
A situation-calculus model of knowledge and belief based
on thinking about justifications

Richard B. Scherl1

1Monmouth University, West Long Branch, NJ, 07764, USA

Abstract
This paper proposes an integration of the situation calculus with justification logic. Justification logic can be seen as a refinement
of a modal logic of knowledge and belief to one in which knowledge (and belief) not only is something that holds in all possible
worlds, but also is justified. The work is an extension of that of Scherl and Levesque’s integration of the situation calculus
with a modal logic of knowledge. We show that the solution developed here retains all of the desirable properties of the earlier
solution while incorporating the enhanced expressibility of having justifications. Additionally, the approach incorporates a
notion of thinking. This addresses the logical omniscience problem as the knowledge of the agent depends on the number of
inference steps it has performed.

Keywords
Situation Calculus, Knowledge, Justification Logic

1. Introduction
The situation calculus is at the core of one major approach
to cognitive robotics as it enables the representation and
reasoning about the relationship between knowledge, per-
ception, and action of an agent [1, 2]. Axioms are used to
specify the prerequisites of actions as well as their effects,
that is, the fluents that they change [3]. By using succes-
sor state axioms [4], one can avoid the need to provide
frame axioms [5] to specify what particular actions do not
change. This approach to dealing with the frame problem
and the resulting style of axiomatization has proven useful
as the foundation for the high-level robot programming
language GoLog [6, 7].

Knowledge and knowledge-producing actions have
been incorporated into the situation calculus [8, 9] by
treating knowledge as a fluent that can be affected by
actions. Situations from the situation calculus are iden-
tified with possible worlds from the semantics of modal
logics of knowledge. It has been shown that knowledge-
producing actions can be handled in a way that avoids
the frame problem: knowledge-producing actions do not
affect fluents other than the knowledge fluent, and that
actions that are not knowledge-producing only affect the
knowledge fluent as appropriate.

Within epistemology, the traditional analysis of knowl-
edge (dating back to Plato) is tripartite [10]. An agent, S
knows that p iff (1) p is true; (2) S believes that p; (3) S is
justified in believing that p. There has been much philo-
sophical discussion of counterexamples to the sufficiency
of this tripartite analysis [11, 12, 13, 14, 15, 16].

NMR 2022: 20th International Workshop on Non-Monotonic Reason-
ing, August 7–9, 2022, Haifa, Israel
$ rscherl@monmouth.edu (R. B. Scherl)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

The possible-world analysis of knowledge only handles
the first two elements of the tripartite analysis; p is known
if it is believed (i.e., true in all accessible worlds) and if it
is true in the actual world. The component of justification
has recently been added with the development of justi-
fication logic [17, 18, 19, 20, 21]. In justification logic,
there is in addition to formulas, a category of terms called
justifications. If t is a justification term and X is a formula,
then t:X is a formula which is read as “t is a justification
for X.” If the formula X is also true and believed to be true,
one can then write [𝑡]:𝑋 for X is known with justification
t.

One of the examples used in the philosophical literature
mentioned above is the Red Barn Example [11, 19, 22,
14, 16]. Henry is driving through the countryside and
perceptually identifies an object as a barn. Normally,
one would then say that Henry knows that it is a barn.
But Henry does not know there are expertly made papier-
mâché barns. Then we would not want to say that Henry
knows it is a barn unless he has some evidence against it
being a papier-mâché barn. But what if in the area where
Henry is traveling, there are no papier-mâché red barns.
Then if Henry perceives a red barn, he can then be said to
know there is a red barn and therefore a barn.

The apparent problem here is only a problem within
a modal logic of knowledge. There are two ways of the
agent “knowing” that a barn is red. One way is accidental.
Henry may have a barn perception, and then believe that
the object is a barn, but this is only accidentally true
and therefore we don’t want to say that Henry knows the
object is a barn. If Henry perceives that the object is a red
barn, he is then justified in knowing that the object is a
red barn and can then infer correctly that the object is a
barn. Modal logic does not distinguish between these two
ways of knowing/believing.

104

mailto:rscherl@monmouth.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Within justification logic [17, 19, 20] there is no contra-
diction because the justifications differ. The modality of
knowledge is an existential assertion that there is a justifi-
cation of a proposition. In one case, there is a justification
for the object being a barn via a barn perception and in
the other case a justification for it being a barn via the
red barn perception and propositional reasoning. Later in
this paper, the example will be worked out in the situation
calculus with justified knowledge.

Goldman [15] has argued that the tripartite analysis of
knowledge needs to be augmented with the requirement
that there is a causal chain from the truth of the proposition
known to the knowledge of the proposition. Only in the
case of knowledge via the red barn perception is this
condition met. The justification of knowing that the object
is a barn via the red barn perception can be seen as meeting
this further condition, while the justification via the barn
perception does not meet this condition [17, 19].

The author is not aware of any previous work on in-
tegrating the situation calculus with a notion of justified
knowledge other than an earlier version of this work [23]
which did not include thinking about justifications. There
has been some work on integrating justifications into dy-
namic epistemic logic [24, 25, 26].

2. The Situation Calculus and the
Frame Problem

The situation calculus (following the presentation in [4]) is
a first-order language for representing dynamically chang-
ing worlds in which all of the changes are the result of
named actions performed by some agent. Terms are used
to represent states of the world, i.e., situations. If 𝛼 is
an action and 𝑠 a situation, the result of performing 𝛼
in 𝑠 is represented by DO(𝛼, 𝑠). The constant S0 is used
to denote the initial situation. Relations whose truth val-
ues vary from situation to situation, called fluents, are
denoted by a predicate symbol taking a situation term as
the last argument. For example, BROKEN (𝑥, 𝑠) means
that object 𝑥 is broken in situation 𝑠. Functions whose
denotations vary from situation to situation are called
functional fluents. They are denoted by a function sym-
bol with an extra argument taking a situation term, as in
PHONE-NUMBER(BILL,𝑠).

It is assumed that the axiomatizer has provided for each
action 𝛼(�⃗�), an action precondition axiom of the form1

given in (1), where 𝜋𝛼(�⃗�, 𝑠) is the formula for 𝛼(�⃗�)’s
action preconditions.
Action Precondition Axiom

POSS(𝛼(�⃗�), 𝑠) ≡ 𝜋𝛼(�⃗�, 𝑠) (1)
1By convention, variables are indicated by lower-case letters in italic
font. When quantifiers are not indicated, the variables are implicitly
universally quantified.

An action precondition axiom for the action drop is given
below.

POSS(DROP(𝑥), 𝑠) ≡ HOLDING(𝑥, 𝑠) (2)

Furthermore, the axiomatizer has provided for each
fluent 𝐹 , two general effect axioms of the form given in 3
and 4.
General Positive Effect Axiom for Fluent F

𝛾+

F (𝑎, 𝑠) → F(DO(𝑎, 𝑠)) (3)

General Negative Effect Axiom for Fluent F

𝛾−
F (𝑎, 𝑠) → ¬F(DO(𝑎, 𝑠)) (4)

Here 𝛾+

F (𝑎, 𝑠) is a formula describing under what con-
ditions doing the action 𝑎 in situation 𝑠 leads the fluent
F to become true in the successor situation DO(𝑎, 𝑠) and
similarly 𝛾−

F (𝑎, 𝑠) is a formula describing the conditions
under which performing action 𝑎 in situation 𝑠 results in
the fluent F becoming false in situation DO(𝑎, 𝑠).

For example, (5) is a positive effect axiom for the fluent
BROKEN.

[(𝑎 = DROP(𝑦) ∧ FRAGILE(𝑦))
∨

(∃𝑏 𝑎 = EXPLODE(𝑏) ∧ NEXTO(𝑏, 𝑦, 𝑠))]
→ BROKEN(𝑦, DO(𝑎, 𝑠))

(5)

Sentence 6 is a negative effect axiom for BROKEN.

𝑎 = REPAIR(𝑦) → ¬BROKEN(𝑦, DO(𝑎, 𝑠)) (6)

It is also necessary to add frame axioms that specify
when fluents remain unchanged. The frame problem arises
because the number of these frame axioms in the general
case is 2 × 𝒜 × ℱ , where 𝒜 is the number of actions
and ℱ is the number of fluents.

The approach to handling the frame problem [4, 27, 28]
rests on a completeness assumption. This assumption is
that axioms (3) and (4) characterize all the conditions
under which action 𝑎 can lead to a fluent F’s becoming
true (respectively, false) in the successor situation. There-
fore, if action 𝑎 is possible and F’s truth value changes
from false to true as a result of doing 𝑎, then 𝛾+

F (𝑎, 𝑠)
must be true and similarly for a change from true to false
(𝛾−

F (𝑎, 𝑠) must be true). Additionally, unique name ax-
ioms are added for actions and situations.

Reiter[4] shows how to derive a set of successor state
axioms of the form given in 7 from the axioms (positive
effect, negative effect and unique name) and the complete-
ness assumption.
Successor State Axiom

F(DO(𝑎, 𝑠)) ≡ 𝛾+

F (𝑎, 𝑠) ∨ (F(𝑠) ∧ ¬𝛾−
F (𝑎, 𝑠))

(7)

105

Similar successor state axioms may be written for func-
tional fluents. A successor state axiom is needed for each
fluent F, and an action precondition axiom is needed for
each action 𝑎. The unique name axioms need not be
explicitly represented as their effects can be compiled.
Therefore only ℱ +𝒜 axioms are needed.

From (5) and (6), the following successor state axiom
for BROKEN is obtained.

BROKEN(𝑦, DO(𝑎, 𝑠)) ≡
(𝑎 = DROP(𝑦) ∧ FRAGILE(𝑦))∨

(∃𝑏 𝑎 = EXPLODE(𝑏) ∧ NEXTO(𝑏, 𝑦, 𝑠))∨
(BROKEN(𝑦, 𝑠) ∧ 𝑎 ̸= REPAIR(𝑦))

(8)

Now note for example that if ¬BROKEN(OBJ1, S0) holds,
then it also follows (given the unique name axioms) that
¬BROKEN(OBJ1, DO(DROP(OBJ2), S0)) holds as well.

3. Justification Logic
Justification logic adds to the machinery of proposi-
tional logic (or quantifier free first-order logic) justifi-
cation terms that are built with justification variables
𝑥, 𝑦, 𝑧, . . . and justification constants 𝑎, 𝑏, 𝑐, . . . (using
indices 𝑖 = 1, 2, 3, . . . whenever needed) using the opera-
tions ‘·’ and ‘+.’

The logic of justifications includes (in addition to the
classical propositional axioms and the rule of Modus Po-
nens), the following axioms

Application Axiom 𝑠 : (𝐹 → 𝐺) → (𝑡 :𝐹 → [𝑠 · 𝑡] :
𝐺),

Sum Axioms 𝑠 :𝐹 → [𝑠+ 𝑡] :𝐹 , 𝑠 :𝐹 → [𝑡+ 𝑠] :𝐹

As needed, the following axioms are added.

Factivity 𝑡 :𝐹 → 𝐹

Positive Introspection 𝑡 :𝐹 →!𝑡 : (𝑡 :𝐹)

Negative Introspection ¬𝑡 :𝐹 →?𝑡 : (¬𝑡 :𝐹)

Factivity is used in all logics of knowledge. The Positive
Introspection operator ‘!’ is a proof checker, that given 𝑡
produces a justification !𝑡 of 𝑡 :𝐹 . The negative introspec-
tion operator ‘?’ verifies that a justification assertion is
false [17, 19, 29].

The standard semantics for justification logics [30] are
called Fitting models or possible world justification mod-
els. This is a combination of the usual Kripke/Hintikka
possible world models with the necessary features to han-
dle justifications [31]. A model for justification logic is
a structure ℳ = ⟨𝒢,ℛ, ℰ ,𝒱⟩. Here, ⟨𝒢,ℛ⟩ is a stan-
dard frame for modal logic with 𝒢 being a set of possible
worlds and ℛ being a relation on the elements of 𝒢. The
element 𝒱 is a mapping from ground propositions to 𝒢

specifying which propositions are true in which worlds.
In the work here, we assume that a particular element of
𝒢 is specified as the actual world.

There is the evidence function ℰ that maps justification
terms and formulas to sets of worlds. The idea is that if
a possible world Γ ∈ ℰ(𝑡,𝑋) then 𝑡 is relevant evidence
for 𝑋 at world Γ.

Given a Fitting model ℳ = ⟨𝒢,ℛ, ℰ ,𝒱⟩, the truth of
a formula 𝑋 at a possible world Γ, i.e., ℳ,Γ |= 𝑋 is
given as follows:

1. ℳ,Γ |= 𝑃 iff Γ ∈ 𝑉 (𝑃) for 𝑃 a propositional
letter;

2. It is not the case that ℳ,Γ |=⊥;

3. ℳ,Γ |= 𝑋 → 𝑌 iff it is not the case that
ℳ,Γ |= 𝑋 or ℳ,Γ |= 𝑌 ;

4. ℳ,Γ |= (𝑡:𝑋) iff Γ ∈ ℰ(𝑡,𝑋) and for every
∆ ∈ 𝒢, with Γℛ∆, ℳ,∆ |= 𝑋 .

The last condition is the crucial one. It requires that for
something to be known, it both needs to be believed in the
sense that it is true in every accessible world and that 𝑡 is
relevant evidence for 𝑥 at that world. So, 𝑡:𝑋 holds iff 𝑋
is believable and 𝑡 is relevant evidence for 𝑋 .

The following conditions need to be placed on the Evi-
dence function:

• ℰ(𝑠,𝑋 → 𝑌) ∩ ℰ(𝑡,𝑋) ⊆ ℰ(𝑠 · 𝑡, 𝑌)

• ℰ(𝑠,𝑋) ∪ ℰ(𝑡,𝑋) ⊆ ℰ(𝑠+ 𝑡,𝑋)

These ensure that the application and sum axioms hold.
Additionally, the issue of a constant specification needs

to be mentioned. All axioms of propositional logic that
are used need to have justifications. Degrees of logical
awareness can be distinguished through the constant spec-
ification. The constant specification (CS) is a set of jus-
tified formulas (axioms of propositional logic). A model
ℳ meets the constant specification 𝐶𝑆 as long as the
following condition is met:

if 𝑐 :𝑋 ∈ 𝐶𝑆 then ℰ(𝑐,𝑋) = 𝒢

This ensures that the axiom is justified in all possible
worlds.

Within justification logic, the derivation of a justified
formula such as 𝑠 :𝐹 is the derivation of 𝐹 being known.
The justifications distinguish different ways of knowing.
Additionally, they represent how difficult it is to know
something and therefore a mechanism for addressing the
logical omniscience problem [32]. The size of a justifi-
cation term corresponds to the amount of effort needed
to derive the term. Only with unlimited computational
effort (“thinking”) are our agents logically omniscient.
The omniscience also depends on a complete constant
specification. If the agent has a limited knowledge of
propositional axioms then it’s reasoning powers are also
limited.

106

4. Representing Justified
Knowledge in the Situation
Calculus

The approach we take to formalizing knowledge2 is to
adapt the semantics of justification logic described in
the previous section to the situation calculus. Following
[33, 9], we think of there being a binary accessibility
relation over situations, where a situation 𝑠′ is understood
as being accessible from a situation 𝑠 if as far as the agent
knows in situation 𝑠, he might be in situation 𝑠′.

To handle the accessibility relation between situations
(possible worlds), we introduce a binary relation K(𝑠′, 𝑠),
(representing ℛ) read as “𝑠′ is accessible from s” and
treat it the same way we would any other fluent. In other
words, from the point of view of the situation calculus,
the last argument to K is the official situation argument
(expressing what is known in situation 𝑠), and the first
argument is just an auxiliary like the 𝑦 in BROKEN(𝑦, 𝑠).3

A fluent is introduced to represent the function ℰ . This
is the relation E(𝑡,𝑋, 𝑠), where 𝑡 is an evidence term,
𝑋 is a formula and 𝑠 is a situation. There is no need to
represent the evidence function as a function from justi-
fications and formulas to a set of situations. Since each
fluent already contains a situation argument, a relational
fluent naturally represents the justifications for formulas
at that situation.

We can now introduce the notation Knows(𝑡, P, 𝑠) (𝑡
is justification for knowing P in situation 𝑠) as an abbrevi-
ation for a formula that uses K and E. For example:

Knows(𝑡, BROKEN(𝑦), 𝑠)
def
= E(𝑡, BROKEN(𝑦), 𝑠)∧

∀𝑠′ K(𝑠′, 𝑠) → BROKEN(𝑦, 𝑠′).

Note that this notation supplies the appropriate situation
argument to the fluent on expansion. It is implicitly requir-
ing the existence of a justification term for the expression
that is a candidate for knowledge.

Turning now to knowledge-producing actions imagine
a SENSEP action for a fluent P, such that after doing a
SENSEP, the truth value of P is known. We introduce the
notation Kwhether(P, 𝑠) as an abbreviation for a formula
indicating that the truth value of a fluent P is known.

Kwhether(𝑡, P, 𝑠) def
=

Knows(𝑡, P, 𝑠) ∨ Knows(𝑡,¬P, 𝑠)

It will follow from our specification in the next section
that
∃𝑡 Kwhether(𝑡, P, DO(SENSEP, 𝑠)) holds.

2The situation calculus is a first-order formalism. But the knowledge
that we are modeling is a knowledge of propositional or quantifier-
free first-order formulas.

3Note that using this convention means that the arguments to K are
reversed from their normal modal logic use.

For clarity, a number of sorts4 are gradually introduced.
The sort SIT is used to distinguish between situations
and other objects. It is assumed that we have axioms
asserting that the initial situation S0 is of type SIT and
that everything of the form DO(𝑎, 𝑠) is of type SIT. The
letter 𝑠, possibly with subscripts, is used to as indication
that the variable is of type SIT, without explicit use of the
sort predicate.

5. Integrating Justified
Knowledge and Action

The approach being developed here rests on the specifica-
tion of a successor state axiom for the K relation and the
E relation This successor state axiom for the K relation
will ensure that for all situations DO(𝑎, 𝑠), the K relation
will be completely determined by the K relation at 𝑠 and
the action 𝑎. This successor state axiom for the E relation
will ensure that for all situations DO(𝑎, 𝑠), the E relation
on justification terms will be completely determined by
the E relation at 𝑠 and the action 𝑎.

Here only knowledge of propositional (or quantifier free
ground) formulae is handled. The extension to knowledge
of first-order logic with variables and quantifiers is a topic
for future work.

The successor state axioms for both K and E will be
developed in several steps through an illustration of pos-
sible models for an axiomatization. First, we illustrate
the initial picture, without any actions. Then, we add a
successor state axiom for K that works with ordinary non-
knowledge-producing actions. Finally, we add knowledge-
producing actions.

5.1. The Initial Picture: Without Actions
For illustration, consider a model for an axiomatization
of the initial situation (without any actions) We can
imagine that the term S0 denotes the situation S1 (an
object in a model). Three situations (S1, S2 and S3)
are accessible via the K relation from S1. Proposition
¬BROKEN is true in all of these situations5, while
proposition Q is true in S1 and S3, but is false in S2. We
also, have in S0 that 𝑡1 is evidence for ¬BROKEN(OBJ1).
Hence, E(𝑡1,¬BROKEN(OBJ1), S0) holds. There-
fore6 the agent in S0 knows ¬BROKEN(obj1),
but does not know Q. In other words, we have

4Here sorts or types are simply one place predicates. But commonly
∀𝑠:SIT 𝜙 is used an abbreviation for ∀𝑠 SIT(𝑠) → 𝜙

5For expository purposes we speak informally of a proposition being
true in a situation rather than saying that the situation is in the
relation denoted by the predicate symbol P.

6Note that the the justification is needed for the agent to know a
proposition. In [9], anything true in all accessible worlds is known.

107

a model of Knows(𝑡1,¬BROKEN(obj1), S0) and
∀𝑡¬Knows(𝑡, Q, S0).

5.1.1. Setting up the Initial Picture

Restrictions need to be placed on the K relation so that it
correctly models the accessibility relation of a particular
justification logic. The problem is to do this in a way
that does not interfere with the successor state axioms
for K, which must completely specify the K relation for
non-initial situations. The solution is to axiomatize the
restrictions for the initial situation and then verify that the
restrictions are then obeyed at all situations.

The sort INIT is used to restrict variables to range only
over S0 and those situations accessible from S0. It is
necessary to stipulate that:

INIT(S0)
∀𝑠, 𝑠1INIT(𝑠1) → (K(𝑠, 𝑠1) → INIT(𝑠))

∀𝑠, 𝑠1¬INIT(𝑠1) → (K(𝑠, 𝑠1) → ¬INIT(𝑠))
INIT(𝑠) → ¬∃𝑠′(𝑠 = DO(𝑎, 𝑠′))

We want to require that the situation S0 is a member
of the sort INIT, everything K-accessible from an INIT
situation is also INIT, and that everything K-accessible
from a situation that is not INIT is also not INIT. Also it is
necessary to require that none of the situations that result
from the occurrence of an action are INIT. We also need
to specify that everything of type INIT is also of type SIT.

Given the decision that we are to use a particular modal
logic of knowledge, it is necessary to axiomatize the corre-
sponding restrictions that need to be placed on the K rela-
tion. These are listed below and are merely first-order rep-
resentations of the conditions on the accessibility relations
for the standard modal logics of knowledge discussed in
the literature [34, 35, 36, 37]. All of these modal logics
have corresponding justification logics [17, 19, 20, 21].
The reflexive restriction is always added as we want a
modal logic of knowledge. Some subset of the other re-
strictions are then added to semantically define a particular
modal logic7.

Reflexive ∀𝑠1:INIT K(𝑠1, 𝑠1)

Euclidean ∀𝑠1:INIT, 𝑠2:INIT, 𝑠3:INIT
K(𝑠2, 𝑠1) ∧K(𝑠3, 𝑠1) → K(𝑠3, 𝑠2)

Symmetric ∀𝑠1:INIT, 𝑠2:INIT K(𝑠2, 𝑠1) → K(𝑠1, 𝑠2)

Transitive ∀𝑠1:INIT, 𝑠2:INIT, 𝑠3:INIT
K(𝑠2, 𝑠1) ∧ K(𝑠3, 𝑠2) → K(𝑠3, 𝑠1)

For clarity a sort JUST is used to specify which objects
are justifications. The letter t, possibly with subscripts, is
7As in [9] it can be shown that these properties persist through all
successor situations.

used to indicate that the variable ranges over justifications,
at times without explicit indication of the sort. Both of
these will be explained shortly. We also need a sort FORM
to range over formulas of propositional logic. Variables
𝑋 and 𝑌 are used to range over formulas without explicit
use of the sort predicate.

Additionally, for every 𝑡 :𝑋 ∈ 𝐶𝑆, we need to have:

∀𝑠:INIT E(𝑡,𝑋, 𝑠) (9)

This specifies that the constant specification holds in the
set of initial situations.

5.2. Adding Ordinary Actions
Now the language includes more terms describing situ-
ations. In addition to S0, there is the DO function along
with the presence of actions in the language. More sit-
uations are added to the model described earlier. The
function denoted by DO maps the initial set of situations
to these other situations. (These in turn are mapped to
yet other situations, and so on). These situations intu-
itively represent the occurrence of actions. The situations
S1, S2, and S3 are mapped by DO and the action terms
MOVE, PICKUP, or DROP to various other situations. The
question is what is the K relation between these situations.
Our axiomatization of the K relation places constraints
on the K relation in the models. We first cover the sim-
pler case of non-knowledge-producing actions and then
discuss knowledge-producing actions.

For non-knowledge-producing actions (e.g. DROP(𝑥)),
the specification is as follows:

K(𝑠′′, DO(DROP(𝑥), 𝑠)) ≡
∃𝑠′ (POSS(DROP(𝑥), 𝑠′) ∧ K(𝑠′, 𝑠)∧
𝑠′′ = DO(DROP(𝑥), 𝑠′))

(10)

The idea here is that as far as the agent at world 𝑠 knows,
he could be in any of the worlds 𝑠′ such that K(𝑠′, 𝑠).
At DO(DROP(𝑥), 𝑠) as far as the agent knows, he can be
in any of the worlds DO(DROP(𝑥), 𝑠′) for any 𝑠′ such
that both K(𝑠′, 𝑠) and POSS(DROP(𝑥), 𝑠′) hold. So the
only change in knowledge (given only 10) that occurs in
moving from 𝑠 to DO(DROP(𝑥), 𝑠) is the knowledge that
the action DROP has been performed.

To continue our example of the initial arrangement
of situations and the fluents ¬ BROKEN(OBJ1) and Q,
we imagine that an action named DROP(OBJ1) makes
BROKEN(OBJ1) true, but does not change the truth value
of Q.

We now utilize a simpler version of the previously given
positive effect and negative effect axioms for BROKEN.
Now 11 is a positive effect axiom for the fluent BROKEN.

[(𝑎 = DROP(𝑦) → BROKEN(𝑦, DO(𝑎, 𝑠)) (11)

108

Sentence 12 is a negative effect axiom for BROKEN.

𝑎 = REPAIR(𝑦) → ¬BROKEN(𝑦, DO(𝑎, 𝑠)) (12)

Now the simplified successor state axiom is:

BROKEN(𝑦, DO(𝑎, 𝑠)) ≡
(𝑎 = DROP(𝑦)∨

(BROKEN(𝑦, 𝑠) ∧ 𝑎 ̸= REPAIR(𝑦))
(13)

For Q, we have

Q(DO(𝑎, 𝑠)) ≡ Q(𝑠) (14)

We now have additional situations resulting from
the DO function applied to DROP(OBJ1) and the
successor state axiom for K fully specifies the
K relation between these situations. Here we
have the situation do(drop(obj1,S0), denoted by
DO(DROP(OBJ1, S0), which represents the result of per-
forming a drop action in the situation denoted by S0.
Our axiomatization requires that this situation be K
related only to the situations do(drop(obj1),S1),
do(drop(obj1),S2) and do(drop(obj1),S3).

The DROP(OBJ1) action does not affect the truth of
Q, but makes BROKEN(OBJ1) true. So, we see that
proposition BROKEN is true in each of do(drop,S1),
do(drop,S2) and do(drop,S3), while proposition
Q is true in do(drop,S1) and do(drop,S3), but is
false in do(drop,S2). Therefore in do(drop,S1)
the fluent BROKEN(OBJ1) holds in all K accessible situa-
tions, but this is not the case for the fluent Q.

Corresponding to all the successor-state axioms of the
form given in (7), there must be a single successor-state
axiom for E that specifies all the possible ways a formula
is justified in a situation resulting from an action in terms
of the action that occurred as well as the justifications for
formulae in the prior situation. Most justifications will
be passed onto the resulting situation resulting from the
action occurring. Some will not when they are replaced
by new justifications. The successor-state axiom for E
is given in equation 15. Here MKJUST is a gensym like
function that creates a justification out of the action that
has occurred. The intuition is that the occurrence of the
action is the justification for the knowledge of the changes
that are caused by the action.

In general, we assume that there are 𝑚 fluents (P1

through P𝑚), each of which has a positive and negative
effect axiom and a compiled successor-state axiom. The
successor-state axiom for E needs to allow justifications
that are present at 𝑠 available at DO(𝑎, 𝑠), unless it is the
case that the action 𝑎 alters the truth value of a fluent in
which case there is a new justification that overrides any

justification involving the fluent that was there before.

∀𝑡:JUST E(𝑗,𝑋, DO(𝑎, 𝑠)) ≡
[E(𝑡, 𝑌, 𝑠) ∧ 𝑡 = 𝑗 ∧𝑋 = 𝑌 ∧
(((¬𝛾+

P1
(𝑎, 𝑠) ∨ (𝑌 ̸= P1)) ∧

(¬𝛾−
P1

(𝑎, 𝑠) ∨ (𝑌 ̸= ¬P1)))

∧
...
∧

((¬𝛾+

P𝑘
(𝑎, 𝑠) ∨ (𝑌 ̸= P𝑘)) ∧

(¬𝛾−
P𝑘

(𝑎, 𝑠) ∨ (𝑌 ̸= ¬P𝑘)))

∧
...
∧

((¬𝛾+

P𝑚
(𝑎, 𝑠) ∨ (𝑌 ̸= P𝑚)) ∧

(¬𝛾−
P𝑚

(𝑎, 𝑠) ∨ (𝑌 ̸= ¬P𝑚)))]

∧
[((𝑗 = MKJUST(DO(𝑎, 𝑠)) ∧ 𝑋 = P1 → 𝛾+

P1
(𝑎, 𝑠))

∧
(𝑗 = MKJUST(DO(𝑎, 𝑠)) ∧ 𝑋 = ¬P1 → 𝛾+

P1
(𝑎, 𝑠)))

∧
...
∧

((𝑗 = MKJUST(DO(𝑎, 𝑠)) ∧ 𝑋 = P𝑘 → 𝛾+

P𝑘
(𝑎, 𝑠))

∧
(𝑗 = MKJUST(DO(𝑎, 𝑠)) ∧ 𝑋 = ¬P𝑘 → 𝛾+

P𝑘
(𝑎, 𝑠)))

∧
...
∧

((𝑗 = MKJUST(DO(𝑎, 𝑠)) ∧ 𝑋 = P𝑚 → 𝛾+

P𝑚
(𝑎, 𝑠))

∧
(𝑗 = MKJUST(DO(𝑎, 𝑠)) ∧ 𝑋 = ¬P𝑚 →

𝛾+

P𝑚
(𝑎, 𝑠)))]

(15)
The first part of equation 15 ensures that if none of the
conditions for creating a new justification for a fluent are
met then the justification for a formula that is present at 𝑠
is also present at DO(𝑎, 𝑠). So, this means for every fluent
for which it is not the case that the positive effect axiom
is true at 𝑠 and the formula 𝑋 is the fluent and it is not
the case that the negative effect axiom is true at 𝑠 and the
formula 𝑋 is not the negation of the fluent. Otherwise,
one of the positive or negative effect formulae must be
true and the formula instantiating 𝑋 must be either the
positive fluent or negation of the fluent. Under this second
case, a new justification is created for DO(𝑎, 𝑠).

109

To return to our running example, we have

∀𝑡:JUST, 𝑗:JUST E(𝑡,𝑋, DO(𝑎, 𝑠)) ≡
[(E(𝑡, 𝑌, 𝑠) ∧ 𝑡 = 𝑗 ∧𝑋 = 𝑌 ∧

((¬(𝑎 = DROP(𝑦)) ∨ (𝑌 ̸= BROKEN(𝑦)))
∧

(¬(𝑎 = REPAIR(𝑦)) ∨ (𝑌 ̸= ¬BROKEN(𝑦))))]
∧

[(𝑡 = MKJUST(DO(DROP(𝑥), 𝑠))∧
𝑋 = BROKEN(𝑥) → 𝑎 = DROP(𝑥))

∧
(𝑡 = MKJUST(DO(REPAIR(𝑥), 𝑠))∧

𝑋 = ¬BROKEN(𝑥) → 𝑎 = REPAIR(𝑦))]
(16)

as the successor-state axiom. This ensures that if the
justification is for anything other than ¬BROKEN, then it
persists in the E relation into the situation resulting from
the action 𝑥. But if the action is a DROP(𝑥) action then a
new justification is created for BROKEN(𝑥).

The following two sentences hold in this model:

Knows(MKJUST(DO(DROP(OBJ1), S0)),
¬BROKEN(OBJ1)DO(DROP(OBJ1), S0))

and

∀𝑡 ¬Knows(𝑡, Q, DO(DROP, S0))
The agent’s knowledge of Q has remained the same,

and the knowledge of BROKEN(OBJ1) is a result of the
knowledge of the effect of the action DROP, and the justi-
fication provided by the successor-state axiom for E.

5.3. Adding Thinking Actions
We need the following to handle the application axiom
and the sum axiom.

∀𝑡:JUST ∀𝑎:JUST ∀𝑠:SIT E(𝑎,𝑋 → 𝑌, 𝑠)
∧ E(𝑡,𝑋, 𝑠)

→ E(𝑎 · 𝑡, 𝑌, DO(THINK1, 𝑠))
(17)

For the sum axiom we need

∀𝑡:JUST 𝑎:JUST ∀𝑠:SIT E(𝑎,𝑋, 𝑠)
→ E(𝑎+ 𝑡,𝑋, DO(THINK2𝑎, 𝑠)

(18)

and

∀𝑡:JUST, 𝑎:JUST ∀𝑠:SIT E(𝑎,𝑋, 𝑠)
→ E(𝑡+ 𝑎,𝑋, DO(THINK2𝑏,, 𝑠)

(19)

Note that one act of thinking THINK1 , does each possible
execution of the rule of modus ponens. Both THINK2𝑎

and THINK2𝑎 are needed for each possible application of
the sum rule. To return to our running axiomatization, we

have as the successor state axiom for 𝐸:

∀𝑡:JUST, 𝑗:JUST E(𝑡,𝑋, DO(𝑎, 𝑠)) ≡
[(E(𝑡, 𝑌, 𝑠) ∧ 𝑡 = 𝑗 ∧𝑋 = 𝑌 ∧
((¬(𝑎 = DROP(𝑦)) ∨ (𝑌 ̸= BROKEN(𝑦)))

∧
(¬(𝑎 = REPAIR(𝑦)) ∨ (𝑌 ̸= ¬BROKEN(𝑦))))]

∧
[(𝑡 = MKJUST(DO(DROP(𝑥), 𝑠))∧

𝑋 = BROKEN(𝑥) → 𝑎 = DROP(𝑥))
∧

(𝑡 = MKJUST(DO(REPAIR(𝑥), 𝑠))∧
𝑋 = ¬BROKEN(𝑥) → 𝑎 = REPAIR(𝑦))]

∧
[((𝑡 = 𝑗1 · 𝑗2 ∧ E(𝑗1, 𝑍 → 𝑋, 𝑠) ∧ E(𝑗2, 𝑍, 𝑠) ∧

¬𝐸(𝑗1 · 𝑗2, 𝑋, 𝑠)) → (𝑎 = THINK1))
∧

(𝑡 = 𝑗1 + 𝑗2 ∧ E(𝑗1, 𝑋, 𝑠) ∧
¬𝐸(𝑗1 + 𝑗2, 𝑋, 𝑠)) → 𝑎 = THINK2𝑎)

∧
((𝑡 = 𝑗2 + 𝑗1 ∧ E(𝑗1, 𝑋, 𝑠) ∧

¬𝐸(𝑗2 + 𝑗1, 𝑋, 𝑠)) → 𝑎 = THINK2𝑏)]
(20)

Note that thinking actions for positive and negative intro-
spection may also be added. In this case the expansion of
the formula for Knows will also need to be augmented so
that knowledge of knowledge and knowledge of the lack
of knowledge can be expressed.

5.4. Adding Knowledge-Producing
Actions

Now consider the simple case of a knowledge-producing
action SENSE𝑄 that determines whether or not the fluent
Q is true (following Moore [33, 8]). There may also be
ordinary actions, which are not knowledge-producing.

We imagine that the action has an associated sensing re-
sult function. This result is “YES” if “Q” is true and “NO”
otherwise. The symbols are given in quotes to indicate
that they are not fluents. We axiomatize the sensing result
as follows:

SR(SENSE𝑄, 𝑠) = 𝑟 ≡ (𝑟 = “YES” ∧ Q(𝑠))
∨ (𝑟 = “NO” ∧ ¬Q(𝑠))

(21)

The question that we need to consider is what situations
are K accessible from DO(SENSE𝑄, 𝑠0).

K(𝑠′′, DO(SENSEQ, 𝑠)) ≡
∃𝑠′ (POSS(SENSEQ, 𝑠′) ∧ K(𝑠′, 𝑠)∧

𝑠′′ = DO(SENSE𝑄, 𝑠
′)∧

SR(SENSEQ, 𝑠) = SR(SENSE𝑄, 𝑠
′))

(22)

Again, as far as the agent at world 𝑠 knows, he could
be in any of the worlds 𝑠′ such that K(𝑠′, 𝑠) holds. At
DO(SENSE𝑄, 𝑠) as far as the agent knows, he can be in

110

any of the worlds DO(SENSE𝑄, 𝑠
′) such that K(𝑠′, 𝑠) and

POSS(SENSE𝑄, 𝑠
′) hold by (22), and also Q(𝑠) ≡ Q(𝑠′)

by the combination of (21) and (22) holds. The idea here
is that in moving from 𝑠 to DO(SENSE𝑄, 𝑠), the agent not
only knows that the action SENSE𝑄 has been performed
(since every accessible situation results from the DO func-
tion and the SENSE𝑄 action), but also the truth value of the
predicate Q. Observe that the successor state axiom for Q
(sentence 14) guarantees that Q is true at DO(SENSE𝑄, 𝑠)
if and only if Q is true at 𝑠, and similarly for 𝑠′ and
DO(SENSE𝑄, 𝑠

′). Therefore, Q has the same truth value
in all worlds 𝑠′′ such that K(𝑠′′, DO(SENSE𝑄, 𝑠)), and so
Kwhether(Q, DO(SENSE𝑄, 𝑠)) is true.

To return to our running example, which is the il-
lustration of the result of a SENSE𝑄 action, note that
the only situations accessible via the K relation from
do(sense,S1) (denoted by DO(SENSE𝑄, 𝑠0)) are
do(sense, S1) and do(sense,S3). The situ-
ation do(sense,S2) is not K accessible. There-
fore Knows(𝑡, P, DO(SENSE𝑄, S0)) is true as it was
before the action was executed, but also now
Knows(𝑡′, Q, DO(SENSE𝑄, S0)) is true where 𝑡′ is a new
justification as introduced in the successor state axiom
for E given below. The knowledge of the agent being
modeled has increased.

In general, there may be many knowledge-producing
actions, as well as many ordinary actions. To characterize
all of these, we have a function SR (for sensing result),
and for each action 𝛼, a sensing-result axiom of the form:

SR(𝛼(�⃗�), 𝑠) = 𝑟 ≡ 𝜑𝛼(�⃗�, 𝑟, 𝑠) (23)

For ordinary actions, the result is always the same, with
the specific result not being significant. For example, we
could have:

SR(PICKUP(𝑥), 𝑠) = 𝑟 ≡ 𝑟 = “OK” (24)

The successor state axiom for K is as follows:
Successor State Axiom for K

𝐾(𝑠′′, DO(𝑎, 𝑠)) ≡
(∃ 𝑠′ 𝑠′′ = DO(𝑎, 𝑠′)

∧ 𝐾(𝑠′, 𝑠) ∧ POSS(𝑎, 𝑠′)
∧ SR(𝑎, 𝑠) = SR(𝑎, 𝑠′))

(25)

The relation K at a particular situation DO(𝑎, 𝑠) is com-
pletely determined by the relation at 𝑠 and the action 𝑎.

We need a successor state axiom for E and the sensing

action.

∀𝑡:JUST, 𝑗:JUST E(𝑡,𝑋, DO(𝑎, 𝑠)) ≡
[(E(𝑡, 𝑌, 𝑠) ∧ 𝑡 = 𝑗 ∧𝑋 = 𝑌 ∧
((¬(𝑎 = DROP(𝑦)) ∨ (𝑌 ̸= BROKEN(𝑦)))

∧
(¬(𝑎 = REPAIR(𝑦)) ∨ (𝑌 ̸= ¬BROKEN(𝑦))))]

∧
[(𝑡 = MKJUST(DO(DROP(𝑥), 𝑠))∧

𝑋 = BROKEN(𝑥) → 𝑎 = DROP(𝑥))
∧

(𝑡 = MKJUST(DO(REPAIR(𝑥), 𝑠))∧
𝑋 = ¬BROKEN(𝑥) → 𝑎 = REPAIR(𝑦))]

∧
[((𝑡 = 𝑗1 · 𝑗2 ∧ E(𝑗1, 𝑍 → 𝑋, 𝑠) ∧ E(𝑗2, 𝑍, 𝑠) ∧

¬𝐸(𝑗1 · 𝑗2, 𝑋, 𝑠)) → (𝑎 = THINK1))
∧

(𝑡 = 𝑗1 + 𝑗2 ∧ E(𝑗1, 𝑋, 𝑠) ∧
¬𝐸(𝑗1 + 𝑗2, 𝑋, 𝑠)) → 𝑎 = THINK2𝑎)

∧
((𝑡 = 𝑗2 + 𝑗1 ∧ E(𝑗1, 𝑋, 𝑠) ∧

¬𝐸(𝑗2 + 𝑗1, 𝑋, 𝑠)) → 𝑎 = THINK2𝑏)]
∧

[(𝑡 = MKJUST(DO(SENSE𝑄, 𝑠))∧
(𝑋 = 𝑄 ∨𝑋 = ¬𝑄)) → (𝑎 = SENSE𝑄)]

(26)
For every sensing-result axiom of the form (23) we

need a clause in the axiom of the form (26). Note that
now the general form of the successor-state axiom for E
as given in equation 15 needs to be augmented (in the
same manner as was done for the running example) with
the thinking actions that the axiomatizer decides to use
and also the available sensing actions.

6. Example
Consider the red barn example mentioned earlier8. We
have two sensing actions; SENSE𝐵∧𝑅 and SENSE𝐵 . The
first represents the action of sensing whether there is a
red barn and the second is the sensing of whether there
is a barn. Note that by the problem description only the
first is a causal justification for knowledge. This is meta-
information, not available to the agent.

The sensing result axioms are as follows:

SR(SENSE𝐵∧𝑅, 𝑠) = 𝑟 ≡
(𝑟 = “YES” ∧ (RED(𝑠) ∧ BARN(𝑠))
∨ (𝑟 = “NO” ∧ ¬(RED(𝑠) ∧ BARN(𝑠))

(27)

SR(SENSE𝐵 , 𝑠) = 𝑟 ≡
(𝑟 = “YES” ∧ BARN(𝑠))
∨ (𝑟 = “NO” ∧ ¬BARN(𝑠))

(28)

8Here the example follows [17, 19].

111

We axiomatize E following the approach in the previous
sections. Note that there are no successor state axioms in
this example.

∀𝑡:JUST𝑗1:JUST𝑗2:JUST E(𝑡,𝑋, DO(𝑎, 𝑠)) ≡
[((𝑡 = 𝑗1 · 𝑗2 ∧ E(𝑗1, 𝑍 → 𝑋, 𝑠)∧

E(𝑗2, 𝑍, 𝑠) ∧ ¬𝐸(𝑗1 · 𝑗2, 𝑋, 𝑠))
→ 𝑎 = THINK1]

∧
[(𝑡 = MKJUST(DO(SENSE𝐵 , 𝑠))∧

(𝑋 = BARN ∨𝑋 = ¬BARN))
→ 𝑎 = SENSE𝐵

∧
(𝑡 = MKJUST(DO(SENSE𝐵∧𝑅(𝑠))) ∧

(𝑋 = BARN ∧ RED ∨𝑋 = ¬BARN ∧ RED))
→ 𝑎 = SENSE𝐵∧𝑅]

(29)
It is also necessary to add the following: BARN(𝑆0)

and RED(𝑆0). Additionally, we need to add a proposi-
tional axiom (𝐵 ∧𝑅) → 𝐵 to the constant specification.
So, it is justified by justification A.

∀𝑠:INIT E(A, (𝐵 ∧𝑅) → 𝐵, 𝑠) (30)

The successor state axioms for BARN and RED need to
be added, but they are simple since there are no actions
that change these fluents. The successor state axioms for
the sensing action are of the form given in the previous
section.

Now the axiomatization entails

Knows(MKJUST(DO(SENSE𝐵 , S0)),
BARN, DO(SENSE𝐵 , S0))

(31)

and

Knows((A · MKJUST(DO(SENSE𝐵∧𝑅, S0))),
BARN, DO(THINK, DO(SENSE𝐵∧𝑅, S0))))

(32)
By the meta-information given in the problem description
only the second is true knowledge. The formalism allows
the two justifications for the knowledge of barn to be
distinguished, while the modal logic based approach of
[9] does not allow them to be distinguished.

7. Summary
This paper has presented preliminary results on integrat-
ing the justification logic model of knowledge into the
situation calculus with knowledge and knowledge pro-
ducing actions. The positive results of this work is that
(as compared to the situation calculus with a modal view
of knowledge) one is able to make a more fine-grained
representation of the different ways an agent may have
knowledge. Additionally, the agent is not logically omni-
scient.

Some of the properties [9] for the situation calculus
with knowledge carry over to the case of justified knowl-
edge. Space does not permit a full exposition. But all of
these properties show that actions only affect knowledge
in the appropriate way. Note that the property (from [9])
that agents know the consequences of acquired knowledge
does not hold as knowledge of the consequences depends
on having the justification that incorporates the reasoning
involved.

Current work involves the development of regression to
facilitate reasoning with the logic. The notion of thinking
and amount of effort needs to be compared to similar
notions in the literature [38, 39]. Additionally, the work
can be extended to handle knowledge of sentences in full
first-order logic (with quantifiers) as has been done within
the literature of justification logic [20].

Although the practical applications are limited, the
steps taken set the basis for further work. One augmen-
tation of significance will be the incorporation and elim-
ination of justifications. Then the framework can model
evidential reasoning. This can draw on justification aware-
ness models [20] where the agent can have knowledge of
the degree of reliability of various kinds of justifications.
An additional topic for exploration is the use of justifica-
tion terms for generating explanations of the beliefs of the
agent.

112

References
[1] H. Levesque, G. Lakemeyer, Cognitive robotics,

in: F. van Harmelen, V. Lifschitz, B. Porter (Eds.),
Handbook of Knowledge Representation, Elsevier,
2007. To appear.

[2] R. Reiter, Knowledge in Action: Logical Foun-
dations for Specifying and Implementing Dynam-
ical Systems, The MIT Press, Cambridge, Mas-
sachusetts, 2001.

[3] J. McCarthy, Programs with common sense, in:
M. Minsky (Ed.), Semantic Information Processing,
The MIT Press, 1968, pp. 403–418.

[4] R. Reiter, The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a complete-
ness result for goal regression, in: V. Lifschitz (Ed.),
Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy,
Academic Press, San Diego, CA, 1991, pp. 359–
380.

[5] J. McCarthy, P. Hayes, Some philosophical prob-
lems from the standpoint of artificial intelligence,
in: B. Meltzer, D. Michie (Eds.), Machine Intel-
ligence 4, Edinburgh University Press, Edinburgh,
UK, 1969, pp. 463–502.

[6] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. B.
Scherl, Golog: A logic programming language for
dynamic domains, Journal of Logic Programming
(1997).

[7] G. De Giacomo, Y. Lespérance, H. J. Levesque, Con-
Golog, a concurrent programming language based
on the situation calculus, Artificial Intelligence
(2000) 109–169.

[8] R. Moore, A formal theory of knowledge and action,
in: J. Hobbs, R. Moore (Eds.), Formal Theories
of the Commonsense World, Ablex, Norwood, NJ,
1985, pp. 319–358.

[9] R. Scherl, H. J. Levesque, Knowledge, action, and
the frame problem, Artificial Intelligence 144 (2003)
1–39. URL: aij03frame.pdf.

[10] J. J. Ichikawa, M. Steup, The analysis of knowledge,
in: E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy, spring 2014 ed., 2014.

[11] S. Luper, The epistemic closure principle, in: E. N.
Zalta (Ed.), The Stanford Encyclopedia of Philoso-
phy, fall 2012 ed., 2012.

[12] K. Lehrer, Theory of Knowledge, Routledge, Lon-
don, UK, 1990.

[13] V. Hendricks, Mainstream and Formal Epistemol-
ogy, Cambridge University Press, New York, NY,
2007.

[14] R. Nozick, Philosophical Explanations, The Belk-
nap Press of Harvard University Press, Cambridge,
Massachusetts, 1981.

[15] A. I. Goldman, A causal theory of knowing, Journal

of Philosophy 64 (1967) 357–372.
[16] F. Dretske, Is knowledge closed under known entail-

ment? the case against closure, in: Contemporary
Debates in Epistemology, Blackwell, 2005, pp. 13–
26.

[17] S. N. Artemov, The logic of justification, The Re-
view of Symbolic Logic 1 (2008) 477–513. doi:10.
1017/S1755020308090060.

[18] S. Artemov, Explicit provability and constructive
semantics, Bulletin of Symbolic Logic 7 (2001)
1–36.

[19] S. N. Artemov, M. Fitting, Justification logic,
in: E. N. Zalta (Ed.), The Stanford Ency-
clopedia of Philosophy, fall 2012 ed., 2012.
URL: http://plato.stanford.edu/archives/fall2012/
entries/logic-justification/.

[20] S. Artemov, M. Fitting, Justification Logic: Rea-
soning with Reasons, Cambridge University Press,
Cambridge, UK, 2019.

[21] R. Kuznets, T. Studer, Logics of Proofs and Justifi-
catins, College Publications, 2019.

[22] S. Kripke, Philosophical Troubles: Collected Papers,
Volume 1, Oxford University Press, New York, NY,
2011.

[23] R. Scherl, A situation-calculus based theory of jus-
tified knowledge and action, in: Logical Formaliza-
tions of Commonsense Reasoning: Papers from the
2015 AAAI Spring Symposium Technical Report
SS-15-04, AAAI Press, Palo Alto, California, 2015,
pp. 134–140.

[24] A. Baltag, B. Renne, S. Smets, The logic of
justified belief change, soft evidence and defea-
sible knowledge, in: L. Ong, R. de Queiroz
(Eds.), Proceedings of the 19th Workshop on Logic,
Language, Information, and Computation (WoL-
LIC 2012), volume 7456 of Lecture Notes in
Computer Science, Springer-Verlag Berlin Heidel-
berg, Buenos Aires, Argentina, 2012, pp. 168–190.
doi:10.1007/978-3-642-32621-9_13.

[25] B. Renne, Dynamic Epistemic Logic with Jus-
tification, Ph.D. thesis, City University of New
York, 2008. URL: http://gradworks.umi.com/33/10/
3310607.html.

[26] T. Qualiano, A multi-agent justification logic with
common knowledge and public announcements,
2021. Monmmouth University M.S. Thesis.

[27] E. Pednault, ADL: exploring the middle ground
between STRIPS and the sit uation calculus, in:
R. Brachman, H. Levesque, R. Reiter (Eds.), Pro-
ceedings of the First International Conference on
Princi ples of Knowledge Representation and Rea-
soning, Morgan Kaufmann Publishers, Inc., San
Mateo, California, 1989, pp. 324–332.

[28] L. Schubert, Monotonic solution of the frame prob-
lem in the situation calcul us: an efficient method for

113

aij03frame.pdf
http://dx.doi.org/10.1017/S1755020308090060
http://dx.doi.org/10.1017/S1755020308090060
http://plato.stanford.edu/archives/fall2012/entries/logic-justification/
http://plato.stanford.edu/archives/fall2012/entries/logic-justification/
http://dx.doi.org/10.1007/978-3-642-32621-9_13
http://gradworks.umi.com/33/10/3310607.html
http://gradworks.umi.com/33/10/3310607.html

worlds with fully specified actions, in: H. E. Kyberg,
R. Loui, G. Carlson (Eds.), Knowledge Representa-
tion and Defeasible Reasoning, Kluwer Academic
Press, Boston, Mass., 1990, pp. 23–67.

[29] N. M. Rubtsova, On realization of S5-modality by
evidence terms, Journal of Logic and Computa-
tion 16 (2006) 671–684. doi:10.1093/logcom/
exl030.

[30] M. Fitting, The logic of proofs, semantically, Annals
of Pure and Applied Logic 132 (2005) 1–25. doi:10.
1016/j.apal.2004.04.009.

[31] A. Mkrtychev, Models for the logic of proofs,
in: S. Adian, A. Nerode (Eds.), Logical Founda-
tions of Computer Science, 4th International Sym-
posium, LFCS’97, Yaroslavl, Russia, July 6–12,
1997, Proceedings, volume 1234 of Lecture Notes
in Computer Science, Springer, 1997, pp. 266–275.
doi:10.1007/3-540-63045-7_27.

[32] S. N. Artemov, R. Kuznets, Logical omniscience
via proof complexity, in: Z. Ésik (Ed.), Com-
puter Science Logic, 20th International Workshop,
CSL 2006, 15th Annual Conference of the EACSL,
Szeged, Hungary, September 25–29, 2006, Proceed-
ings, volume 4207 of Lecture Notes in Computer Sci-
ence, Springer, 2006, pp. 135–149. doi:10.1007/
11874683_9.

[33] R. Moore, Reasoning About Knowledge and Action,
Technical Note 191, SRI International, 1980.

[34] G. Hughes, M. Cresswell, An Introduction to Modal
Logic, Methuen and Co., London, 1968.

[35] S. Kripke, Semantical considerations on modal
logic, Acta Philosophica Fennica 16 (1963) 83–94.

[36] B. F. Chellas, Modal Logic: An Introduction, Cam-
bridge University Press, Cambridge, 1980.

[37] R. Bull, K. Segerberg, Basic modal logic, in:
D. Gabbay, F. Guenther (Eds.), Handbook of Philo-
sophical Logic, Vol. II, D. Reidel Publishing Com-
pany, Dordrecht, 1984, pp. 1–88.

[38] Y. Liu, G. Lakemeyer, H. J. Levesque, A logic of
limited belief for reasoning with disjunctive infor-
mation, in: Proc. KR-04, Whistler, Canada, 2004,
pp. 587–597. URL: lll-kr2004.pdf.

[39] G. Lakemeyer, H. J. Levesque, A tractable, expres-
sive, and eventually complete first-order logic of
limited belief, in: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI-19, International Joint Conferences on
Artificial Intelligence Organization, 2019, pp. 1764–
1771. URL: https://doi.org/10.24963/ijcai.2019/244.
doi:10.24963/ijcai.2019/244.

114

http://dx.doi.org/10.1093/logcom/exl030
http://dx.doi.org/10.1093/logcom/exl030
http://dx.doi.org/10.1016/j.apal.2004.04.009
http://dx.doi.org/10.1016/j.apal.2004.04.009
http://dx.doi.org/10.1007/3-540-63045-7_27
http://dx.doi.org/10.1007/11874683_9
http://dx.doi.org/10.1007/11874683_9
lll-kr2004.pdf
https://doi.org/10.24963/ijcai.2019/244
http://dx.doi.org/10.24963/ijcai.2019/244

	1 Introduction
	2 The Situation Calculus and the Frame Problem
	3 Justification Logic
	4 Representing Justified Knowledge in the Situation Calculus
	5 Integrating Justified Knowledge and Action
	5.1 The Initial Picture: Without Actions
	5.1.1 Setting up the Initial Picture

	5.2 Adding Ordinary Actions
	5.3 Adding Thinking Actions
	5.4 Adding Knowledge-Producing Actions

	6 Example
	7 Summary

