
The Challenging Reproducibility
Task in Recommender Systems Research
between Traditional and Deep LearningModels
Discussion Paper

Vito Walter Anelli
1
,

Alejandro Bellogín
2
, Antonio Ferrara

1
, Daniele Malitesta

1
, Felice Antonio Merra

4
,

Claudio Pomo
1
, Francesco Maria Donini

3
, Eugenio Di Sciascio

1
and Tommaso Di Noia

1

1Politecnico di Bari, via Orabona, 4, 70125 Bari, Italy
2Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
3Università degli Studi della Tuscia, via Santa Maria in Gradi, 4, 01100 Viterbo, Italy
4Amazon Science Berlin, Invalidenstraße 75, 10557 Berlin, Germany

Abstract
Recommender Systems have shown to be a useful tool for reducing over-choice and providing accurate,

personalized suggestions. The large variety of available recommendation algorithms, splitting techniques,

assessment protocols, metrics, and tasks, on the other hand, has made thorough experimental evaluation

extremely difficult. Elliot is a comprehensive framework for recommendation with the goal of running and

reproducing a whole experimental pipeline from a single configuration file. The framework uses a variety

of ways to load, filter, and divide data. Elliot optimizes hyper-parameters for a variety of recommendation

algorithms, then chooses the best models, compares them to baselines, computes metrics ranging from

accuracy to beyond-accuracy, bias, and fairness, and does statistical analysis. The aim is to provide

researchers with a tool to ease all the experimental evaluation phases (and make them reproducible), from

data reading to results collection. Elliot is freely available on GitHub at https://github.com/sisinflab/elliot.

Keywords
Recommender Systems, Reproducibility, Adversarial Learning, Visual Recommenders, Knowledge Graphs

1. Introduction

In the last decade, Recommendation Systems (RSs) have gained momentum as the pivotal choice

for personalized decision-support systems. Recommendation is essentially a retrieval task where

a catalog of items is ranked in a personalized way and the top-scoring items are presented to the

user [1]. Once the RSs ability to provide personalized items to clients had been demonstrated,

both academia and industry began to devote attention to them [2]. This collective effort resulted

in an impressive number of recommendation algorithms, ranging from memory-based [3] to

latent factor-based [4, 5], as well as deep learning-based methods [6]. At the same time, the RS

research community realized that focusing only on the accuracy of results could be detrimental,

SEBD 2022: The 30th Italian Symposium on Advanced Database Systems, June 19-22, 2022, Tirrenia (PI), Italy
$ vitowalter.anelli@poliba.it (V. W. Anelli); claudio.pomo@poliba.it (C. Pomo)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://github.com/sisinflab/elliot
mailto:vitowalter.anelli@poliba.it
mailto:claudio.pomo@poliba.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and started exploring beyond-accuracy evaluation [7]. As accuracy was recognized as insufficient

to guarantee users’ satisfaction [8], novelty and diversity [9, 10] came into play as new dimensions

to be analyzed when comparing algorithms. However, this was only the first step in the direction

of a more comprehensive evaluation. Indeed, more recently, the presence of biased [11] and unfair
recommendations towards user groups and item categories [12] has been widely investigated.

The abundance of possible choices has generated confusion around choosing the correct base-

lines, conducting the hyperparameter optimization and the experimental evaluation [13], and

reporting the details of the adopted procedure. Consequently, two major concerns have arisen:

unreproducible evaluation and unfair comparisons [14].

The advent of various frameworks over the last decade has improved the research process, and

the RS community has gradually embraced the emergence of recommendation, assessment, and

even hyperparameter tweaking frameworks. Starting from 2011, Mymedialite [15], LensKit [16],

LightFM [17], RankSys [9], and Surprise [18], have formed the basic software for rapid prototyp-

ing and testing of recommendation models, thanks to an easy-to-use model execution and the

implementation of standard accuracy, and beyond-accuracy, evaluation measures and splitting

techniques. However, the outstanding success and the community interest in Deep Learning

(DL) recommendation models, raised the need for novel instruments. LibRec [19], Spotlight
1
,

and OpenRec [20] are the first open-source projects that made DL-based recommenders available

– with less than a dozen of available models but, unfortunately, without filtering, splitting, and

hyper-optimization tuning strategies. An important step towards more exhaustive and up-to-date

set of model implementations have been released with RecQ [21], DeepRec [22], and Cornac [23]

frameworks. However, they do not provide a general tool for extensive experiments on the

pre-elaboration and the evaluation of a dataset. Indeed, after the reproducibility hype [24, 25],

DaisyRec [14] and RecBole [26] raised the bar of framework capabilities, making available both

large set of models, data filtering/splitting operations and, above all, hyper-parameter tuning

features. Unfortunately, even though these frameworks are a great help to researchers, facilitating

reproducibility or extending the provided functionality would typically depend on developing

bash scripts or programming on whatever language each framework is written.

This is where Elliot comes to the stage. It is a novel kind of recommendation framework,

aimed to overcome these obstacles by proposing a fully declarative approach (by means of a

configuration file) to the set-up of an experimental setting. It analyzes the recommendation

problem from the researcher’s perspective as it implements the whole experimental pipeline,

from dataset loading to results gathering in a principled way. The main idea behind Elliot is to

keep an entire experiment reproducible and put the user (in our case, a researcher or RS developer)

in control of the framework. To date, according to the recommendation model, Elliot allows for

choosing among 27 similarity metrics, defining of multiple neural architectures, and choosing

51 hyperparameter tuning combined approaches, unleashing the full potential of the HyperOpt

library [27]. To enable evaluation for the diverse tasks and domains, Elliot supplies 36 metrics

(including Accuracy, Error-based, Coverage, Novelty, Diversity, Bias, and Fairness metrics), 13
splitting strategies, and 8 prefiltering policies.

1

https://github.com/maciejkula/spotlight

https://github.com/maciejkula/spotlight

Filter-by-rating
Prefiltering

k-core

Temporal
Splitting

Random
Fix

Recommendation

ModelRestore

ModelRestore

H
yp

er
op

ti
m

iz
at

io
n

External ModelRestore

Output

Recommendation Lists

Performance Tables
Model WeightsAccuracy

Metrics

Error
Coverage
Novelty
Diversity
Bias
Fairness

Paired t-test
Stat. Tests

Wilcoxon

Ratings
Loading

Side Information

Con
guration File
Data Modules
Run Module
Evaluation Modules
Output Module
Optional Modules

Figure 1: Overview of Elliot.

2. Framework

Elliot isanextendable frameworkmadeupofeight functionalmodules, eachofwhich is incharge

of a different phase in the experimental suggestion process. The user is only required to submit

human-level experimental flow information via a customisable configuration file, so what happens

beneath the hood (Figure 1) is transparent to them. As a result, Elliot constructs the whole

pipeline. What follows presents each of Elliot’s modules and how to create a configuration file.

2.1. Data Preparation

The Data modules are in charge of handling and organizing the experiment’s input, as well as

providing a variety of supplementary data, such as item characteristics, visual embeddings, and

pictures. The input data is taken over by the Prefiltering and Splitting modules after being loaded

by the Loading module, whose techniques are described in Sect.2.1.2 and 2.1.3 respectively.

2.1.1. Loading

Different data sources, such as user-item feedback or side information, such as the item visual

aspects, may be required for RSs investigations. Elliotcomes with a variety of Loading module im-

plementations to meet these requirements. Furthermore, the user may create computationally in-

tensive prefiltering and splitting operations that can be saved and loaded to save time in the future.

Additional data, such as visual characteristics and semantic features generated from knowledge

graphs, can be handled through data-driven extensions. When a side-information-aware Loading
module is selected, it filters out items that lack the needed information to provide a fair comparison.

2.1.2. Prefiltering

Elliot provides data filtering procedures using two different techniques after data loading.

Filter-by-rating is the first method implemented in the Prefiltering module, which removes a user-

item interaction if the preference score falls below a certain level. It can be a Numerical value, such

as 3.5, a Distributional information, such as the worldwide rating average value, or a user-based

distributional (User Dist.) value, such as the user’s average rating value. The 𝑘-core prefiltering

approach eliminates people, objects, or both if there are less than 𝑘 documented interactions. The

𝑘-core technique can be used to both users and things repeatedly (Iterative 𝑘-core) until the 𝑘-core
filtering requirement is fulfilled, i.e., all users and items have at least𝑘 recorded interactions. Since

reaching such condition might be intractable, Elliot allows specifying the maximum number of

iterations (Iter-𝑛-rounds). Finally, the Cold-Users filtering feature allows retaining cold-users only.

2.1.3. Splitting

Elliot implements three splitting strategies: (i) Temporal, (ii) Random, and (iii) Fix. The

Temporal method divides user-item interactions depending on the transaction timestamp, either

by setting the timestamp, selecting the best one [28, 29], or using a hold-out (HO) mechanism.

Hold-out (HO),𝐾-repeated hold-out (K-HO), and cross-validation (CV) are all part of the Random
methods. Finally, the Fix approach leverages an already split dataset.

2.2. RecommendationModels

After data loading and pre-elaborations, the Recommendation module (Figure 1) provides the

functionalities to train (and restore) both Elliot’s state-of-the-art recommendation models and

custom user-implemented models, with the possibility to find the best hyper-parameter setting.

2.2.1. ImplementedModels

To date, Elliot integrates around 50 recommendation models grouped into two sets: (i) popular
models implemented in at least two of the other reviewed frameworks, and (ii) other well-

known state-of-the-art recommendation models which are less common in the reviewed frame-

works, such as autoencoder-based, e.g., [6], graph-based, e.g., [30], visually-aware [31], e.g., [32],

adversarially-robust, e.g., [33], and content-aware, e.g., [34, 35].

2.2.2. Hyper-parameter Tuning

According to Rendle et al. [25], Anelli et al. [36], hyper-parameter optimization has a significant

impact on performance. Elliot supplies Grid Search, Simulated Annealing, Bayesian Optimization,

and Random Search, supporting four different traversal techniques in the search space. Grid
Search is automatically inferred when the user specifies the available hyper-parameters.

2.3. Performance Evaluation

After the training phase, Elliot continues its operations, evaluating recommendations. Figure 1

indicates this phase with two distinct evaluation modules: Metrics and Statistical Tests.

2.3.1. Metrics

Elliot provides a set of 36 evaluation metrics, partitioned into seven families: Accuracy, Error,
Coverage, Novelty, Diversity, Bias, andFairness. It isworthmentioning thatElliot is the framework

that exposes both the largest number of metrics and the only one considering bias and fairness mea-

sures. Moreover, the practitioner can choose any metric to drive the model selection and the tuning.

2.3.2. Statistical Tests

All other cited frameworks do not support statistical hypothesis tests, probably due to the need

for computing fine-grained (e.g., per-user or per-partition) results and retaining them for each

recommendation model. Conversely, Elliot helps computing two statistical hypothesis tests,

i.e., Wilcoxon and Paired t-test, with a flag in the configuration file.

2.4. FrameworkOutcomes

When the training of recommenders is over, Elliot uses the Output module to gather the results.

Three types of output files can be generated: (i) Performance Tables, (ii) Model Weights, and (iii)

Recommendation Lists. Performance Tables come in the form of spreadsheets, including all the

metric values generated on the test set for each recommendation model given in the configuration

file. Cut-off-specific and model-specific tables are included in a final report (i.e., considering each

combination of the explored parameters). Statistical hypothesis tests are also presented in the

tables, as well as a JSON file that summarizes the optimal model parameters. Optionally, Elliot

stores the model weights for the sake of future re-training.

2.5. Preparation of the Experiment

Elliot is triggered by a single configuration file written in YAML (e.g., refer to the toy ex-

ample sample_hello_world.yml). The first section details the data loading, filtering, and

splitting information defined in Section 2.1. The models section represents the recommendation

models’ configuration, e.g., Item-𝑘NN. Here, the model-specific hyperparameter optimization

strategies are specified, e.g., the grid-search. The evaluation section details the evaluation

strategy with the desired metrics, e.g., nDCG in the toy example. Finally, save_recs and top_k
keys detail, for example, the Output module abilities described in Section 2.4.

3. Conclusion and FutureWork

Elliot is a framework that looks at the recommendation process from the eyes of an RS

researcher. To undertake a thorough and repeatable experimental assessment, the user only has

to generate a flexible configuration file. Several loading, prefiltering, splitting, hyperparameter

optimization, recommendation models, and statistical hypothesis testing are included in the

framework. Elliot reports may be evaluated and used directly into research papers. We eval-

uated the RS assessment literature, putting Elliot in the context of the other frameworks and

highlighted its benefits and drawbacks. Following that, we looked at the framework’s design

https://github.com/sisinflab/elliot/blob/master/config_files/sample_hello_world.yml

and how to create a functional (and repeatable) experimental benchmark. Elliot is the only

recommendation framework we’re aware of that supports a full multi-recommender experimen-

tal pipeline from a single configuration file. We intend to expand the framework in the near

future to incorporate sequential recommendation scenarios, adversarial attacks, reinforcement

learning-based recommendation systems, differential privacy facilities, sampling assessment,

and distributed recommendation, among other things.

References

[1] W. Krichene, S. Rendle, On sampled metrics for item recommendation, in: R. Gupta, Y. Liu,

J. Tang, B. A. Prakash (Eds.), KDD ’20: The 26th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, ACM, 2020, pp.

1748–1757. URL: https://dl.acm.org/doi/10.1145/3394486.3403226.

[2] J. Bennett, S. Lanning, The netflix prize, in: Proceedings of the 13th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Jose, California,

USA, August 12-15, 2007, ACM, 2007.

[3] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, Item-based collaborative filtering

recommendation algorithms, in: V. Y. Shen, N. Saito, M. R. Lyu, M. E. Zurko (Eds.), WWW

2001, ACM, 2001, pp. 285–295. doi:10.1145/371920.372071.

[4] Y. Koren, R. M. Bell, Advances in collaborative filtering, in: F. Ricci, L. Rokach,

B. Shapira (Eds.), Recommender Systems Handbook, Springer, 2015, pp. 77–118.

doi:10.1007/978-1-4899-7637-6_3.

[5] S. Rendle, Factorization machines, in: G. I. Webb, B. Liu, C. Zhang, D. Gunopulos,

X. Wu (Eds.), ICDM 2010, The 10th IEEE International Conference on Data Mining,

Sydney, Australia, 14-17 December 2010, IEEE Computer Society, 2010, pp. 995–1000.

doi:10.1109/ICDM.2010.127.

[6] D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara, Variational autoencoders for

collaborative filtering, in: P. Champin, F. L. Gandon, M. Lalmas, P. G. Ipeirotis (Eds.), WWW

2018, ACM, 2018, pp. 689–698. doi:10.1145/3178876.3186150.

[7] S. Vargas, P. Castells, Rank and relevance in novelty and diversity metrics for recommender

systems, in: B. Mobasher, R. D. Burke, D. Jannach, G. Adomavicius (Eds.), RecSys 2011,

ACM, 2011, pp. 109–116. URL: https://dl.acm.org/citation.cfm?id=2043955.

[8] S. M. McNee, J. Riedl, J. A. Konstan, Being accurate is not enough: how accuracy

metrics have hurt recommender systems, in: G. M. Olson, R. Jeffries (Eds.), Extended

Abstracts Proceedings of the 2006 Conference on Human Factors in Computing Systems,

CHI 2006, Montréal, Québec, Canada, April 22-27, 2006, ACM, 2006, pp. 1097–1101.

doi:10.1145/1125451.1125659.

[9] S. Vargas, Novelty and diversity enhancement and evaluation in recommender systems

and information retrieval, in: S. Geva, A. Trotman, P. Bruza, C. L. A. Clarke, K. Järvelin

(Eds.), SIGIR 2014, ACM, 2014, p. 1281. doi:10.1145/2600428.2610382.

[10] P. Castells, N. J. Hurley, S. Vargas, Novelty and diversity in recommender sys-

tems, in: F. Ricci, L. Rokach, B. Shapira (Eds.), Recommender Systems Handbook,

https://dl.acm.org/doi/10.1145/3394486.3403226
http://dx.doi.org/10.1145/371920.372071
http://dx.doi.org/10.1007/978-1-4899-7637-6_3
http://dx.doi.org/10.1109/ICDM.2010.127
http://dx.doi.org/10.1145/3178876.3186150
https://dl.acm.org/citation.cfm?id=2043955
http://dx.doi.org/10.1145/1125451.1125659
http://dx.doi.org/10.1145/2600428.2610382

Springer, 2015, pp. 881–918. URL: https://doi.org/10.1007/978-1-4899-7637-6_26.

doi:10.1007/978-1-4899-7637-6_26.

[11] Z. Zhu, Y. He, X. Zhao, Y. Zhang, J. Wang, J. Caverlee, Popularity-opportunity

bias in collaborative filtering, in: WSDM 2021, ACM, 2021. doi:https:
//doi.org/10.1145/3437963.3441820.

[12] Y. Deldjoo, V. W. Anelli, H. Zamani, A. Bellogin, T. Di Noia, A flexible framework

for evaluating user and item fairness in recommender systems, User Modeling and

User-Adapted Interaction (2020) 1–47.

[13] A. Said, A. Bellogín, Comparative recommender system evaluation: benchmarking

recommendation frameworks, in: A. Kobsa, M. X. Zhou, M. Ester, Y. Koren (Eds.), RecSys

2014, ACM, 2014, pp. 129–136. doi:10.1145/2645710.2645746.

[14] Z. Sun, D. Yu, H. Fang, J. Yang, X. Qu, J. Zhang, C. Geng, Are we evaluating rigorously?

benchmarking recommendation for reproducible evaluation and fair comparison, in: R. L. T.

Santos, L. B. Marinho, E. M. Daly, L. Chen, K. Falk, N. Koenigstein, E. S. de Moura (Eds.),

RecSys 2020, ACM, 2020, pp. 23–32. doi:10.1145/3383313.3412489.

[15] Z. Gantner, S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Mymedialite: a free

recommender system library, in: B. Mobasher, R. D. Burke, D. Jannach, G. Adomavicius

(Eds.), RecSys 2011, ACM, 2011, pp. 305–308. doi:10.1145/2043932.2043989.

[16] M. D. Ekstrand, Lenskit for python: Next-generation software for recommender systems

experiments, in: M. d’Aquin, S. Dietze, C. Hauff, E. Curry, P. Cudré-Mauroux (Eds.), CIKM

2020, ACM, 2020, pp. 2999–3006. doi:10.1145/3340531.3412778.

[17] M. Kula, Metadata embeddings for user and item cold-start recommendations, in: T. Bogers,

M. Koolen (Eds.), Proceedings of the 2nd Workshop on New Trends on Content-Based

Recommender Systems co-located with 9th ACM Conference on Recommender Systems

(RecSys 2015), Vienna, Austria, September 16-20, 2015., volume 1448 of CEUR Workshop
Proceedings, CEUR-WS.org, 2015, pp. 14–21. URL: http://ceur-ws.org/Vol-1448/paper4.pdf.

[18] N. Hug, Surprise: A python library for recommender systems, J. Open Source Softw. 5

(2020) 2174. doi:10.21105/joss.02174.

[19] G. Guo, J. Zhang, Z. Sun, N. Yorke-Smith, Librec: A java library for recommender systems,

in: A. I. Cristea, J. Masthoff, A. Said, N. Tintarev (Eds.), Posters, Demos, Late-breaking

Results and Workshop Proceedings of the 23rd Conference on User Modeling, Adaptation,

and Personalization (UMAP 2015), Dublin, Ireland, June 29 - July 3, 2015, volume 1388 of

CEUR Workshop Proceedings, CEUR-WS.org, 2015.

[20] L. Yang, E. Bagdasaryan, J. Gruenstein, C. Hsieh, D. Estrin, Openrec: A modular framework

for extensible and adaptable recommendation algorithms, in: Y. Chang, C. Zhai, Y. Liu,

Y. Maarek (Eds.), WSDM 2018, ACM, 2018, pp. 664–672. doi:10.1145/3159652.3159681.

[21] J. Yu, M. Gao, H. Yin, J. Li, C. Gao, Q. Wang, Generating reliable friends via adversarial

training to improve social recommendation, in: J. Wang, K. Shim, X. Wu (Eds.), 2019 IEEE

International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019,

IEEE, 2019, pp. 768–777. doi:10.1109/ICDM.2019.00087.

[22] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G. Wei, H. S. Lee, D. Brooks, C. Wu,

Deeprecsys: A system for optimizing end-to-end at-scale neural recommendation

inference, in: 47th ACM/IEEE Annual International Symposium on Computer Archi-

tecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020, IEEE, 2020, pp. 982–995.

https://doi.org/10.1007/978-1-4899-7637-6_26
http://dx.doi.org/10.1007/978-1-4899-7637-6_26
http://dx.doi.org/https://doi.org/10.1145/3437963.3441820
http://dx.doi.org/https://doi.org/10.1145/3437963.3441820
http://dx.doi.org/10.1145/2645710.2645746
http://dx.doi.org/10.1145/3383313.3412489
http://dx.doi.org/10.1145/2043932.2043989
http://dx.doi.org/10.1145/3340531.3412778
http://ceur-ws.org/Vol-1448/paper4.pdf
http://dx.doi.org/10.21105/joss.02174
http://dx.doi.org/10.1145/3159652.3159681
http://dx.doi.org/10.1109/ICDM.2019.00087

doi:10.1109/ISCA45697.2020.00084.

[23] A. Salah, Q. Truong, H. W. Lauw, Cornac: A comparative framework for mul-

timodal recommender systems, J. Mach. Learn. Res. 21 (2020) 95:1–95:5. URL:

http://jmlr.org/papers/v21/19-805.html.

[24] M. F. Dacrema, P. Cremonesi, D. Jannach, Are we really making much progress? A worrying

analysis of recent neural recommendation approaches, in: RecSys, ACM, 2019, pp. 101–109.

[25] S. Rendle, W. Krichene, L. Zhang, J. R. Anderson, Neural collaborative filtering vs. matrix

factorization revisited, in: RecSys, ACM, 2020, pp. 240–248.

[26] W. X. Zhao, S. Mu, Y. Hou, Z. Lin, K. Li, Y. Chen, Y. Lu, H. Wang, C. Tian, X. Pan, Y. Min,

Z. Feng, X. Fan, X. Chen, P. Wang, W. Ji, Y. Li, X. Wang, J. Wen, Recbole: Towards a

unified, comprehensive and efficient framework for recommendation algorithms, CoRR

abs/2011.01731 (2020). URL: https://arxiv.org/abs/2011.01731. arXiv:2011.01731.

[27] J. Bergstra, D. Yamins, D. D. Cox, Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures, in: Proceedings of the

30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21

June 2013, volume 28 of JMLR Workshop and Conference Proceedings, JMLR.org, 2013, pp.

115–123. URL: http://proceedings.mlr.press/v28/bergstra13.html.

[28] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, J. Trotta, Local popularity and time in

top-n recommendation, in: ECIR (1), volume 11437 of Lecture Notes in Computer Science,

Springer, 2019, pp. 861–868.

[29] A. Bellogín, P. Sánchez, Revisiting neighbourhood-based recommenders for temporal sce-

narios, in: RecTemp@RecSys, volume 1922 of CEUR Workshop Proceedings, CEUR-WS.org,

2017, pp. 40–44.

[30] X. Wang, X. He, M. Wang, F. Feng, T. Chua, Neural graph collaborative filtering, in:

B. Piwowarski, M. Chevalier, É. Gaussier, Y. Maarek, J. Nie, F. Scholer (Eds.), SIGIR 2019,

ACM, 2019, pp. 165–174. doi:10.1145/3331184.3331267.

[31] V. W. Anelli, A. Bellogín, A. Ferrara, D. Malitesta, F. A. Merra, C. Pomo, F. M. Donini, T. D.

Noia, V-elliot: Design, evaluate and tune visual recommender systems, in: RecSys, ACM,

2021, pp. 768–771.

[32] R. He, J. J. McAuley, VBPR: visual bayesian personalized ranking from implicit feedback,

in: D. Schuurmans, M. P. Wellman (Eds.), Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, AAAI Press, 2016,

pp. 144–150. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11914.

[33] J. Tang, X. Du, X. He, F. Yuan, Q. Tian, T. Chua, Adversarial training towards robust

multimedia recommender system, IEEE Trans. Knowl. Data Eng. 32 (2020) 855–867.

doi:10.1109/TKDE.2019.2893638.

[34] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, J. Trotta, How to make latent factors

interpretable by feeding factorization machines with knowledge graphs, in: ISWC (1),

volume 11778 of Lecture Notes in Computer Science, Springer, 2019, pp. 38–56.

[35] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ferrara, A. C. M. Mancino, Sparse feature factoriza-

tion for recommender systems with knowledge graphs, in: RecSys, ACM, 2021, pp. 154–165.

[36] V. W. Anelli, T. D. Noia, E. D. Sciascio, C. Pomo, A. Ragone, On the discriminative power

of hyper-parameters in cross-validation and how to choose them, in: RecSys, ACM, 2019,

pp. 447–451.

http://dx.doi.org/10.1109/ISCA45697.2020.00084
http://jmlr.org/papers/v21/19-805.html
https://arxiv.org/abs/2011.01731
http://arxiv.org/abs/2011.01731
http://proceedings.mlr.press/v28/bergstra13.html
http://dx.doi.org/10.1145/3331184.3331267
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11914
http://dx.doi.org/10.1109/TKDE.2019.2893638

	1 Introduction
	2 Framework
	2.1 Data Preparation
	2.1.1 Loading
	2.1.2 Prefiltering
	2.1.3 Splitting

	2.2 Recommendation Models
	2.2.1 Implemented Models
	2.2.2 Hyper-parameter Tuning

	2.3 Performance Evaluation
	2.3.1 Metrics
	2.3.2 Statistical Tests

	2.4 Framework Outcomes
	2.5 Preparation of the Experiment

	3 Conclusion and Future Work

