools, but also formal frameworks for working with JSON Schema, do not fully support
negation. This motivates us to study whether negation is actually used in practice, for which aims, and
whether it could, in principle, be replaced by simpler operators. We have collected a large corpus of
80k open source JSON Schema documents. We perform a systematic analysis, quantify usage patterns
of negation, and also qualitatively analyze schemas. We show that negation is indeed used, albeit
infrequently, following a stable set of patterns.

Keywords
Empirical Study, Conceptual Modeling, JSON Schema

1. Introduction

JSON has become one of the most popular formats for data exchange. While many schema
languages for JSON have been proposed [1], JSON Schema [2] is receiving considerable attention.
In this language, a schema is a logical combination of assertions, describing classes of constraints
on objects, arrays, and base values. JSON Schema is constantly evolving and new drafts always
introduce new features. The language is increasingly used for defining domain-specific data
exchange formats [3] and as a meta-language for defining other languages; a subset of JSON
Schema serves as the schema language inside MongoDB [4]. As a consequence, an active
and quite broad development community is releasing JSON Schema tools (validators [5], in
particular).

JSON Schema is powerful but complex, and its semantics is based on an intricate interplay
among logical assertions. A distinctive feature is the not operator, whereby negation can be
applied to any assertion. Negation is quite rare in type and schema languages, as it poses severe
challenges.

SEBD 2022: The 30th Italian Symposium on Advanced Database Systems, June 19-22, 2022, Tirrenia (PI), Italy
$ baazizi@ia.lip6.fr (M. Baazizi); dario.colazzo@dauphine.fr (D. Colazzo); ghelli@di.unipi.it (G. Ghelli);
carlo.sartiani@unibas.it (C. Sartiani); stefanie.scherzinger@uni-passau.de (S. Scherzinger)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:baazizi@ia.lip6.fr
mailto:dario.colazzo@dauphine.fr
mailto:ghelli@di.unipi.it
mailto:carlo.sartiani@unibas.it
mailto:stefanie.scherzinger@uni-passau.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

(a
) 1 { "not ":

2 { " required ": [" DisplaceModules "] }
3 }

(b
)

1 { " description ": "..." ,
2 " @errorMessages ":
3 { "not ": " Invalid target : ..." },
4 "not ": { " pattern ": "..." } ... }

(c
)

1 { " title " : " Object w/ required foo .",
2 "type ": " object ",
3 " properties ": {
4 "foo ": { "type ": " integer " },
5 "bar ": { "type ": " string " } },
6 " patternProperties ": {
7 "f.∗o": { "type ": " integer " } },
8 " required ": [" foo "]
9 }

Figure 1: Snippets of JSON Schema documents.

Example 1. One usage of not that startles novices (as discussed on StackOverflow [6]) is in combi-
nation with the keyword required, as shown in Figure 1(a). While “not required” may sound like
“optional”, it enforces that the object must violate the assertion, so member "DisplaceModules"
must be absent.

Indeed, the not-operator is often not fully supported, whether in academic prototype tools [7],
commercial tools (e.g., [4]), or even formal frameworks [8], mostly because of the inherent
complexity of handling negation. This inspired us to investigate the usage of this operator
in real-world schemas, in a principled analysis of 80k JSON Schema documents crawled from
GitHub. We formulate these research questions: (1) how frequent is negation in practice, (2) how
is negation used, and (3) what are common usage patterns?

Contributions. The contribution of this systematic empirical study is threefold. We first
established a method for the collecting and preparing JSON Schema documents. Next, we
measured the frequency of use of JSON Schema operators and of paths that include not, and
quantify main patterns of use. Finally, we identified well-supported jargons, i.e., common uses
of not that have the potential to mature into JSON Schema design patterns. An extended version
of this study can be found here [9].

2. Preliminaries

JSON data model. The grammar below captures the syntax of JSON values, which are basic
values, objects, or arrays. Basic values 𝐵 include the null value, booleans, numbers 𝑛, and
strings 𝑠. Objects 𝑂 represent sets of members, each member being a name-value pair, and
arrays 𝐴 represent sequences of values.

𝐽 ::= 𝐵 | 𝑂 | 𝐴 JSON expressions
𝐵 ::= null | true | false | 𝑛 | 𝑠 𝑛 ∈ Num, 𝑠 ∈ Str Basic values
𝑂 ::= {𝑙1 : 𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛} 𝑛 ≥ 0, 𝑖 ̸= 𝑗 ⇒ 𝑙𝑖 ̸= 𝑙𝑗 Objects
𝐴 ::= [𝐽1, . . . , 𝐽𝑛] 𝑛 ≥ 0 Arrays

JSON Schema. JSON Schema is a language for defining constraints and requirements on
the content of JSON documents. We discuss here the main keywords, and continue with two
illustrative examples:
Assertions include required, enum, const, pattern and type, and indicate a test that is

performed on the corresponding instance.

Applicators include the boolean operators anyOf, allOf, oneOf, not, the object opera-
tors properties, patternProperties, additionalProperties, the array operator
items, and the reference operators $ref. Applicators indicate a request to apply a
different operator to the same instance or to a component of the current instance.

Annotations include title, description, and $comment, they do not affect validation, but
they indicate an annotation that should be associated with the instance. Since we are
mostly interested in validation, and since, moreover, annotations are removed by the not
operator, we will ignore them.

Example 2. In the schema in Figure 1(c), inspired from [5], line 1 carries an annotation. In defining
an object (line 2), applicators define constraints on properties (lines 3), and the type of the properties
matching a pattern (see line 6). Using an assertion, it is possible to indicate required properties
(line 8).

Example 3. JSON Schema is an open standard: in Figure 1(b), @errorMessages is a user-
defined keyword whose value is an object that describes the error, and not a JSON Schema assertion.
Hence, not in line 3 is just a member name, whereas negation does occur in line 4. The same string
token has different semantics, depending on its context, which complicates parsing.

2.1. Pattern Queries

To study which keywords occur below an instance of the not operator, we introduce a simple
path language. A path such as .**.not.required matches any path that ends with an object
field named required found inside an object field whose name is not. Paths are expressed
using the following language. Path matching is defined as in JSONPath [10].

𝑝 ::= 𝑠𝑡𝑒𝑝 | 𝑠𝑡𝑒𝑝 𝑝 𝑠𝑡𝑒𝑝 ::= .𝑘𝑒𝑦 | . * | [*] | .**

The step .* retrieves all member values of an object, [*] retrieves all items of an array, and
.** is the reflexive and transitive closure of the union of .* and [*], navigating to all nodes of
the JSON tree to which it is applied.

Complex sub-schemas. We say that not has a complex sub-schema, when its object argument
contains more than one keyword. In this case, we say these keywords co-occur in the negated
schema; otherwise, a sub-schema is simple. As an example, consider the schema of Figure 3(b):
the argument of not is complex, and we match the paths .not.enum and .not.type.

3. Methodology

Context. We explored GitHub for open source JSON Schema documents. We identified 91,6k
URLs in July 2020, of which 85,6k could be retrieved (using wget). Discarding files with invalid
syntax yields 82k files.

For each retrieved file, we analyzed the $schema declarations to identify the version of JSON
Schema. Draft 2019-09 is still quite new, and not really represented. Draft-04 is declared in the

vast majority of the files (79%), while Draft-07, Draft-06, and the old Draft-03 are each below 5%.
An analysis of the file contents showed that the actual version that a schema follows is often
different from the version declared.

Data Preparation. As a first step, we renamed all references ($ref) by a new keyword
$eref, with the target of the reference as its child, but we did not expand references recursively.
We expanded references to external documents, provided that we were able to locate the
referenced document (e.g., either contained within our corpus, or by downloading the document).
References were renamed to $fref when expansion failed. We observed that by expanding
references we lose the conceptual information encoded in the reference path itself. Thus, $ref
is often more than just a syntactic macro.

The schema corpus contains a large share of near-duplicate schemas, with small variations in
syntax. We performed duplicate elimination by comparing compact schema signatures, defined
as a function that maps each keyword to the number of its occurrences in the schema (encoded
as a vector of keyword counts); we assumed that two schemas with the same signature are,
with high probability, versions of the same schema, and we retained just one. After duplicate
elimination our corpus shrunk to 11,500 distinct schemas.

As illustrated in Example 3, correctly recognizing keywords can be a challenge. For this
reason, we renamed all property names to avoid confusion when searching for patterns that
involve the keyword not. As schema authors can define their own keywords, we have no way
to know whether their value should be interpreted as an assertion. We experimented with two
approaches: a “strict” approach in which we renamed everything that was inside a user-defined
keyword, hence making it inaccessible by the analysis, and a “lax” approach in which we kept
the content of any user-defined keyword, so that all instances of not in Figure 1(b) would be
counted as keywords. With the strict approach, some interesting usage patterns are lost, and
keyword usage is under-estimated. With the lax approach, we risk “false positives”, and hence
over-estimation. We decided that the over-estimation of the lax approach was preferable.

Analysis Process. The bulk of our effort is actually invested in data preparation. After
experimenting with different data analysis platforms, we resorted to a relational encoding of
the JSON Schema documents in PostgreSQL. This setup met our performance expectations, and
allowed us to write queries in plain SQL.

4. Results of the Study

4.1. RQ1: How frequent is negation in practice?

We study the frequency of JSON Schema keywords within our corpus, and the Boolean operators
(among them, negation). The reported absolute values are mainly interesting as indicators as to
the relative occurrences of operators. Figure 2 visualizes the results. From left-to-right, we sort
keywords by their number of occurrence (note the log-scaled vertical axes). We also show the
number of files in which keywords occur, as a further indicator of keyword relevance.

The operator not appears in approx. 3% of all schemas, and occupies the 30th position,
out of 46 keywords analyzed. Thus, it is a comparatively rare operator. The most common

ty
pe

de
sc
rip
tio
n

$r
ef

pr
op
er
tie
s

re
qu
ire
d

on
eO
f

en
um

ite
m
s

tit
le

ad
dP
ro
p. id

de
fa
ul
t

pa
tte
rn

m
ax
Le
ng
th

m
in
Le
ng
th

$s
ch
em
a

m
in
im
um

an
yO
f

m
in
Ite
m
s

m
ax
im
um

m
ax
Ite
m
s

un
iq
ue
Ite
m
s

de
fin
iti
on
s

all
Of

pa
tte
rn
Pr
op
.

ex
am
pl
es $id

ad
d.I
te
m
s

re
ad
On
lyno
t

co
ns
t

ex
clu
siv
eM

in
.

m
in
Pr
op
er
tie
s

de
pe
nd
en
cie
s

m
ul
tip
leO

f

$c
om

m
en
t

ex
clu
siv
eM

ax
. if

th
en

m
ax
Pr
op
er
tie
s

de
pr
ec
at
ed

pr
op
er
ty
Na
m
es

co
nt
ain
s

els
e

wr
ite
On
ly

$d
ef
s

100

101

102

103

104

105

106
N
um

be
r
of

M
at
ch
es

#Occ

100

101

102

103

104

105

106

#Files

Figure 2: Number of total occurrences (#Occ), and number of files (#Files), where a JSON Schema
keyword appears. Boolean operators are highlighted.

Boolean operator is oneOf, more frequent than anyOf. allOf is even less common. The
Boolean operator if-then-else is even less common than not, but was only been introduced
in Draft-07.

We found the dissemination of oneOf surprising, since the exclusive-disjunctive semantics
of oneOf is more complicated than the purely disjunctive anyOf: oneOf takes as argument a
collection of subschemas 𝑆1, . . . , 𝑆𝑛, and a value 𝐽 satisfies oneOf only if it matches exactly
one subschema; anyOf is satisfied by any value 𝐽 that matches at least one of the subschemas.
Our hypothesis is that the description of a class as a oneOf-combination of a set of “subclasses”
is familiar from the exclusive-subclassing mechanism of object-oriented languages.

The operator not appears 787 times in 298 different files out of 11,500. While not very
frequent, its usage nevertheless merits a systematic study.

4.2. RQ2: How is negation used in practice?

We evaluated pattern queries to identify keywords below not. Table 1 summarizes the results.
Consider the left half. We match the path .**.not.* 840 times (#Occ) in 289 files (#Files).
Below the top summary row, we list the individual keywords, breaking down shares of matches
in percent (visualized by progress bars). The right half of the table provides statistics for sub-
schemas that are negated and referenced, and therefore reachable via a path .**.not.$eref.*.

In the following, we will omit the prefix “.**” from path queries, assuming the context is
clear to our readers. We sorted the table on the total number of not.𝑘+not.$eref.𝑘 occurrences,
and it is interesting to compare the weight of different keywords in both parts.

A not may not correspond to any not.* pattern, when followed by { }. We found 16 such
occurrences, expressing the schema false, which is not satisfied by any instance. This use of
not is a consequence of the fact that false has only been introduced with Draft-06.

Table 1 indicates a total of 840 occurrences of not.*, Figure 2 reported 787 occurrences of not.
The values differ since the negated sub-schema can be complex. Most instances of not have a
simple sub-schema. Most negated complex schemas have two keywords, but some have three
or four. The situation is very different with $eref, i.e., references expanded in pre-processing.

Table 1
Occurrences of not.𝑘 paths (overall #Occ, and counting #Files).

Path #Occ #Files

not.* 840 289

required 28.6 % 29.1 %

items 15.0 % 9.3 %

type 7.4 % 17.7 %

properties 8.5 % 16.3 %

$eref 11.1 % 9.7 %

enum 7.3 % 18.0 %

allOf 2.7 % 8.0 %

pattern 5.6 % 9.7 %

anyOf 5.4 % 12.5 %

description 0.5 % 1.4 %

title 0.2 % 0.7 %

$schema 0.0 % 0.0 %

$fref 3.2 % 4.8 %

oneOf 0.7 % 1.4 %

additionalProperties 1.3 % 3.8 %

patternProperties 1.8 % 5.2 %

const 0.7 % 0.4 %

definitions 0.0 % 0.0 %

id 0.0 % 0.0 %

dependencies 0.0 % 0.0 %

not 0.0 % 0.0 %

$ref 0.0 % 0.0 %

$comment 0.1 % 0.4 %

Path #Occ #Files

not.$eref.* 338 28

required 10.7 % 53.6 %

items 0.0 % 0.0 %

type 15.1 % 71.4 %

properties 11.8 % 64.3 %

$eref 0.0 % 0.0 %

enum 3.6 % 28.6 %

allOf 11.2 % 17.9 %

pattern 0.0 % 0.0 %

anyOf 0.6 % 7.1 %

description 12.1 % 25.0 %

title 11.5 % 25.0 %

$schema 12.1 % 32.1 %

$fref 0.0 % 0.0 %

oneOf 5.3 % 10.7 %

additionalProperties 2.7 % 25.0 %

patternProperties 0.0 % 0.0 %

const 0.0 % 0.0 %

definitions 0.9 % 10.7 %

id 0.6 % 7.1 %

dependencies 0.6 % 7.1 %

not 0.6 % 7.1 %

$ref 0.6 % 7.1 %

$comment 0.0 % 0.0 %

Here, 93 occurrences of not.$eref correspond to 338 occurrences of not.$eref.*. Thanks to
the mediation of $eref, the schema designer implicitly applies negation to a complex argument,
with an average of 3-4 members.

The most common argument of negation is required. The pattern not.items is second-
most common, followed by not.type and not.properties.

While not.required dominates the not.* case, the two most common cases of the not.$eref
group are not.$eref.type, whose value is object in 80% of the cases, and not.$eref.properties,
which indicates that not.$eref is mostly used to negate complex object definitions. This ex-
plains the much higher occurrence of descriptive keywords inside the referenced argument.

4.3. RQ3: What are common real-world usage patterns?

Field and value exclusion. Field exclusion via not.required is the most frequent path.
Paths not.enum and not.const are used to exclude values. Snippets of example schemas

(a
)

"not ": {
"enum ": [" markdown ",

"code",
"raw "] }

(b
) "not ": {

"enum ": [" generic − linux "],
"type ": " string " }

(c
)

"not ": {
" items ": {

"not ": {
"type ": " string ",
"enum ": [

" Dataset ", " Image ",
" Video ", " Sound ",
"Text"] } }

(d
)

{ "type" : " object ",
" oneOf ": [

{ " properties ":
{ "when ": {" enum ": [" delayed "]}} ,

" required ": [" when "," start_in "] },
{ " properties ":

{ "when ": { "not ": {" enum ": [" delayed "]}
}}}] }

(e
)

{ "type ": " object ",
"if ": {

" required ": [" when "],
" properties ":

{ "when ": {" enum ": [" delayed "]} }},
"then ": {

" properties ":
{ "when ": {" enum ": [" delayed "] }},

" required ": [" when", " start_in "] }}

Figure 3: JSON Schema snippets exemplifying real-world usage patterns.

are shown in Figures 3(a) and (b). Such schemas have an obvious interpretation: the instance
may have any type and must be different from the string or strings listed. In the majority of
cases, the sub-schema is simple, as in Figure 3(a). In the complex cases, enum is always paired
with a "type" : "string" assertion, as in Figure 3(b). This assertion is redundant, since all values
listed by enum are strings. This co-occurrence is not specific to negation, since also in positive
schemas, enum is paired with a type assertion in the vast majority of cases.

Paraphrasing contains. The pattern not.items is among the most common not-paths. All
such schemas have either the structure not.items.not (as in Figure 3(c)) or not.items.enum.

The items assertion is verified by any instance that is not an array, or that is an empty array,
or that is an array where every element satisfies the schema associated with items. Hence, it is
only violated by instances that are arrays, and which contain at least one element that violates
the schema. While items specifies a universally quantified property, not.items can be used
to specify an existentially quantified property, as does the contains keyword. The jargon
not.items.enum specifies that the array must contain at least one value that is not listed in
the argument of enum. The jargon not.items.not specifies that the instance is an array that
contains at least one value that satisfies 𝑆, according to the following equivalence:

"not": { "items": { "not": 𝑆 } } ⇔ {"type": "array", "contains": 𝑆 }
These two cases cover, with minimal variations, all occurrences of not.items.
To sum up, not.items can be used to express contains. This is an instance of a pattern that

may be replaced by a single (and thus simpler) operator.

Paraphrasing Discriminated Unions. The schema snippet in Figure 3(d) allows interesting
observations about the use of oneOf. JSON Schema specifications do not prescribe that the
branches of oneOf are mutually exclusive, but they state that a value must match a single branch
only. However, the two branches of oneOf happen to be mutually exclusive: if "when" is absent,
then only the second branch holds. If it is present, then it is associated to complementary types in
the two branches, so here, oneOf is actually anyOf. Applying equivalent rewritings (from ¬𝑎∨𝑏
to 𝑎 ⇒ 𝑏, and pushing down negation), the schema can be rewritten as shown in Figure 3(e).

Now the specification is clearer: if "when" has the value "delayed", then "start_in" is
required.

This suggests that oneOf is used to express a form of discriminated unions.

References

[1] M. A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, Schemas and types for JSON data: From
theory to practice, in: Proc. SIGMOD 2019, 2019, pp. 2060–2063.

[2] json-schema org, JSON Schema, 2021. Available at https://json-schema.org.
[3] B. Maiwald, B. Riedle, S. Scherzinger, What Are Real JSON Schemas Like? — An Empirical

Analysis of Structural Properties, in: Proc. EmpER 2019, 2019, pp. 95–105.
[4] MongoDB, Inc., MongoDB Manual: $jsonSchema (Version 4.4), 2021.
[5] JSON Schema Test Suite, Available at: https://github.com/json-schema-org/

JSON-Schema-Test-Suite, version of commit hash #09fd353., 2021.
[6] StackOverflow, JSON Schema – valid if object does *not* contain a partic-

ular property, Available at: https://stackoverflow.com/questions/30515253/
json-schema-valid-if-object-does-not-contain-a-particular-property, 2015.

[7] M. Fruth, M. A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger, Challenges in
Checking JSON Schema Containment over Evolving Real-World Schemas, in: Proc. EmpER
2020, 2020, pp. 220–230.

[8] A. Habib, A. Shinnar, M. Hirzel, M. Pradel, Finding data compatibility bugs with JSON
subschema checking, in: Proc. ISSTA 2021, 2021, pp. 620–632.

[9] M. A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger, An empirical study on the
“usage of not” in real-world JSON schema documents, in: Proceedings of ER 2021, October
18-21, 2021, 2021, pp. 102–112.

[10] J. Friesen, Java XML and JSON: Document Processing for Java SE, Apress, 2019, pp. 299–322.

https://json-schema.org
https://github.com/json-schema-org/JSON-Schema-Test-Suite
https://github.com/json-schema-org/JSON-Schema-Test-Suite
https://stackoverflow.com/questions/30515253/json-schema-valid-if-object-does-not-contain-a-particular-property
https://stackoverflow.com/questions/30515253/json-schema-valid-if-object-does-not-contain-a-particular-property

	1 Introduction
	2 Preliminaries
	2.1 Pattern Queries

	3 Methodology
	4 Results of the Study
	4.1 RQ1: How frequent is negation in practice?
	4.2 RQ2: How is negation used in practice?
	4.3 RQ3: What are common real-world usage patterns?

