
Towards Legally and Ethically Correct Online HTN Planning
for Data Transfer
Hisashi Hayashi1,*, Ken Satoh2

1Advanced Institute of Industrial Technology, 1-10-40 Higashi-Ooi, Shinagawa-ku, Tokyo, 140-0011, Japan
2National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

Abstract
Data transfer among servers is crucial for distributed data mining because many databases are distributed around the world.
However, as data privacy is becoming more legally and ethically protected, it is necessary to abide by the laws and respect the
ethical guidelines when transferring and utilizing data. Because information affecting legal/ethical decision making is often
distributed, the data-transfer plan must be updated online when new information is obtained while transferring data among
servers. In this study, we propose a dynamic hierarchical task network (HTN) planning method that considers legal and
ethical norms while planning multihop data transfers and data analyses/transformations. In our knowledge representation,
we show that data-transfer tasks can be represented by the task-decomposition rules of total-order HTN planning. We also
show that legal norms can be expressed as the preconditions of tasks and actions, and ethical norms can be expressed as the
costs of tasks and actions where legal norms cannot be violated, but ethical norms can be violated if necessary following the
ethical theory of utilitarianism. In the middle of the plan execution, the online planner dynamically updates the plan based
on new information obtained in accordance with laws and ethical guidelines.

Keywords
Data Transfer, Legal and Ethical Norms, Online HTN Planning, Logic Programming, Application of Knowledge Representation

1. Introduction
Because data privacy is respected worldwide, many laws
and ethical guidelines governing the transfer and usage
of collected data have been established. Some data can
only be transferred within a country or a company. Some
data can only be used for specific purposes.

Because the laws and ethical guidelines for collected
data are complicated and different in each country, some
researches have been conducted on the automated com-
pliance check of norms in data transfers. In [1, 2, 3, 4, 5],
the policy presentation of European general data protec-
tion regulation (GDPR) is studied to automate compliance
checks.

Planning for data transfer in accordance with legal/eth-
ical norms is a new field of research. In the studies of
[5, 6], data-transfer planners and legal/ethical checkers
are separate. These are good frameworks considering
that the logic of legal/ethical checkers is complicated and
should be separated from the logic of planning. However,
dynamic replanning was not achieved in these studies.

Considering real international data transfers among
distributed servers, dynamic replanning is crucial be-
cause the latest information necessary for planning is
also distributed and not available when initially plan-

NMR 2022: 20th International Workshop on Non-Monotonic Reasoning,
August 07–09, 2022, Haifa, Israel
*Corresponding author.
" hayashi-hisashi@aiit.ac.jp (H. Hayashi); ksatoh@nii.ac.jp
(K. Satoh)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ning. In other words, the data-transfer plan must be
dynamically checked and updated if necessary, even in
the middle of the plan execution when new information
is found on distributed servers, which may affect the
validity of the plan.

In this paper, we present a new knowledge represen-
tation for dynamic HTN planning on transferring and
utilizing distributed data considering legal and ethical
norms. We use an extended algorithm of Dynagent [7]
which is an online total-order HTN planner. Total-order
HTN planning algorithms [7, 8, 9, 10, 11] are simple, easy
to use, and used for representing the domain control
heuristics by task-decomposition rules.

In our knowledge representation, we show that
data-transfer tasks can be represented by the task-
decomposition rules of total-order HTN planning. We
also show that legal norms can be expressed as the pre-
conditions of tasks and actions, and ethical norms can
be expressed as the costs of tasks and actions where le-
gal norms cannot be violated, but ethical norms can be
violated if necessary following the ethical theory of utili-
tarianism. Using this knowledge and an online planning
algorithm, the plan of data transfer and utilization is
dynamically adapted to the new information obtained
at local servers, abiding by the laws and following the
ethical guidelines.

We assume that the data-transfer planners and
legal/ethical checkers are separate as in [5, 6]. We fo-
cus on planning and replanning rather than legal/ethical
checks. Because we use an online planning algorithm,
the validity of the plan is checked and the plan is updated

4

mailto:hayashi-hisashi@aiit.ac.jp
mailto:ksatoh@nii.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


in the middle of the execution with the help of external
legal and ethical checkers.

The rest of this paper is organized as follows: In Sec-
tion 2, related work is discussed. In Section 3, the algo-
rithm of online HTN planning is explained. In Section 4,
the system architecture of the planning agent with exter-
nal legal and ethical checkers is presented. In Section 5,
the problem of data transfer and utilization is defined. In
Section 6, the knowledge representation method to solve
the problem is shown as a case study based on a specific
scenario. In Section 7, the knowledge representation pre-
sented in the case study is discussed. In Section 8, the
paper is summarized.

2. Related Work
HTN planners create plans by decomposing abstract tasks
into more concrete subtasks. The first HTN planners
were created in the late 1970s [12, 13]. Other previous
HTN planners were created around 1990 [14, 15].

The most popular and well-established HTN planner
is simple hierarchical ordered planner (SHOP) [8], which
is a simple forward-chaining total-order planner. This
forward-chaining planner decomposes the subtasks in
the same order of execution. Domain control heuristics
can be expressed easily by the task-decomposition rules
(methods) in a manner similar to the Horn clauses of
the Prolog programming language, which are used for
goal/literal decomposition.

SHOP is still standard in HTN planning. For example,
HDDL [16] was used in the HTN planning track of the in-
ternational planning competition held in 2020, however,
a translator from HDDL to (J)SHOP2 [17] was provided.
(Note that SHOP2 is a partial-order-planner version of
SHOP, and that JSHOP2 is the Java version of SHOP2.)
SHOP-like total-order HTN planners are still being stud-
ied to improve computational efficiency [9, 10, 11].

Dynagent [7] is a simple SHOP-like total-order
forward-chaining HTN planner. In contrast to SHOP,
Dynagent is an online HTN planner. When the current
assumption is updated, the Dynagent planner modifies
the plan, even in the middle of plan execution. Dynagent
was applied to real robot manipulation, such as online
path planning [18] and online pick-and-place planning
(arm manipulation) [19, 20]. In this study, we adopted
and slightly modified the online HTN planning algorithm
of Dynagent.

Another interesting online forward-chaining HTN-
like planning is also studied in [21, 22]. This online plan-
ner never backtracks and cannot change the plan in the
middle of execution. However, it delays the subtask de-
composition until it becomes necessary and changes the
way to decompose the subtasks according to the current
situation. Interestingly, this planner conducts Monte

Carlo tree search, which is often used for game tree
search. This technique is known to be effective when
the search space is very large, such as in chess or Go.
This planner can also represent complicated control pro-
cesses such as “if-then” and “repetition” as in standard
procedural programming languages.

In the studies [5, 6], the knowledge representation for
data-transfer planning is expressed by logic programs
that represent the simplified version [23] of the event
calculus [24]. These planners are implemented by the
answer set programming (ASP [25]) solver, which makes
stable models through forward reasoning. However, they
are not online planners. The idea of using the simplified
version of the event calculus for planning was first in-
troduced in [26]. A planner based on the event-calculus
was implemented in [27] using the Prolog programming
language.

In [28, 29], event calculus is used for representing
causalities in computational ethics. Another work on
ethical principles on planning is found in [30].

3. Online HTN Planning
In this section, we define the syntax and sketch of the
algorithm of online total-order forward-chaining HTN
planning based on the algorithm of Dynagent [7]. Dyna-
gent [7] is similar to SHOP [8]. However, in contrast to
SHOP, Dynagent is an online planner.

3.1. Syntax
In this subsection, we define the syntax of the belief and
planning knowledge that are used by the planner. Because
we implemented the algorithm in Prolog, the syntax fol-
lows its representation.

In the following definition, fluents (predicates whose
truth value can change) and belief rules (corresponding
to Horn clauses in Prolog) are defined using constants,
variables, functions (=function symbols), and predi-
cates (=predicate symbols). As in Prolog, constants, func-
tions, and predicates, are represented by alphanumeric
characters starting with a lowercase alphabet and Vari-
ables are represented by alphanumeric characters starting
with an uppercase alphabet or “_”.

Definition 1. A term is one of the following: a constant,
a variable, or a complex term. A complex term is of the
following form: F(T1, · · · ,Tn) where 𝑛 ≥ 0, F is an n-ary
function, and each Ti (1 ≤ 𝑖 ≤ 𝑛) is a term. A fluent is of
the following form: P(T1, · · · ,Tn) where 𝑛 ≥ 0, P is an
n-ary predicate, and each Ti (1 ≤ 𝑖 ≤ 𝑛) is a term. When
P is a 0-ary predicate, the fluent P() can be abbreviated to
P. A fluent is either derived or primitive.

5



In the following definition, belief rules are defined in
the same way as in Prolog. Fluents are used to represent
the states.

Definition 2. A belief rule is of the following form:
belief(F, [F1, · · · ,Fn])

1 where 𝑛 ≥ 0, F is a derived
fluent called the head, each Fi (1 ≤ 𝑖 ≤ 𝑛) is a fluent,
and the set of fluents F1, · · · ,Fn is called the body. When
𝑛 > 0, F is a derived fluent. When 𝑛 = 0, the belief
rule belief(F, []) can be expressed as belief(F) and F
is called a fact. The belief rule belief(F, [F1, · · · ,Fn])
defines the fluent G if F is unifiable with G. Fluent F is
regarded as dynamic iff it is declared as dy(F). The belief
rule belief(F) can be asserted to or retracted from the
belief after observation or action execution iff F is dynamic.

We define the syntax of tasks, actions, and (total-order)
plans as follows: task symbols are represented by alphanu-
meric characters starting with a lowercase alphabet.

Definition 3. A task is of the following form:
T(X1, · · · ,Xn) where 𝑛 ≥ 0, T is an n-ary task symbol,
and each Xi (1 ≤ 𝑖 ≤ 𝑛) is a term. When T is a 0-ary task
symbol, the task T() can be abbreviated to T. A task is
either abstract or primitive. An action is a primitive
task. The cost C of the task T, where 𝐶 is a number (real
number or integer), is represented as cost(T,C).

A plan is a list of tasks of the following form:
[T1, · · · ,Tn] where 𝑛 ≥ 0 and each Ti (1 ≤ 𝑖 ≤ 𝑛)
is a task, which is called the i-th element of the plan. The
cost of the plan [T1, · · · ,Tn] is the sum of each cost of Ti

(1 ≤ 𝑖 ≤ 𝑛).

To represent the effect of an action, we use the follow-
ing action rules.

Definition 4. An action rule is of the following form:
𝑎𝑐𝑡𝑖𝑜𝑛(A,C,E), where A is an action, C is a list of flu-
ents called preconditions, E is a list of effects, an ef-
fect is either of the following forms: initiates(F) or
terminates(F), and F is a fluent.

Intuitively, in the aforementioned definition,
initiates(F) (or terminates(F)) represents that the
truth value of F becomes true (respectively, false) after
the action execution, if all the preconditions hold.

To represent a method to decompose a task into sub-
tasks, we use the following task-decomposition rules.
Note that task decomposition rules are called methods in
SHOP [8].

Definition 5. A task-decomposition rule is of the fol-
lowing form: ℎ𝑡𝑛(H,C,B) where H is an abstract task
called the head, C is a list of fluents called precondi-
tions, and B is a plan called the body.

1This syntax reflects our implementation in Prolog. This belief rule
can be understood as F ⇐ F1, · · · ,Fn .

The planning agent has belief and planning knowl-
edge, which are used for planning. Furthermore, belief
represents the current state, whereas planning knowl-
edge represents the effects of actions and the methods to
decompose tasks into subtasks.

Definition 6. Belief is of the following form: ⟨D, S⟩
where D is a set of dynamic fluents, and S is a set of belief
rules.

Planning knowledge is of the following form:
⟨AR,TDR,COST⟩ where AR is a set of action rules, TDR
is a set of task-decomposition rules, and COST is a set of
the cost of each task.

3.2. Semantics
Standard semantics of a plan can be used if all the tasks
in the plan are actions. See the simplified version [23] of
the event calculus for example.

3.3. Sketch of the Algorithm
In this subsection, we show the sketch of the algorithm
we used in this study. We used the algorithm of Dy-
nagent, which is defined in detail in [7]. However, the
replanning method after cost updates is not shown in [7].
We modified the algorithm to handle cost updates, which
is crucial for reflecting ethical norms in plan selection.
Because the algorithm is implemented in Prolog, it can
handle rules of predicate logic by unification.

3.3.1. Initial Planning

The planning agent has the belief and planning knowl-
edge defined in the previous subsection. Belief repre-
sents the current state (the truth value of each fluent) of
the world, which the planning agent believes. Planning
knowledge includes action rules, task-decomposition
rules, and cost information of tasks.

The planner recursively decomposes the task into sub-
tasks that become primitive tasks (= actions) before exe-
cution. The HTN planning algorithm is forward-chaining
and the task decomposition is conducted in the same or-
der as task execution. As shown in Figure 1, when taskA
in a plan is decomposed, all the previous tasks before
taskA are primitive. Therefore, it is easy to evaluate the
truth value of fluents in the state shortly before task ex-
ecution. The preconditions (precond2 and precond3) of
the task decomposition, which are added to the precondi-
tions of the first subtask (taskA1), must be satisfied before
the task execution.

In general, there are several ways to decompose a task.
For example, in the case of the data transfer problem,
there are several routes for data transfer. When decom-
posing a task in a plan, multiple plans are created using

6



Figure 1: Task Decomposition

Figure 2: Multiple Subplans

multiple task-decomposition rules. For example, in Fig-
ure 2, the task t3 in a plan is decomposed into three
subplans [a1, a2, a3, a4], [b1, b2], and [c1]. Therefore,
the search space of HTN planning is an or-search-tree of
plans.

When each task has the cost information, the best-first
search can be conducted. In the algorithm of Dynagent,
to conduct the best-first search, the planning agent main-
tains frontiers (alternative plans) in the or-search-tree
of plans, sorts the plans in ascending order of cost, and
decomposes the first abstract task in the plan with the
lowest cost. If the cost of a task is always lower than or
equal to the cost of its primitive subplans (subplans that
have only actions), the first found plan has the lowest
cost.

3.3.2. Replanning after Belief Deletion

In the planning algorithm of Dynagent, each precondi-
tion (a dynamic fluent) of a task in a plan is recorded
in association with the task in the plan if its truth value
is subject to change. As shown in Figure 3, this fluent
recorded as a precondition of a task serves as a protected
link which must be true before the execution of the task.

Following a belief update, if the protected link in a plan

Figure 3: Protected Link

Figure 4: Switching to an Alternative Plan

is violated, the plan becomes invalid. Then, the invalid
plan is removed from the frontiers of the or-search tree.
As shown in Figure 4, if the current plan becomes invalid,
the planning agent changes the current plan to the plan
with the next-lowest cost, and continues the best-first
search using the frontiers of valid plans.

3.3.3. Replanning after Belief Addition

When evaluating a precondition of a task in a plan in the
planning algorithm of Dynagent, if the precondition is
a dynamic fluent, the planning agent records the plan
separately from the frontiers even if the fluent is false.
During the plan execution, if the belief is updated and the
precondition becomes true, the recorded plan is asserted
to the frontiers as a new valid plan. Because the plans
in frontiers are always sorted, if the new plan has the
lowest cost, the planning agent stops the current plan
execution, switches to the new plan, and continues the
best-first search, which may lead to a better plan.

3.3.4. Replanning after Cost Update

In the planning algorithm of Dynagent, replanning after
a cost update is not explicitly shown. However, this is cru-
cial in our planning with an ethical checker because the
costs of unethical actions are dynamically set higher after
the ethical check. Therefore, we added a new replanning
procedure to the algorithm.

Following the cost update of an action (or a task), we
reevaluate the cost of each plan in the frontiers and sort
the plans in ascending order of cost. When the current
plan becomes less attractive in terms of costs after the
g update, the planning agent stops the plan execution,
changes the plan, and continues the best-first search,
which may lead to a better plan.

7



Figure 5: Plan Update after Action Execution

Figure 6: Replan after Action Failure

3.3.5. Replanning after Action Execution

Dynagent is an online planner that updates each plan
after execution of each action. It maintains all the al-
ternative plans so that any plan can be started from the
current state.

As shown in Figure 5, when the execution of an action
succeeds, if the executed action is unifiable with the first
action in a plan, it is removed from the plan. Sometimes
an action execution in a plan invalidates other alternative
plans. Therefore, protected links are checked and invalid
alternative plans are removed after a successful action
execution.

As shown in Figure 6, when the execution of an action
fails, if the executed action is unifiable with the first
action in a plan, the plan is removed from the alternative
plans recorded in the frontiers. In this case, the planning
agent stops the plan execution and restarts the best-first
search using the valid plans in the frontiers until it finds
the plan.

4. Online HTN Planning Agent
Architecture with External
Legal and Ethical Checkers

In Figure 7, we show the overall system architecture of
our online HTN planning agent with external legal and
ethical checkers.

In this study, we focused on the knowledge represen-
tation of beliefs and planning knowledge, which is used

Figure 7: System Architecture

for planning and replanning in the online HTN planner.
In addition, the online planning agent has an event

handler that inputs a task or a belief/cost update request
to the online HTN planner when receiving an event from
an external world observer that obtains new information.
Given a task or a belief/cost update request, the planner
starts planning or replanning.

Note that the user interface that receives a command
from the user can be regarded as a world observer. An
example of the event handler is explained in [18].

The online planning agent also has an action executor
that receives an action execution command from the
online HTN planner and controls the external controller
to execute the action.

To utilize external legal and ethical checkers, we need
a norm check requester that inputs the next action to the
legal and ethical checkers. Because we need to check the
legal and ethical norms before executing an action, the
action executor sends the next action to this norm check
requester.

If the next action is not changed after checking the
legal and ethical norms, the action executor executes the
action as usual. If there is a legal or ethical problem, the
belief update requester or the cost update requester sends
the belief update request or the cost update request to
the online HTN planner, which triggers replanning.

In this study, we only designed and implemented the
knowledge (belief and planning knowledge) and the al-
gorithm of the online planning agent. In the future, we
would consider to connect the planning agent to the legal
and ethical checkers.

5. Problem
In this section, we define the planning problem of legally
and ethically correct data transfer and utilization.

8



Figure 8: Connection of Servers

Nodes (servers) are connected by arcs (network lines).
The data stored in the database at a node can be retrieved
from the same node. Data at a node can be transferred
to an adjacent node that is connected by an arc. An ana-
lyzer at a node can analyze data for a specific purpose
at the same node. Analysis output is also data and can
be transferred to an adjacent node connected by an arc.

There are legal and ethical norms for data trans-
fers. Some data can only be transferred within specific
countries. Some data can only be transferred within a
company. Some data can only be analyzed for specific
purposes. Legal norms must be satisfied. Ethical norms
should be respected if possible.

The objective is to deliver the analysis output of speci-
fied data to a specified node for a specific purpose.

6. Case Study
In this section, we consider a specific network and data
transfer to study the feasibility of our dynamic HTN
planning framework for the planning problem of legally
and ethically correct data transfer and utilization .

Figure 8 shows the whole network to be considered
as a test case. This example is adopted and modified
from the example written in [5]. In the following subsec-
tions, we explain the details of Figure 8 while showing
how to express the domain knowledge, actions, and task
decomposition rules.

6.1. Domain Knowledge
In this subsection, we show how to represent the domain
knowledge that is used as a belief by the planning agent.
This domain knowledge includes node connection, loca-
tion of database, location of analyzers, allowed purposes
for data analysis, region of nodes, allowed regions for
data transfer and analysis, owners of nodes, and allowed
companies for data transfer.

6.1.1. Node Connection

In Figure 8, there are seven nodes that represent servers.
The arcs that connect nodes represent the network lines.
These network connections are represented as follows:

belief(arc(node1,node2)). belief(arc(node1,node4)).
belief(arc(node1,node6)). belief(arc(node2,node3)).
belief(arc(node3,node4)). belief(arc(node3,node5)).
belief(arc(node4,node7)). belief(arc(node5,node7)).
belief(arc(node6,node7)).

To represent that each network connection is bidirec-
tional, we define the “connected” predicate as follows:

belief(connected(Node1,Node2),[arc(Node1,Node2)]).
belief(connected(Node1,Node2),[arc(Node2,Node1)]).

The efficiency of data transfer changes according to
the line and time.

6.1.2. Location of Database and Retrieved Data

There is a database at node2 that contains data about the
habits and behaviors of people, which are represented as
follows:

belief(dbAt(dataHabit,node2)).
belief(dbAt(dataBehavior,node2)).

The location of the retrieved data from the database is
subject to change, which is represented as follows:

belief(dataAt(_,_)).

6.1.3. Location of Analyzers

There are three analyzers of data on the habits and be-
haviors of people. The analyzer at node6 is used for op-
timization. The analyzer at node4 is used for marketing.
Another analyzer at node4 is used for advertising. This
can be represented as follows:

belief(analyzableAt(dataHabit,marketing,node4)).
belief(analyzableAt(dataBehavior,marketing,node4)).
belief(analyzableAt(dataHabit,advertising,node4)).
belief(analyzableAt(dataBehavior,advertising,node4)).
belief(analyzableAt(dataHabit,optimizing,node6)).
belief(analyzableAt(dataBehavior,optimizing,node6)).

6.1.4. Allowed Purposes for Data Analysis

Initially, we assumed that all data were allowed to be
analyzed for any purpose. However, this assumption
is subject to change and may be corrected by the legal
checker. This is represented as follows:

dy(allowedPurpose(_,_)).
belief(allowedPurpose(dataHabit,marketing)).
belief(allowedPurpose(dataHabit,advertising)).
belief(allowedPurpose(dataHabit,optimizing)).
belief(allowedPurpose(dataBehavior,marketing)).
belief(allowedPurpose(dataBehavior,advertising)).
belief(allowedPurpose(dataBehavior,optimizing)).

9



6.1.5. Regions of Nodes

The region (country) of each node can be represented as
follows:

belief(nodeRegion(node1,countryX)).
belief(nodeRegion(node2,countryY)).
belief(nodeRegion(node3,countryY)).
belief(nodeRegion(node4,countryY)).
belief(nodeRegion(node5,countryY)).
belief(nodeRegion(node6,countryX)).
belief(nodeRegion(node7,countryY)).

6.1.6. Allowed Regions for Data Transfer and
Analysis

Initially, we assumed that all data were allowed to be
transferred in any region. However, this assumption
is subject to change and may be corrected by the legal
checker. Note that the analyzed data are also data. This
can be represented for the case of countryX as follows:

dy(allowedRegion(_,_)).
belief(allowedRegion(dataHabit,countryX)).
belief(allowedRegion(dataBehavior,countryX)).
belief(allowedRegion(analysisOutput(

dataHabit,marketing),countryX)).
belief(allowedRegion(analysisOutput(

dataBehavior,marketing),countryX)).
belief(allowedRegion(analysisOutput(

dataHabit,advertising),countryX)).
belief(allowedRegion(analysisOutput(

dataBehavior,advertising),countryX)).
belief(allowedRegion(analysisOutput(

dataHabit,optimizing),countryX)).
belief(allowedRegion(analysisOutput(

dataBehavior,optimizing),countryX).

The case of countryY is expressed in the same way.

6.1.7. Owners of Nodes

The owner (company) of each node can be represented
as follows:

belief(nodeOwnedBy(node1,companyA)).
belief(nodeOwnedBy(node2,companyA)).
belief(nodeOwnedBy(node3,companyA)).
belief(nodeOwnedBy(node4,companyA)).
belief(nodeOwnedBy(node5,companyA)).
belief(nodeOwnedBy(node6,companyB)).
belief(nodeOwnedBy(node7,companyB)).

6.1.8. Allowed Companies for Data Transfer

Initially, we assumed that all data were allowed to be
transferred in any company. However, this assumption
is subject to change and may be corrected by the legal
checker. Note that the analyzed data are also data. This
can be expressed for the case of companyA as follows:

dy(allowedCompany(_,_)).
belief(allowedCompany(dataHabit,companyA)).
belief(allowedCompany(dataBehavior,companyA)).
belief(allowedCompany(analysisOutput(

dataHabit,marketing),companyA)).
belief(allowedCompany(analysisOutput(

dataBehavior,marketing),companyA)).
belief(allowedCompany(analysisOutput(

dataHabit,advertising),companyA)).

belief(allowedCompany(analysisOutput(
dataBehavior,advertising),companyA)).

belief(allowedCompany(analysisOutput(
dataHabit,optimizing),companyA)).

belief(allowedCompany(analysisOutput(
dataBehavior,optimizing),companyA)).

The case of companyB is expressed in the same way.

6.2. Actions
The agent can execute three actions (primitive tasks): one
action is to retrieve the specified data from a database,
another action is to transfer the specified data to the
specified adjacent node, and the other action is to analyze
the specified data for the specified purpose.

6.2.1. Data Retrieval from DB

The action getDataFromDB retrieves the specified data from
the DB at a node and store it at the same node. Subse-
quently, the data can be transferred to another node or
analyzed for a specific purpose.

action(getDataFromDB(Data,Node),[
dbAt(Data,Node)

],[
initiates(dataAt(Data,Node))

]).

The aforementioned rule specifies that the precondi-
tion of the action is that the database of Data is at Node, and
that it initiates dataAt(Data,Node).

6.2.2. Data Transfer to an Adjacent Node

The action transfer transfers the specified data to the spec-
ified adjacent node.

action(transfer(Data,NodeFrom,NodeTo),[
dataAt(Data,NodeFrom),
connected(NodeFrom,NodeTo),
allowedTransfer(Data,NodeTo)

],[
initiates(dataAt(Data,NodeTo)),
terminates(dataAt(Data,NodeFrom))

]).

The aforementioned rule specifies that the pre-
conditions of the action are dataAt(Data,NodeFrom),
connected(NodeFrom,NodeTo), and allowedTransfer(Data,NodeTo).
It also specifies that the effects of the action are to initiate
dataAt(Data,NodeTo) and to terminate dataAt(Data,NodeFrom).

The last precondition is defined as follows:

belief(allowedTransfer(Data,Node),[
nodeRegion(Node,Region),
allowedRegion(Data,Region),
nodeOwnedBy(Node,Company),
allowedCompany(Data,Company)

]).

This indicates that the transfer of Data to Node is allowed
if the node is in an allowed region and is owned by an
allowed company.

10



6.2.3. Data Analysis

The action analyze analyzes the specified data at the spec-
ified node for the specified purpose. The data must be
at the same location as the analyzer and the purpose of
the data analysis must be allowed. The analysis output
is obtained as new data after the data analysis,

and the original data is erased.

action(analyze(Data,Node,Purpose),[
analyzableAt(Data,Purpose,Node),
allowedPurpose(Data,Purpose),
dataAt(Data,Node)

],[
initiates(dataAt(analysisOutput(Data,Purpose),Node)),
terminates(dataAt(Data,Node))

]).

The aforementioned rule specifies that the precondi-
tions of the action are Data analyzable at Node for Purpose,
Data is allowed for Purpose, and Data is at Node. It also
specifies that the effects of the action are to initiate
dataAt(analysisOutput(Data,Purpose),Node), and to terminate
dataAt(Data,Node).

6.3. Task Decomposition
The agent needs two abstract tasks to recursively decom-
pose to primitive tasks (actions) before execution. One
task is for transferring the specified data to the specified
node via multiple nodes. The other task is the top-level
task for delivering the analysis output of the data for the
specific purpose to the specified node.

6.3.1. Multi-Step Transfer

The task multiStepTransfer is a compound task for transfer-
ring data to another node via multiple nodes. This task is
recursively decomposed until the decomposed subtasks
include only the transfer actions.

htn(multiStepTransfer(Data,Node,Node),[
dataAt(Data,Node)

],[]).

htn(multiStepTransfer(Data,NodeFrom,NodeTo),[
dataAt(Data,NodeFrom),
connected(NodeFrom,Node)

],[
transfer(Data,NodeFrom,Node),
multiStepTransfer(Data,Node,NodeTo)

]).

The first rule specifies that no action is required
for the transfer task multiStepTransfer(Data,Node,Node) when
Data is already at the destination (dataAt(Data,Node)).
The second rule specifies that when the data is at
NodeFrom and Node is an adjacent node, the transfer task
multiStepTransfer(Data,NodeFrom,NodeTo) can be executed by
first transferring Data to the adjacent Node, then transfer-
ring Data to the destination NodeTo via multiple steps.

6.3.2. Delivery of Analytics

The task deliverAnalytics is the top-level task for obtaining
the specified data from a DB at a node and delivering the
analysis output for a specific purpose to the recipient at
another node.

htn(deliverAnalytics(Data,NodeFrom,NodeTo,Purpose),[
dbAt(Data,NodeFrom)

],[
getDataFromDB(Data,NodeFrom),
multiStepTransfer(Data,NodeFrom,NodeAnalysis),
analyze(Data,NodeAnalysis,Purpose),
multiStepTransfer(analysisOutput(Data,Purpose),

NodeAnalysis,NodeTo)
]).

This rule specifies that to deliver the analysis result
of Data for Purpose to the destination (NodeTo), the agent ob-
tains Data from the DB at NodeFrom, transfers the data to
NodeAnalysis via multiple steps, analyzes the data for the
purpose, and transfer the analysis output to the destina-
tion via multiple steps.

6.4. Costs of Tasks and Actions
We set a specific value for each task and cost. The cost
information is used for planning. The best-first search
will always find the lowest-cost plan if the cost of each
abstract task is less than or equal to the total cost of its
primitive subtasks (actions), which we obtain by task
decomposition.

6.4.1. Static Cost

We assume that the costs of abstract tasks are static and
set at the minimum value of 1.

cost(deliverAnalysis(_,_,_,_),1).
cost(multiStepTransfer(_,_,_),1).

Furthermore, we assume the costs of the getDataFromDB

action and analyze action are static and the values are set
at 1.

cost(getDataFromDB(_,_),1).
cost(analyze(_,_,_),1).

6.4.2. Dynamic Cost

The data transfer costs are subject to change. We assume
that the agent is aware that the line between node2 and
node3 and the line between node3 and node5 are normally
slow. The data transfer costs become double if these lines
are used. These costs are set at 2.

cost(transfer(_,node2,node3),2).
cost(transfer(_,node3,node5),2).
cost(transfer(_,node3,node2),2).
cost(transfer(_,node5,node3),2).

The data transfer costs of the other lines are set at 1.
This cost information is expressed in the same way.

11



6.5. Specific Task for Case Study
The specific task we consider in this case study is
deliverAnalytics(dataHabit, node2,node5,marketing). As shown
in Figure 9, the objective of this task is to deliver the anal-
ysis output of dataHabit, which is stored in the database at
node2, to node5. The purposed of the analysis is marketing.

Figure 9: Given Task

6.6. Initial Planning
Considering the task, the planner creates the initial plan
as follows:

1. getDataFromDB(dataHabit,node2)
2. transfer(dataHabit,node2,node1)
3. transfer(dataHabit,node1,node4)
4. analyze(dataHabit,node4,marketing)
5. transfer(analysisOutput(dataHabit,marketing),node4,node7)
6. transfer(analysisOutput(dataHabit,marketing),node7,node5)

As shown in Figure 10, according to the aforemen-
tioned plan, dataHabit is retrieved from the database at
node2, transferred from node2 to node4 via node1, and ana-
lyzed for the purpose of marketing at node4. The analyzed
output is transferred from node4 to node5 via node3.

There are two data-transfer routes from node2 to node4.
Similarly, there are two data-transfer routes from node4 to
node5. The planner selects the route with the lowest cost
using the best-first search. Note that the data-transfer
cost from node2 to node3 is set higher because the transfer
speed is slow.

Figure 10: Initial Plan

6.7. Dynamic Replanning after Legal
Check

We assume that dataHabit has been retrieved from the
database at node2. The next action is to transfer the data
to node1. Then, the legal checker indicates that it is illegal
to transfer dataHabit to countryX. Subsequently, the agent
removes the following from its belief:

belief(allowedRegion(dataHabit,countryX)).

Because the precondition of the next action becomes
false, the planner modifies the plan as follows:

1. transfer(dataHabit,node2,node3)
2. transfer(dataHabit,node3,node4)
3. analyze(dataHabit,node4,marketing)
4. transfer(analysisOutput(dataHabit,marketing),node4,node7)
5. transfer(analysisOutput(dataHabit,marketing),node7,node5)

The modified plan is shown in Figure 11. We
can confirm that dataHabit is transferred only within
countryY, rather than via countryX. This indicates that
the legal norm is satisfied. Note that the action
getDataFromDB(dataHabit,node2) is erased from the plan be-
cause it has been executed.

Figure 11: Legally Modified Plan

6.8. Dynamic Replanning after Ethical
Check

We assume that dataHabit has been analyzed at node4 for
the purpose of marketing. The next action is to transfer
the analysis output to node7. We assume that the ethical
checker indicates that it is not ethical to transfer the anal-
ysis output to companyB. Then, the agent takes the position
of utilitarianism and updates the cost of the next action
as follows:

cost(transfer(analysisOutput(dataHabit,marketing),node4,node7),
10).

The cost of the next action is now set at 10. Because
the cost of the next action has become much higher, the
planner dynamically modifies the plan as follows:

12



1. transfer(analysisOutput(dataHabit,marketing),node4,node3)
2. transfer(analysisOutput(dataHabit,marketing),node3,node5)

The modified plan is shown in Figure 12. In the
modified plan, we can confirm that the analysis output
(analysisOutput(dataHabit,marketing)) is transferred within
companyA, rather than via companyB. This indicates that the
ethical norm is respected, although it is not illegal to
transfer it via companyB. Note that the planning agent does
not abandon the plan to transfer the analysis output via
companyB. It is maintained as an alternative plan and will
be used only if there are no other options.

Figure 12: Ethically Modified Plan

6.9. Evaluation on Computation Time
We implemented the planning agent, belief, and planning
knowledge in SWI Prolog for Windows 64-bit, version
8.2.4, which was installed on the Windows 10 Home PC
equipped with Intel(R) Core(TM) i7-1065G7 CPU and
the 32GB of RAM. We measured the CPU times for ini-
tial planning, dynamic replanning after legal check, and
dynamic replanning after ethical check five times each,
and the average CPU times were 0.003, 0.006, and 0.003
seconds, respectively.

Therefore, this planner is adequate for practical use
for the test case scenario in this study. In future, we
would like to evaluate the scalability for different types
and sizes of networks. One way to tackle the scalability
problem is to use stratified multi-agent HTN planning
techniques [31, 32] where the parent agent first tries to
find a rough data transfer route between the regions, and
then its child agent tries to finds a detailed data transfer
route inside the current region.

6.10. Evaluation on Compliance with
Legal and Ethical Norms

In the test case scenario, in initial planning, nei-
ther legal norms nor ethical norms were ignored.
In other words, dataHabit was planned to be trans-
ferred to countryX, which is against the legal norm, and

analysisOutput(dataHabit,marketing) was planned to be trans-
ferred to companyB, which is against the ethical norm.

When the dynamic replanning algorithm was applied
after legal check, dataHabit was planned to be transferred
only within countryY. Therefore, the legal norm was com-
plied with. However, analysisOutput(dataHabit,marketing)

was still planned to be transferred to companyB, which is
against the ethical norm.

When the dynamic replanning algorithm was ap-
plied both after legal check and ethical check, dataHabit
was planned to be transferred only within countryY, and
analysisOutput(dataHabit,marketing) was planned to be trans-
ferred only within companyA. Therefore, not only the legal
norm was complied with but also the ethical norm was
respected.

7. Discussion
From the case study, we can understand that the legal
norm of an action can be expressed as the precondition
of the action. This indicates that the illegal action cannot
be executed because its legal norm (precondition) is not
satisfied.

By contrast, the ethical norm of an action can be ex-
pressed as the cost of the action. The higher the cost
is, the more unethical the action is. Even if an action
is unethical, it is still legal to execute the action. If the
planner can find the lower-cost plan, the agent can avoid
unethical action execution if possible. However, unethi-
cal actions can still be executed if there is no other option.
Even in that case, it is possible to stop the action exe-
cution when its cost is too high, which means that the
action is too unethical.

Ethical norms of action can be expressed as the soft
constraints of the precondition, which should be satisfied
if possible but are not required. However, many planners
do not support soft constraints. Therefore, it is easier to
express ethical norms of action as the costs of the actions.

It is not always possible to collect all the necessary
information at the time of initial planning, especially
when the latest information is distributed across multi-
ple servers. In the case study scenario in this paper, the
planning agent obtains new information regarding the
next action shortly before its execution. Legal and ethical
norms are checked at this time. Therefore, it is important
to dynamically check and update the plan while execut-
ing it. Therefore, an online planning algorithm is used in
this paper.

8. Conclusion
We have shown how to represent knowledge about legal
and ethical norms using an online total-order forward-
chaining HTN planning algorithm in the domain of data

13



transfer and utilization in multiagent systems. The pre-
condition of an action was used for its legal check, how-
ever, the cost of an action was used for its ethical check.
Dynamic adaptation to legal/ethical norms was achieved
by dynamic replanning after legal/ethical check. These
techniques are extremely important when the latest in-
formation, which may affect legal/ethical norms, is dis-
tributed across multiple servers. Experiment results con-
firmed that this planner is adequate for practical use in
terms of computation time in our case study.

Furthermore, we have designed a system architecture
that combines the online planning agent with external
legal and ethical checkers. External legal and ethical
checkers will be useful when the laws and ethical guide-
lines are complicated. In the future, we would consider
implementing the overall system. In addition, we would
consider designing an explainable dynamic planner that
can explain the reason for plan modification to the users
in terms of legal and ethical norms.

Acknowledgments
This work was supported by JST, AIP Trilateral AI Re-
search, Grant No. JPMJCR20G4 and JSPS KAKENHI,
Grant No. JP19H05470 and JP21K12144.

References
[1] Agarwal, S. Steyskal, F. Antunovic, S. Kirrane, Leg-

islative compliance assessment: Framework, model
and GDPR instantiation, in: Annual Privacy Forum,
2018, pp. 131–149.

[2] M. Palmirani, M. Martoni, A. Rossi, C. Bartolini,
L. Robaldo, Legal ontology for modelling GDPR
concepts and norms, Legal Knowledge and Infor-
mation Systems (2018) 91–100.

[3] M. D. Vos, S. Kirrane, J. Padget, K. Satoh, ODRL pol-
icy modelling and compliance checking, in: Inter-
national Joint Conference on Rules and Reasoning,
2019, pp. 36–51.

[4] P. A. Bonatti, S. Kirrane, I. M. Petrova, L. Sauro,
Machine understandable policies and GDPR com-
pliance checking, KI - Künstliche Intelligenz 34
(2020) 303–315.

[5] Y. Taheri, G. Bourgne, J.-G. Ganascia, A compli-
ance mechanism for planning in privacy domain
using policies, in: International Workshop on Juris-
informatics, JSAI International Symposia on AI,
2021.

[6] K. Satoh, J.-G. Ganascia, G. Bourgne, A. Paschke,
Overview of RECOMP project, in: Interna-
tional Workshop on Computational Machine
Ethics, International Conference on Principles
of Knowledge Representation and Reasoning,

2021. https://www.cse.unsw.edu.au/~cme2021/
CME2021_paper_Satoh.pdf (Accessed on 07 Feb.
2022).

[7] H. Hayashi, S. Tokura, T. Hasegawa, F. Ozaki, Dyna-
gent: An incremental forward-chaining HTN plan-
ning agent in dynamic domains, in: Declarative
Agent Languages and Technologies III, number 3904
in LNAI, Springer, 2006, pp. 171–187.

[8] D. Nau, Y. Cao, A. Lotem, H. Mũnoz-Avila, SHOP:
simple hierarchical ordered planner, in: Interna-
tional Joint Conference on Artificial Intelligence,
1999, pp. 968–975.

[9] G. Behnke, D. Höller, S. Biundo, totSAT — totally-
ordered hierarchical planning through SAT, in:
International Conference on Autonomous Agents
and Multiagent Systems, 2018, pp. 6110–6118.

[10] M. C. Magnaguagno, F. Meneguzzi, L. Silva, Hyper-
TensioN: A three-stage compiler for planning, in:
10th International Planning Competition: Planner
and Domain Abstracts – Hierarchical Task Network
Planning Track, 2021, pp. 5–8.

[11] D. Schreiber, Lilotane: A lifted sat-based approach
to hierarchical planning, Journal of Artificial Intel-
ligence Research 70 (2021) 1117–1181.

[12] E. Sacerdoti, A Structure for Plans and Behavior,
Elsevier, 1977.

[13] A. Tate, Generating project networks, in: Interna-
tional Joint Conference on Artificial Intelligence,
1977, pp. 888–893.

[14] D. Wilkins, Practical Planning, Morgan Kaufmann,
1988.

[15] K. Currie, A. Tate, O-plan: The open planning
architecture, Artificial Intelligence 52 (1991) 49–86.

[16] D. Höller, G. Behnke, P. Bercher, S. Biundo, H. Fior-
ino, D. Pellier, R. Alford, HDDL: An extension to
PDDL for expressing hierarchical planning prob-
lems, in: AAAI Conference on Artificial Intelli-
gence, 2020, pp. 9883–9891.

[17] D. Nau, H. Mũnoz-Avila, Y. Cao, A. Lotem,
S. Mitchell, Total-order planning with partially or-
dered subtasks, in: International Joint Conference
on Artificial Intelligence, 2001, p. 425–430.

[18] H. Hayashi, S. Tokura, F. Ozaki, M. Doi, Background
sensing control for planning agents working in the
real world, International Journal of Intelligent In-
formation and Database Systems 3 (2009) 483–501.

[19] H. Hayashi, H. Ogawa, N. Matsuhira, HTN plan-
ning for pick-and-place manipulation, in: Interna-
tional Conference on Agents and Artificial Intelli-
gence, 2013, pp. 383–388.

[20] H. Hayashi, H. Ogawa, N. Matsuhira, Comparing
repair-task-allocation strategies in MAS, in: In-
ternational Conference on Agents and Artificial
Intelligence, 2015, pp. 17–27.

[21] S. Patra, M. Ghallab, D. Nau, P. Traverso, Acting and

14

https://www.cse.unsw.edu.au/~cme2021/CME2021_paper_Satoh.pdf
https://www.cse.unsw.edu.au/~cme2021/CME2021_paper_Satoh.pdf


planning using operational models, in: AAAI Con-
ference on Artificial Intelligence, 2019, pp. 7691–
7698.

[22] S. Patra, J. Mason, A. Kumar, M. Ghallab,
P. Traverso, D. Nau, Integrating acting, planning,
and learning in hierarchical operational models, in:
International Conference on Automated Planning
and Scheduling, 2020, pp. 478–487.

[23] M. Shanahan, Prediction is deduction but explana-
tion is abduction, in: International Joint Conference
on Artificial Intelligence, 1989, pp. 1055–1060.

[24] R. Kowalski, M. Sergot, A logic-based calculus of
events, New Generation Computing 4 (1985) 67–95.

[25] V. Lifschitz, Answer Set Programming, Springer,
2019.

[26] R. Miller, Notes on deductive and abductive plan-
ning in the event calculus, in: AISB Workshop on
Practical Reasoning and Rationality, 1997.

[27] M. Shanahan, An abductive event calculus planner,
The Journal of Logic Programming 44 (2000) 207–
239.

[28] F. Berreby, G. Bourgne, J.-G. Ganascia, A declarative
modular framework for representing and applying
ethical principles, in: International Conference on
Autonomous Agents and Multiagent Systems, 2017,
p. 96–104.

[29] F. Berreby, G. Bourgne, J.-G. Ganascia, Event-
based and scenario-based causality for computa-
tional ethics, in: International Conference on Au-
tonomous Agents and Multiagent Systems, 2018,
pp. 147–155.

[30] F. Lindner, R. Mattmüller, B. Nebel, Evaluation of
the moral permissibility of action plans, Artificial
Intelligence 287 (2020) 1–14.

[31] H. Hayashi, Stratified multi-agent htn planning
in dynamic environments, in: KES International
Symposium on Agent and Multi-Agent Systems:
Technologies and Applications, 2007, pp. 189–198.

[32] H. Hayashi, Towards real-world htn planning
agents, in: Knowledge Processing and Decision
Making in Agent-Based Systems, 2009, pp. 13–41.

15


	1 Introduction
	2 Related Work
	3 Online HTN Planning
	3.1 Syntax
	3.2 Semantics
	3.3 Sketch of the Algorithm
	3.3.1 Initial Planning
	3.3.2 Replanning after Belief Deletion
	3.3.3 Replanning after Belief Addition
	3.3.4 Replanning after Cost Update
	3.3.5 Replanning after Action Execution


	4 Online HTN Planning Agent Architecture with External Legal and Ethical Checkers
	5 Problem
	6 Case Study
	6.1 Domain Knowledge
	6.1.1 Node Connection
	6.1.2 Location of Database and Retrieved Data
	6.1.3 Location of Analyzers
	6.1.4 Allowed Purposes for Data Analysis
	6.1.5 Regions of Nodes
	6.1.6 Allowed Regions for Data Transfer and Analysis
	6.1.7 Owners of Nodes
	6.1.8 Allowed Companies for Data Transfer

	6.2 Actions
	6.2.1 Data Retrieval from DB
	6.2.2 Data Transfer to an Adjacent Node
	6.2.3 Data Analysis

	6.3 Task Decomposition
	6.3.1 Multi-Step Transfer
	6.3.2 Delivery of Analytics

	6.4 Costs of Tasks and Actions
	6.4.1 Static Cost
	6.4.2 Dynamic Cost

	6.5 Specific Task for Case Study
	6.6 Initial Planning
	6.7 Dynamic Replanning after Legal Check
	6.8 Dynamic Replanning after Ethical Check
	6.9 Evaluation on Computation Time
	6.10 Evaluation on Compliance with Legal and Ethical Norms

	7 Discussion
	8 Conclusion

