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Abstract

We present the framework of Existential Active Integrity Constraints (EAICs) introduced in [1]. EAICs are

a powerful extension of Active Integrity Constraints (AICs), which allow us to express a wide range of

constraints used in databases and ontological systems. Specifically, the paper discusses a new definition

of founded updates for AICs, presents syntax and semantics for EAICs, and a “representative” set of

founded updates for EAICs, called universal, which suffices for query answering.

1. Introduction

The consistent query answering (CQA) framework is a principled approach to answer queries

over inconsistent databases. It was first proposed in [2], giving rise to flourishing research

activity (e.g., see [3, 4, 5, 6]). It relies on the notions of repair and consistent query answer.
Intuitively, a repair for a possibly inconsistent database is a consistent database that “minimally”

differs from the original one. In general, there may be multiple repairs for an inconsistent

database. The consistent (or certain) answers to a query over an inconsistent database are the

query answers that can be obtained from every repair.

Example 1. Consider the database schema consisting of two relations emp(Name, Dept) and
dept(Name), where the former stores information on employees and departments they work for,
and the latter stores all departments. Consider a referential integrity constraint stating that every
department occurring in the emp relation must appear in the dept relation too. This constraint can
be expressed through the following logical formula: ∀E∀D [emp(E, D) ∧ ¬ dept(D) ⇒].

Consider now the database 𝐷 consisting of the facts emp(john, cs), emp(john, math), and
dept(math). Clearly, 𝐷 is inconsistent, as the cs department appearing in the emp relation
does not appear in the dept relation. A repair can be obtained by applying a minimal (under
set-inclusion) set of update operations to the original database. We consider only fact insertions
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and deletions as admissible update operations.1 Therefore, there are two repairs: 𝐷1, obtained by
inserting the fact dept(cs) into 𝐷, and 𝐷2, obtained by deleting the fact emp(john, cs) from 𝐷.
The only consistent answer to the query asking for all departments’ names is math.

Although inconsistent databases can be repaired in different ways, in many applications it is

natural and desirable to express that only a restricted set of update operations can be performed

to restore consistency, which cannot be done with classical integrity constraints. Active integrity
constraints (AICs) [13] have been introduced to overcome such a limitation.

Example 2. Consider again the scenario of Example 1 and suppose that, when the integrity
constraint is violated, we want to restore consistency only by adding missing departments (and thus
avoid deleting facts of the emp relation). This behavior can be expressed by means of the following
active integrity constraint: ∀E ∀D [ emp(E, D) ∧ ¬ dept(D) ⇒ +dept(D) ].

The same constraint of Example 1 is defined on the left-hand side of ⇒, while on the right-hand
side the only admissible update operation is specified. Thus, only the insertion of dept(cs) can
be performed to restore consistency of 𝐷, and 𝐷1 is the only acceptable repair. As defined in the
following, inserting dept(cs) is a “founded” update, because the AIC above allows it, while deleting
emp(john, cs) is not a founded update, because the AIC above does not allow it.

Active integrity constraints allow users to express integrity constraints along with admissible

update operations. One limitation of AICs is that they do not allow existential quantification, and

thus do not allow users to formulate classical constraints such as foreign keys and more general

inclusion dependencies, which require existentially quantified variables to be expressed [14].

We can lift the idea of AICs (that is, to specify which update operations should be applied when

a constraint is violated) to Existential Active Integrity Constraints (EAICs), which generalize AICs

enabling users to express a wider class of integrity constraints commonly arising in practice.

Example 3. The EAIC: ∀E∀D [emp(E, D) ∧ ∄C dept(D, C) ⇒ ∃Z +dept(D, Z)] defines a con-
straint stating that inconsistency must be resolved by adding missing departments to relation dept.
Importantly, EAICs lead to value invention because of existential variables, which is not the case
for AICs, and this poses different new issues—for instance, for a database containing only the fact
emp(john, cs), a city for the cs department needs to be invented.

In this paper we present syntax and semantics of EAICs, and show how to define a “represen-

tative” set of founded updates for EAICs, called universal, which suffices for query answering.

2. Preliminaries

We assume the existence of the following (pairwise disjoint) sets: predicates 𝒫 , variables 𝒱 , and

constants 𝒞. Each predicate is associated with an arity, which is a non-negative integer. A term
is either a constant or a variable.

1

Other minimality criteria and update operations, such as value updates [7, 8, 9, 10, 11], have been considered in the

literature. In this paper, we consider minimality under set-inclusion and insert/delete updates, which indeed are

the most common minimality criteria and repair primitives considered in the literature. When only deletions are

allowed, the set of operations is a minimal transversal of all minimal inconsistent subsets of the database [12].



An atom is of the form 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 is a predicate of arity 𝑛 and the 𝑡𝑖’s are terms.

We write an atom containing only constants also as 𝑝(𝑐), where 𝑐 is understood to be a sequence

of constants, and write 𝑝(𝑋) to refer to an atom whose terms are the variables 𝑋 . A literal
is either an atom 𝐴 (positive literal) or its negation ¬𝐴 (negative literal). An update atom is

of the form +𝑎(𝑋) or −𝑎(𝑋), where 𝑎(𝑋) is an atom. Intuitively, a ground update atom

+𝑎(𝑐) (resp. −𝑎(𝑐)) states that 𝑎(𝑐) will be inserted into (resp. deleted from) the database.

The complementary literal of an update atom +𝑎(𝑋) (resp. −𝑎(𝑋)) is CompLit (+𝑎(𝑋))
= ¬ 𝑎(𝑋) (resp. CompLit(−𝑎(𝑋)) = 𝑎(𝑋)). For any set 𝒰 of update atoms, CompLit(𝒰) =
{CompLit(±𝑎(𝑋)) | ±𝑎(𝑋) ∈ 𝒰}. Logical formulae are built using literals and logical

connectives—the precise syntax will be defined later.

A term/atom/literal/formula is ground if it is variable-free. A formula 𝜙′
is a ground instance

of a formula 𝜙 if 𝜙′
can be obtained from 𝜙 by substituting every variable in 𝜙 with a constant.

We use ground(𝜙) to denote the set of all ground instances of 𝜙, and for a set of formulae Φ,

we define ground(Φ) = ∪𝜙∈Φ ground(𝜙).

Active Integrity Constraints. An active integrity constraint (AIC) 𝜎 is of the form:

∀𝑋

⎡⎣ 𝑚⋀︁
𝑖=1

𝑏𝑖(𝑋𝑖) ∧
𝑛⋀︁

𝑖=𝑚+1

¬ 𝑏𝑖(𝑋𝑖) ⇒
𝑞⋁︁

𝑖=1

−𝑎𝑖(𝑋𝑖) ∨
𝑝⋁︁

𝑖=𝑞+1

+𝑎𝑖(𝑋𝑖)

⎤⎦ (1)

where (i) 𝑛, 𝑝 > 0, (ii) the 𝑏𝑖(𝑋𝑖)’s are atoms, (iii) the −𝑎𝑖(𝑋𝑖)’s and +𝑎𝑖(𝑋𝑖)’s are up-

date atoms, (iv) variables occurring in negative literals also occur in positive literals, and (v)
𝐶𝑜𝑚𝑝𝐿𝑖𝑡(ℎ𝑒𝑎𝑑(𝜎)) ⊆ 𝑏𝑜𝑑𝑦(𝜎), where ℎ𝑒𝑎𝑑(𝜎) (resp., 𝑏𝑜𝑑𝑦(𝜎)) denotes the right (resp., left)

hand side of ⇒.

For an AIC 𝜎, 𝑏𝑜𝑑𝑦+(𝜎) and 𝑏𝑜𝑑𝑦−(𝜎) denote the set of positive and negative atoms in

𝑏𝑜𝑑𝑦(𝜎), respectively. An AIC specifies both an integrity constraint (in the body) and the

actions to be performed (in the head) if the integrity constraint is violated. We use 𝑆𝑡(𝜎) to

denote the integrity constraint derived from 𝜎 by removing all the head update atoms. For a set

of active integrity constraints Σ, 𝑆𝑡(Σ) denotes the corresponding set of integrity constraints,

that is 𝑆𝑡(Σ) = {𝑆𝑡(𝜎) | 𝜎 ∈ Σ}. Furthermore, for any set of AICs Σ and set of ground update

atoms 𝒰 , Σ[𝒰 ] denotes the set of AICs derived from 𝑔𝑟𝑜𝑢𝑛𝑑(Σ) by deleting head update atoms

not occurring in 𝒰 and AICs such that all head update atoms have been deleted.

We now present the semantics of AICs used in [1]. Given a database 𝐷 and a set of AICs Σ:

• A set ℛ of ground update atoms is an update for ⟨𝐷,Σ⟩ if it is an update for ⟨𝐷,𝑆𝑡(Σ)⟩.
• An update ℛ for ⟨𝐷,Σ⟩ is founded iff it is an update for ⟨𝐷,Σ[ℛ]⟩.
• A repair ℛ(𝐷) is founded iff ℛ is a founded update.

The idea underlying the definition above is that the actions of an update must be determined

only by the AICs allowing those actions. Observe that the founded semantics guarantees that,

given a founded repair ℛ, for each update atom ±𝐴 ∈ ℛ there must be an AIC 𝜎 ∈ 𝑔𝑟𝑜𝑢𝑛𝑑(Σ)
such that ±𝐴 ∈ ℎ𝑒𝑎𝑑(𝜎) (otherwise ℛ is not minimal).

Although the definition introduced in [1] is different from that used in [13], we use the same

name since the former is a refinement of the latter, and its purpose is to overcome the problem



of cyclic support, see [15]. Theorem 8 in [1] shows that every founded update according to the

current definition is also founded according to the definition given in [13].

The sets of all updates and founded updates for a database 𝐷 and a set of AICs Σ are denoted

as R(𝐷,Σ) and FR(𝐷,Σ) respectively. Clearly, FR(𝐷,Σ) ⊆ R(𝐷,Σ).
More details regarding AIC and their extensions can be found in [1, 13, 16]. The cer-

tain answers to a query 𝑄 on a database 𝐷 w.r.t. a set of AICs Σ are certain(𝑄,𝐷,Σ) =⋂︀
ℛ∈FR(𝐷,Σ)

𝑄(ℛ(𝐷)).

3. Existential Active Integrity Constraints

Syntax. We are now going to present an extension of AICs, that let us define AICs with exis-

tentially quantified variables, allowing for more expressive integrity constraints, like inclusion

dependencies. The set of complementary literals of an update atom is redefined as follows:

• 𝐶𝑜𝑚𝑝𝐿𝑖𝑡(−𝑎(𝑋)) = {𝑎(𝑋)};

• 𝐶𝑜𝑚𝑝𝐿𝑖𝑡(∃𝑍 + 𝑎(𝑋,𝑍)) = {∄𝑌 𝑎(𝑋
′
, 𝑌 ) | ∃ 𝑠𝑢𝑏𝑠𝑡. 𝜗 𝑠.𝑡. 𝑎(𝑋

′
, 𝜗(𝑌 )) = 𝑎(𝑋,𝑍)}.

For any set 𝒰 of update atoms, CompLit(𝒰) = ∪±𝐴∈𝒰CompLit(±𝐴).

Definition 1. An Existential Active Integrity Constraint (EAIC) is of the form:

∀𝑋

⎡⎣ 𝑚⋀︁
𝑖=1

𝑏𝑖(𝑋𝑖) ∧
𝑛⋀︁

𝑖=𝑚+1

∄𝑍𝑖 𝑏𝑖(𝑋𝑖, 𝑍𝑖) ⇒
𝑞⋁︁

𝑖=1

-𝑎𝑖(𝑋𝑖) ∨
𝑝⋁︁

𝑖=𝑞+1

∃𝑍𝑖 +𝑎𝑖(𝑋𝑖, 𝑍𝑖)

⎤⎦
(2)

where (i) 𝑛, 𝑝 > 0, (ii) universal variables occurring in negative body literals also occur in positive
body literals, (iii) every existential variable occurs only in one update atom or negative body literal,
and (iv) for each ±𝐴 ∈ ℎ𝑒𝑎𝑑(𝜎), the condition 𝐶𝑜𝑚𝑝𝐿𝑖𝑡(±𝐴) ∩ 𝑏𝑜𝑑𝑦(𝜎) ̸= ∅ holds. □

Example 4. Consider two relations node(Id) and edge(Source, Dest, Weight) used to store
nodes and weighted edges of a graph, respectively.
For the EAIC 𝜎 : node(X1) ∧ node(X2) ∧ ∄(Y1,Y2) edge(X1, Y1,Y2) ⇒ ∃Z1+edge(X1, X2,Z1),
we have 𝐶𝑜𝑚𝑝𝐿𝑖𝑡(∃Z1+edge(X1, X2,Z1)) ∩ 𝑏𝑜𝑑𝑦(𝜎) = {∄(Y1,Y2) edge(X1, Y1,Y2)} ≠ ∅.

A negative body literal ∄𝑍𝑖 𝑏𝑖(𝑋𝑖, 𝑍𝑖) s.t. 𝑍𝑖 is empty will be simply written as ¬ 𝑏𝑖(𝑋𝑖). For

an EAIC 𝜎, 𝑆𝑡(𝜎) denotes the constraint, called existential integrity constraint (EIC), obtained by

deleting all head atoms from 𝜎. For any set of EAICs Σ, we define 𝑆𝑡(Σ) = {𝑆𝑡(𝜎) | 𝜎 ∈ Σ}.

For ease of presentation (and w.l.o.g.), we assume that constants do not appear in EAICs.

Semantics. We use pground(𝜙) to denote the set of all partially ground instances of a formula

𝜙 obtained by replacing universally quantified variables with constants in all possible ways.

For a set of formulae Φ, pground(Φ) = ∪𝜙∈Φ pground(𝜙).
A database 𝐷 satisfies a partially ground conjunction of literals 𝜙 (denoted 𝐷 |= 𝜙), if

𝜙+ ⊆ 𝐷 and there is no substitution 𝜗 replacing existentially quantified variables in 𝜙 with

constants s.t. 𝜗(𝜙−) ∩𝐷 ̸= ∅, where 𝜙+
and 𝜙−

denote the sets of positive and negated atoms

in 𝜙, respectively. Thus, for any partially ground EIC 𝜎 of the form 𝜙 ⇒, as it expresses a



denial constraint, 𝐷 |= 𝜎 iff 𝐷 ̸|= 𝜙, that is, the following condition holds: if body+(𝜎) ⊆ 𝐷,

then there is a substitution 𝜗 replacing existentially quantified variables with constants s.t.

𝜗(body−(𝜎)) ∩𝐷 ̸= ∅. Furthermore, 𝐷 satisfies an EIC 𝜎 if 𝐷 satisfies every partially ground

instance in pground(𝜎); 𝐷 satisfies an EAIC (or partially ground instance thereof) 𝜎 if it satisfies

𝑆𝑡(𝜎). Finally, 𝐷 satisfies a set of EAICs (or EICs) Σ if 𝐷 satisfies every 𝜎 ∈ Σ—we also say

that 𝐷 is consistent w.r.t. Σ. Updates and repairs for databases with EICs and EAICs can be

defined analogously to the cases of ICs and AICs, respectively.

Example 5. Consider the database schema consisting of two relations edge(Source, Dest) and
node(Id) storing edges and nodes of a graph. The EAIC 𝜎5: node(X) ∧ ∄Y edge(X, Y) ⇒
−node(X) ∨ ∃Z+edge(X, Z) says that every node must have an outgoing edge. When this is not
the case either the node is deleted or an outgoing edge is added. The database 𝐷 = {node(a)}
is clearly inconsistent. Since the domain 𝒞 is infinite, 𝜎5 suggests an infinite number of ways to
repair the database, namely, by means of update atoms of the form {+edge(a, c)} with c ∈ 𝒞.
Notice that {−node(a)} is another possible way of restoring consistency.

For any set of EAICs Σ and set of ground update atoms 𝒰 , Σ[𝒰 ] denotes the set of partially

ground EAICs derived from 𝑝𝑔𝑟𝑜𝑢𝑛𝑑(Σ) by first deleting every head update atom ±𝐴 for which

there does not exist a substitution 𝜗 such that 𝜗(±𝐴) ∈ 𝒰 , and then deleting every EAICs

where all head update atoms have been deleted.

The definitions of founded update and founded repair are the same as those defined for AICs,

that is, for any database 𝐷 and set of EAICs Σ: (𝑖) an update ℛ is founded iff it is an update for

⟨𝐷,Σ[ℛ]⟩, and (𝑖𝑖) a repair ℛ(𝐷) is founded iff ℛ is a founded.

The introduction of existentially quantified variables increases the expressivity of active

integrity constraints. The price to pay is that, differently from the AIC setting, decidability of

query answering over knowledge bases with EAICs is no more guaranteed, in general. Example 5

showed that EAICs can admit an infinite number of updates, whereas other EAICs can admit

updates of infinite size (i.e., containing an infinite number of update atoms).

To restrict the number of repairs to be considered for query evaluation, we next introduce

the concepts of labeled null and universal repairs. A labeled null can be used as a placeholder

for any constant from 𝒞. Thus, in addition to the set of constants 𝒞, we assume the existence of

an infinite enumerable set of labeled nulls 𝒩 of the form ⊥𝑖, where 𝑖 ∈ N is a natural number.

For any set of atoms 𝐷 with values in 𝒞 ∪ 𝒩 ∪ 𝒱 , we use 𝒞(𝐷) (resp. 𝒩 (𝐷), 𝒱(𝐷)) to denote

the set of constants (resp. nulls, variables) occurring in 𝐷. For every two sets of atoms 𝐷1

and 𝐷2 over 𝑆, a homomorphism ℎ from 𝐷1 to 𝐷2, denoted ℎ : 𝐷1 → 𝐷2, is a mapping

from 𝒞(𝐷1) ∪ 𝒩 (𝐷1) ∪ 𝒱(𝐷1) to 𝒞(𝐷2) ∪ 𝒩 (𝐷2) ∪ 𝒱(𝐷2) such that:(i) ℎ(𝑐) = 𝑐, for every

𝑐 ∈ 𝒞(𝐷1); (ii) ℎ(⊥𝑖) ∈ 𝒞(𝐷2)∪𝒩 (𝐷2), for every ⊥𝑖∈ 𝒩 (𝐷1); (iii) for every fact 𝑅𝑖(�̄�) of 𝐷1,

we have that 𝑅𝑖(ℎ(�̄�)) is a fact of 𝐷2 (where, if �̄� = (𝑎1, ..., 𝑎𝑛), then ℎ(�̄�) = (ℎ(𝑎1), ..., ℎ(𝑎𝑛))).
A homomorphism that is the identity on 𝒞 ∪ 𝒩 (i.e., it maps variables only) is also called a

substitution, whereas a substitution whose image is 𝒞 ∪ 𝒩 (resp. 𝒞) is called a matcher (resp.

constant matcher). The concepts of homomorphism can be extended to (sets of) update atoms.

The new definitions of ground (update) atom, update and repair are given in the following. A

ground atom 𝐴 is of the form 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 is an 𝑛-ary predicate and 𝑡1, . . . , 𝑡𝑛 ∈ 𝒞∪𝒩 ;

we write it also as 𝑝(𝑡), where 𝑡 is understood to be a sequence of constants and labeled nulls.

Intuitively, 𝐴 represents all atoms 𝐵 = 𝑝(𝑐1, . . . , 𝑐𝑛), with 𝑐1, . . . , 𝑐𝑛 ∈ 𝒞, such that there



exists a homomorphism from 𝐴 to 𝐵. A ground update atom is of the form +𝑝(𝑡) or −𝑝(𝑡),
where 𝑝(𝑡) is a ground atom. We use ±𝑝(𝑡) to refer to a generic ground update atom.

The semantics of a database 𝐷 with labeled nulls is usually given in terms of the set poss(𝐷)
of its possible worlds, that is, all databases that can be obtained from 𝐷 by replacing all nulls with

constants. The certain answers to a query 𝑄 over 𝐷 are certain(𝑄,𝐷) =
⋂︀

𝑊∈poss(𝐷)

𝑄(𝑊 ).

The definitions of partially ground constraints remains the same. A database 𝐷 with labeled

nulls satisfies a partially ground EIC 𝜎 if the following condition holds: for every homomor-

phism ℎ from 𝑏𝑜𝑑𝑦+(𝜎) to 𝐷 that maps nulls to constants, there is a constant matcher 𝜗 s.t.

𝜗(body−(𝜎)) ∩ ℎ(𝐷) ̸= ∅. The definitions of satisfaction of (sets of) EICs and EAICs remain

the same, whereas the definitions of coherent update atoms and update needs to be revised.

A set of ground update atoms 𝒰 is coherent if there are no two update atoms +𝑎(𝑡1),−𝑎(𝑡2) ∈ 𝒰
and a homomorphism ℎ s.t. 𝑎(ℎ(𝑡1)) = 𝑎(ℎ(𝑡2)). Let 𝒰𝑖 and 𝒰𝑗 be coherent sets of ground

update atoms. 𝒰𝑖 is more general than 𝒰𝑗 , denoted 𝒰𝑖 ⊒ 𝒰𝑗 , if there exists a homomorphism ℎ
from 𝒰𝑖 to 𝒰𝑗 . 𝒰𝑖 and 𝒰𝑗 are (homomorphically) equivalent, denoted 𝒰𝑖 ≡ 𝒰𝑗 , if 𝒰𝑖 ⊒ 𝒰𝑗 and

𝒰𝑗 ⊒ 𝒰𝑖. For instance, {+edge(⊥1,⊥2)} ⊒ {+edge(a,⊥2)} ⊒ {+edge(a, a)}, and the sets

{+edge(a,⊥1)}, {+edge(⊥2, a)}, {−node(a)} are pairwise incomparable.

Definition 2 (Update). Given a database 𝐷 and a set of EICs Σ, an update for ⟨𝐷,Σ⟩ is a
coherent set of ground update atoms ℛ such that (i) ℛ(𝐷) |= Σ, and (ii) for every coherent set of
ground update atoms ℛ′ such that ℛ′(𝐷) |= Σ if ℛ′ ⊒ ℛ, then also ℛ ⊒ ℛ′ holds. □

Observe that the previous definition coincides with the one provided in Section 2 when

applied to AICs, as update atoms contain only constants and ℛ ⊒ ℛ′
is equivalent to ℛ ⊆ ℛ′

.

Once we have revised the definition of coherent set of ground update atoms, update, founded

update atom, founded update and founded repair are defined analogously to the case of AICs.

The definition of certain answers has to consider all possible founded repairs for ⟨𝐷,Σ⟩ and, for

each founded repair, all its possible worlds. certain(𝑄,𝐷,Σ) =
⋂︀

ℛ∈FR(𝐷,Σ)∧𝑀∈poss(ℛ(𝐷))

𝑄(𝑀).

Proposition 1 from [1] shows that certain query answering is undecidable in the presence of

EAICs. This result does not preclude the existence of interesting classes of EAICs for which the

problem of computing certain query answers is decidable. As for AICs, it might be the case that

there are no founded updates for a database and set of EAICs. Although the introduction of

nulls enlarges the number of (founded) updates, only a subset of these need to be considered in

computing certain answers. This idea is captured by a “universal set of founded updates”.

Definition 3 (Universal Set of Updates). Let 𝐷 be a database and Σ a set of EAICs. A uni-

versal set of updates 𝑆 is a minimal (w.r.t. ⊆) set of 𝑆-updates for ⟨𝐷,Σ⟩ s.t. for every update ℛ𝑗

for ⟨𝐷,Σ⟩ there is an 𝑆-update ℛ𝑖 ∈ 𝑆 s.t. ℛ𝑖 ⊒ ℛ𝑗 . □

Roughly speaking, a universal set of founded updates is a set of founded updates that is

representative of all founded updates.

Example 6. Consider the database and the EAIC of Example 5. The founded updates are ℛ0 =
{−node(a)}, every ℛ𝑖 = {+edge(a,⊥i)}, for some 𝑖 ∈ N, and every ℛ𝑐 = {+edge(a, c)}, for
some 𝑐 ∈ 𝒞. The sets of the form {ℛ0,ℛ𝑖} are universal sets of founded updates, whereas the sets
of the form {ℛ0,ℛ𝑐}, for some 𝑐 ∈ 𝒞, are not.



Different interesting results have been shown in [1]. To compute certain query answers, it

suffices to consider any universal set of founded updates. As a consequence, certain answers

can be computed by only considering the repairs obtained by taking any universal set of

founded updates. Also, for databases with EAICs and positive queries, certain answers can be

computed by resorting to the naive evaluation of [17]. Finally, since the universal set of founded

updates can be infinite, restrictions guaranteeing finiteness and the existence of at most one

representative founded update have been presented in [1].

4. Conclusions

The framework presented in this paper finds application in several domains from different

fields, including knowledge representation and reasoning and databases. As EAICs generalize

classical production rules, they can be used as a basic representation mechanism useful in

different contexts, such as automated planning, expert systems and action selection. Regarding

data integration, EAICs could be used to implement, using a unified framework, both dataset

merging and cleaning mechanisms and to enrich smart data exchange setting [18]. It would be

interesting to extend the EAIC language so as to express different kind of preferences, e.g., by

incorporating formalisms like CP-nets [19, 20, 21]. Since explaining query (non)entailment has

recently received increasing attention (e.g., see [22, 23, 24, 25, 26, 27, 28]), another interesting

direction for future work is to investigate notions of explanations in the EAIC framework.

Finally, because existential quantification generally leads to undecidability of reasoning tasks,

it would be interesting to see how techniques guaranteeing decidability developed for logic

programs (e.g., see [29, 30]) might be adapted to the EAIC framework.
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