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Abstract
Rational agents must have some internal representation of their knowledge or belief system. Belief Revision is a research
area that aims at understanding how they should change their representations when they are faced with new information. In
a contraction operation, a sentence is removed from a knowledge base and must not be logically entailed by the resulting set.
Pseudo-contraction was proposed by Hansson as an alternative to base contraction where some degree of syntax independence
is allowed. In this work, we analyse kernel constructions for pseudo-contraction operations and their formal properties.
Also, we show the close relationship between concepts and definitions of Belief Revision and Ontology Repair (such as
pseudo-contractions and gentle repairs, respectively).

Keywords
Belief revision, Description logics, Ontology repair, Pseudo-contraction

1. Introduction
Belief Revision is a research area that deals with problems
related to changing knowledge bases or logical theories,
especially in the face of new, possibly conflicting, in-
formation. The work of Alchourrón, Gärdenfors, and
Makinson [1] is widely recognised as the initial hallmark
of this area, and gave rise to what is known as the AGM
paradigm. Originally, it required the underlying logic to
satisfy some assumptions, such as compactness, mono-
tonicity and the deduction theorem, and most work fol-
lowing AGM was developed with propositional logic in
mind. In the AGM paradigm, the beliefs of an agent are
represented by sets closed under logical consequences,
the belief sets. Over the past decades, the AGM theory
has been adapted to belief bases (sets of sentences that are
not necessarily closed) represented in different logical
formalisms, such as Horn or Description Logics [2, 3, 4].
The AGM paradigm defines three change operations

on belief sets: expansion, which incorporates a new be-
lief; contraction, which removes a belief; and revision,
which incorporates a new belief retaining consistency.
In this paper, we will only address the problem of re-
tracting beliefs, thus contraction operations and their
variations. In a contraction operation, a sentence must
be removed from a set and must not be entailed by the
contracted set. Some of the minimal requirements for an
operation to be a belief contraction are that it satisfies
success — the removed set is not entailed anymore — and
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inclusion — no new beliefs are added [5]. There are two
main constructions associated to contraction operations:
partial meet contraction [1] with respect to a sentence is
defined as the intersection of some inclusion-maximal
subsets that do not entail it, and kernel contraction [6] is
obtained by removing at least one sentence from each
inclusion-minimal subset entailing the sentence to be
removed.
The area of Ontology Repair groups together tools

and formal definitions related to the task of debugging
ontologies and getting rid of unwanted inferences. Dif-
ferent approaches have been proposed, depending on
which parts of the knowledge base one wants to change
[7, 8, 9, 10, 11].

Both in Belief Revision and in Ontology Repair, classi-
cal approaches assume that no information can be added
to a knowledge base when we perform the task of remov-
ing some unwanted consequence. Whilst this assumption
may be reasonable, it is usually formalised as a syntactic
requirement of inclusion, in a way that forces the removal
of too much information. The assumption can be for-
malised as a less restrictive constraint which only states
that we cannot add new consequences to the knowledge
base, thus allowing to add sentences that were logically
entailed by the original set. Note that this formalisa-
tion still captures the intuition that no new information
should be added, but “information” is now seen as inde-
pendent from the syntax. This idea has been proposed
and developed in both areas in the last decades, with
different terminologies and notations. In Belief Revision,
pseudo-contractions are generalisations of contractions
that allow the addition of sentences as long as they were
already entailed by the initial set. Similarly, in Ontology
Repair, a gentle repair of an ontology is built by removing
sentences or replacing them with weaker versions so that
the resulting set does not imply the unwanted sentence,
and new consequences are not allowed [12].
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Recently, a pseudo-contraction construction based on
partial meet contraction was proposed and characterised
[13, 14]. It uses a weak consequence operator (i.e. a con-
sequence operator that may not include all the conse-
quences of a classical Cn) to expand the initial set of
sentences before applying the classical partial meet con-
traction.

In this text, we analyse a pseudo-contraction construc-
tion that is based on a kernel contraction and expands
the set with some of its consequences before applying
the classical kernel contraction. Furthermore, we show
that some concepts and definitions of Belief Revision
and Ontology Repair are closely related, extending some
previous work and showing that the new kernel pseudo-
contraction is also connected to gentle repairs. In order
to facilitate the integration between the areas, we will
adopt a functional notation for Belief Revision, which we
have proposed in a previous work (e.g. the contraction
of 𝐵 by 𝛼 will be denoted by c(𝐵, 𝛼) rather than 𝐵 − 𝛼).
We expect it to be clearer and less ambiguous than the
classical infix notation.

The results of this paper appeared in the first author’s
thesis [15, sections 3.2, 3.3 and 4.2], which contains the
proofs that have been omitted here due to space con-
straints. The proofs are also available at https://www.
ime.usp.br/~renata/papers/NMR2022_supplement.pdf.

This text is structured as follows. Section 2 introduces
pseudo-contractions and presents some definitions that
will be used throughout the paper. In Section 3, we de-
fine our new operation (Cn* kernel pseudo-contraction),
explain its properties and characterise it by means of a
set of postulates. Section 4 shows our prototype of a tool
that computes some pseudo-contractions in ontologies.
Ontology Repair is introduced in Section 5, and its con-
nections with Belief Revision are presented in Section 6.
Section 7 finishes the text with the conclusions.

2. Pseudo-contraction Operations
Contractions over belief bases can lead to unnecessary
waste of information, largely due to the inclusion postu-
late [16]:

(inclusion) c(𝐵, 𝛼) ⊆ 𝐵.

The postulate requires that the result of contracting a
belief base 𝐵 by a sentence 𝛼 is included in the original
belief base. This postulate prevents the weakening of
formulae, which can be seen as an argument against its
use for belief bases.

Example 1. Consider a knowledge base that contains
the following three sentences:
- All Swedish things are European;
- European Swans are white;
- 𝑠 is a Swedish Swan.

This can be formalised, for example, in a Description
Logic:

𝑆𝑤𝑒𝑑𝑖𝑠ℎ ⊑ 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛;

𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 ⊓ 𝑆𝑤𝑎𝑛 ⊑ ∃ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟 .{𝑤ℎ𝑖𝑡𝑒};

𝑠 ∶ 𝑆𝑤𝑎𝑛 ⊓ 𝑆𝑤𝑒𝑑𝑖𝑠ℎ.

If we want to contract by 𝑠 ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟 𝑤ℎ𝑖𝑡𝑒, one of the
sentences must be removed; thus, for example, if we
choose to remove the third sentence, the fact that 𝑠 is a
swan is lost.

Intuitively, in Example 1, we should consider replacing
the sentence 𝑠 ∶ 𝑆𝑤𝑎𝑛 ⊓ 𝑆𝑤𝑒𝑑𝑖𝑠ℎ with a weaker version
𝑠 ∶ 𝑆𝑤𝑎𝑛, which is forbidden by the inclusion postulate.
Another intuitive idea prohibited by that postulate is to
weaken 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 ⊓ 𝑆𝑤𝑎𝑛 ⊑ ∃ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟 .{𝑤ℎ𝑖𝑡𝑒} by adding
an intersection to the left-hand side, in order to convey
the idea that all European swans that satisfy a certain
property (e.g. “normal” or “typical”) are white.

Hansson has proposed a weakening of inclusion, logi-
cal inclusion [5], which is satisfied by operations he has
called pseudo-contractions [16]:

(logical inclusion) Cn(c(𝐵, 𝛼)) ⊆ Cn(𝐵).

(success) If 𝛼 ∉ Cn(∅), then 𝛼 ∉ c(𝐵, 𝛼).

Definition 2 (Pseudo-contraction [16]). An operation
c is a pseudo-contraction if c satisfies success and logical
inclusion.

With logical inclusion, whilst we still do not allow
the addition of arbitrary sentences, the resulting set no
longer has to be a subset of the original set, thus making
it possible to insert the sentence 𝑠 ∶ 𝑆𝑤𝑎𝑛 in Example 1.

From now on, we will consider a generic consequence
operator Cn that is Tarskian and compact, such as CnFOL
and the consequence operators that correspond to some
fragments of first-order logic. Thus, the operations we
will present do not assume any other syntactic or seman-
tic features of the logic, which makes them applicable to
logics that do not satisfy the AGM requirements (such
as Description Logics, which usually do not have a sen-
tence ¬𝜑 for every sentence 𝜑). Results that require extra
properties will explicitly mention them. The set of all
sentences in the language will be denoted by 𝔏. Subclas-
sicality will be defined with respect to Cn.

In the following sections, we will present some pseudo-
contraction constructions that depend on the kind of for-
mulae that we are allowed to add when contracting by a
formula. Before computing the kernel set, our operations
will “close” the set under a new consequence operator,
Cn*, which will make possible the insertion of new sen-
tences. This is a generic operator whose definition is
deliberately unspecified, and we will explicitly state the
conditions that are required by each theorem.
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The properties of pseudo-contraction constructions
depend on the properties that are satisfied by Cn*, es-
pecially inclusion and subclassicality: if both are satis-
fied, then Cn* is in an intermediate level between the
original base (which would be used in a base contrac-
tion) and its closure (as in classical AGM contraction), i.e.
𝐵 ⊆ Cn*(𝐵) ⊆ Cn(𝐵). For practical applications, Cn*(𝐵)
should always be finite if 𝐵 is finite, but we will not as-
sume this restriction.

Automatic reasoners for ontologies — such as HermiT1

and Fact++2 — allow the user to choose the types of con-
sequences that will be generated. Each configuration can
be seen as a Cn*, which satisfies inclusion3 and is usu-
ally subclassical4. Since they are syntactically restricted,
they are good examples of weak consequence operators.
Those reasoners can be embedded in ontology editors,
such as Protégé5, as shown in Figure 1.

Figure 1: Screenshot of the Protégé window where the user
can choose which types of consequences will be exported.

Another example of Cn* is the conversion of sentences
into some standard format, such as conjunctive and dis-
junctive normal forms, and normal forms tailored to spe-
cific logics, as long as no new symbols are introduced.
Since inclusion is not satisfied by those consequence op-
erators, some desirable properties may not be satisfied by
constructions that use them; on the other hand, they may
be of use if good inference algorithms exist for them.

3. Cn* kernel pseudo-contraction
In this section, we will present a pseudo-contraction op-
eration that is defined as a kernel contraction starting
from the expanded set Cn*(𝐵).

1http://www.hermit-reasoner.com/
2http://owl.cs.manchester.ac.uk/tools/fact/
3One step after the window shown in Figure 1, users can choose
whether the original sentences should be kept.
4Except, maybe, for some highly-complex ontologies that cannot be
represented in classical logic.

5http://protege.stanford.edu/

Definition 3 (Kernel and kernel set [6]). Let 𝐵 ⊆ 𝔏 and
𝛼 ∈ 𝔏. The kernel set of 𝐵 with respect to 𝛼, denoted by
Ker[𝐵, 𝛼], is such that a set 𝑋 is in Ker[𝐵, 𝛼] if and only
if 𝑋 ⊆ 𝐵, 𝛼 ∈ Cn(𝑋), and there is no 𝑌 ⊂ 𝑋 such that
𝛼 ∈ Cn(𝑌 ). Each such 𝑋 is an 𝛼-kernel.

We will show later (Proposition 28) that the definition
above is related to that of justification (Definition 18),
which is well-known in Ontology Repair.

Definition 4 (Incision function [6]). Let 𝐵 ⊆ 𝔏. A
function 𝑓 is an incision function6 for 𝐵 if, for every
𝛼 ∈ 𝔏, it is the case that 𝑓 (Ker[𝐵, 𝛼]) ⊆ ⋃Ker[𝐵, 𝛼] and
𝑓 (Ker[𝐵, 𝛼]) ∩ 𝑋 ≠ ∅ for every non-empty 𝑋 ∈ Ker[𝐵, 𝛼].

Definition 5 (Cn* kernel pseudo-contraction). Let 𝐵 be
a set of sentences, Cn* a consequence relation and 𝑓
an incision function for Cn*(𝐵). The Cn* kernel pseudo-
contraction of 𝐵 by a sentence 𝛼, denoted by kcCn*𝑓 (𝐵, 𝛼),
is such that, for all sentences 𝛼:

kcCn*𝑓 (𝐵, 𝛼) = Cn*(𝐵) ⧵ 𝑓 (Ker[Cn*(𝐵), 𝛼]).

The following examples illustrate this construction:

Example 6. Let Cn*break be a consequence operator
that preserves the existing sentences and adds 𝑎 ∶ 𝐶𝑖 (for
𝑖 = 1, … , 𝑛) for every sentence 𝑎 ∶ 𝐶1 ⊓ ⋯ ⊓ 𝐶𝑛 in the
original set. This is analogous to the consequence opera-
tor that “breaks conjunctions into conjuncts”, originally
presented in [17]. If 𝐵 is the knowledge base defined
in Example 1, then Cn*break(𝐵) = 𝐵 ∪ {𝑠 ∶ 𝑆𝑤𝑎𝑛, 𝑠 ∶
𝑆𝑤𝑒𝑑𝑖𝑠ℎ}. Let 𝛼 be the sentence 𝑠 ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟 𝑤ℎ𝑖𝑡𝑒. We
have Ker[Cn*break(𝐵), 𝛼] = {{𝛽1, 𝛽2, 𝛽3}, {𝛽1, 𝛽2, 𝛽′3, 𝛽″3 }},
where

𝛽1 = 𝑆𝑤𝑒𝑑𝑖𝑠ℎ ⊑ 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛,
𝛽2 = 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 ⊓ 𝑆𝑤𝑎𝑛 ⊑ ∃ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑢𝑟 .{𝑤ℎ𝑖𝑡𝑒},

𝛽3 = 𝑠 ∶ 𝑆𝑤𝑎𝑛 ⊓ 𝑆𝑤𝑒𝑑𝑖𝑠ℎ,
𝛽′3 = 𝑠 ∶ 𝑆𝑤𝑎𝑛 and
𝛽″3 = 𝑠 ∶ 𝑆𝑤𝑒𝑑𝑖𝑠ℎ.

If the definition of the incision function 𝑓 is such that
𝑓 (Ker[Cn*break(𝐵), 𝛼]) = {𝛽3, 𝛽″3 }, then the result of the

operation is kcCn*break𝑓 (𝐵, 𝛼) = (𝐵 ⧵ 𝛽3) ∪ {𝛽′3}, i.e., the
pseudo-contraction replaces 𝛽3 with its weaker version
𝛽′3.

In order to characterise this operation, we will need a
starred version of some postulates:

(inclusion*) c(𝐵, 𝛼) ⊆ Cn*(𝐵).

(uniformity*) If for all 𝐵′ ⊆ Cn*(𝐵), 𝛼 ∈ Cn(𝐵′) if

and only if 𝛽 ∈ Cn(𝐵′), then c(𝐵, 𝛼) = c(𝐵, 𝛽).
6It should be noted that incision functions depend only on the kernel
set, which may be the same for distinct pairs of 𝐵 and 𝛼.
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(core-retainment*) If 𝛽 ∈ Cn*(𝐵)⧵c(𝐵, 𝛼), then there

is some 𝐵′ ⊆ Cn*(𝐵) such that 𝛼 ∈ Cn(𝐵′ ∪{𝛽})⧵Cn(𝐵′).
The representation theorem follows.

Theorem 7 (Cn* kernel pseudo-contraction: represen-
tation theorem). If Cn* satisfies monotonicity, then an
operation is a Cn* kernel pseudo-contraction if and only if
it satisfies success, inclusion*, core-retainment* and unifor-
mity*.

Proof sketch. Construction-to-postulates: Success can be
shown by contradiction: if 𝛼 ∈ Cn(kcCn*𝑓 (𝐵, 𝛼)), then
the fact that Cn is Tarskian implies that there is some
non-empty 𝑋 ∈ Ker[Cn*(𝐵) ⧵ 𝑓 (Ker[Cn*(𝐵), 𝛼]), 𝛼], and
such 𝑋 must be in Ker[Cn*(𝐵), 𝛼], but this implies that
𝑓 (Ker[Cn*(𝐵), 𝛼]) ∩ 𝑋 = ∅, violating the definition of
incision function. Inclusion* and core-retainment follow
directly from the definitions. For uniformity*, if 𝛼 and
𝛽 satisfy the antecedent but not the consequent, then
there must be some 𝑋 ∈ Ker[Cn*(𝐵), 𝛼] ⧵ Ker[Cn*(𝐵), 𝛽]
(w.l.o.g., swapping 𝛼 and 𝛽 for the other case); thus, either
𝛽 ∉ Cn(𝑋) or there is some 𝑋 ′ ⊊ 𝑋 such that 𝛽 ∈ Cn(𝑋 ′),
and neither can hold because 𝑋 ∈ Ker[Cn*(𝐵), 𝛼].
Postulates-to-construction: This part of the proof is analo-
gous to the proof of the corresponding theorem in [6]. If
cCn* satisfies the postulates, then the function 𝑓 defined
as 𝑓 (Ker[Cn*(𝐵), 𝛼]) ∶= Cn*(𝐵) ⧵ cCn*(𝐵, 𝛼) is a well-de-
fined incision function for Cn*(𝐵) and the operations
kcCn*𝑓 and cCn* are equivalent.

Cn* partial meet pseudo-contraction, a pseudo-con-
traction construction that “closes” the set under Cn* be-
fore applying a classical partial meet contraction, was
proposed by [13]. The result of the operation, denoted
by pmcCn*𝑔 (𝐵, 𝛼), is obtained by taking the intersection
of the output of a selection function 𝑔 that chooses some
elements (at least one) of Rem[Cn*(𝐵), 𝛼], which is the
set of all inclusion-maximal subsets of Cn*(𝐵) that do not
entail 𝛼.
Cn* partial meet pseudo-contractions satisfy rele-

vance*, and Cn* kernel pseudo-contractions satisfy core-
retainment*; moreover, the other three postulates are
identical (success, inclusion* and uniformity*). Hence,
every Cn* partial meet pseudo-contraction is also a Cn*
kernel pseudo-contraction. We will now show how to
obtain the explicit construction of a Cn* kernel pseudo-
contraction from a Cn* partial meet pseudo-contraction.
This will use the definition of an incision function derived
from a selection function:

Definition 8 (Incision function associated to a selection
function [18]). Let 𝑔 be a selection function for 𝑋. The
function 𝑓 𝑔 defined as

𝑓 𝑔(Ker[𝑋 , 𝛼]) = 𝑋 ⧵⋂𝑔(Rem[𝑋 , 𝛼])

is the 𝑔-associated incision function for 𝑋.

Theorem 9. [18] The function 𝑓 𝑔 (as in Definition 8) is
an incision function for 𝑋.

As mentioned earlier, Cn* kernel pseudo-contraction
subsumes Cn* partial meet pseudo-contraction. The fol-
lowing proposition shows the explicit construction:

Proposition 10. If pmcCn*𝑔 is a Cn* partial meet pseudo-
contraction, then it is equivalent to the Cn* kernel pseudo-
contraction kcCn*𝑓 𝑔

.

Proof. Let pmcCn*𝑔 be a Cn* partial meet pseudo-contrac-
tion. We can rewrite it as follows:

pmcCn*𝑔 (𝐵, 𝛼)

= ⋂𝑔(Rem[Cn*(𝐵), 𝛼])

= Cn*(𝐵) ⧵ [Cn*(𝐵) ⧵⋂𝑔(Rem[Cn*(𝐵), 𝛼])]

= Cn*(𝐵) ⧵ 𝑓 𝑔(Ker[𝑋 , 𝛼])

= kcCn*𝑓 𝑔
(𝐵, 𝛼),

where 𝑓 𝑔 is the incision function defined as in Defini-
tion 8 (for 𝑋 = Cn*(𝐵)).

In general, not every kernel contraction is equiva-
lent to a partial meet contraction. By taking Cn* as the
identity function, Cn* partial meet and kernel pseudo-
contractions become partial meet and kernel contractions
for belief bases, which means that they are not equiv-
alent. Therefore, Cn* kernel pseudo-contractions may
not have the same properties as Cn* partial meet pseudo-
contractions.
Since inclusion* implies logical inclusion for every

subclassical Cn* [14], we can see that a Cn* kernel pseudo-
contraction is indeed a pseudo-contraction as long as Cn*
satisfies subclassicality. If Cn* also satisfies inclusion,
then the following property holds:

(logical core-retainment) If 𝛽 ∈ 𝐵 ⧵ c(𝐵, 𝛼), then

there is a 𝐵′ such that 𝐵′ ⊆ Cn(𝐵) and 𝛼 ∈ Cn(𝐵′ ∪ {𝛽}) ⧵
Cn(𝐵′).

Observation 11. If Cn* satisfies subclassicality and in-
clusion, then any operation that satisfies core-retainment*
also satisfies logical core-retainment.

A desirable property that is not necessarily satisfied
by kernel contractions (hence, not always satisfied by
Cn* kernel pseudo-contractions) is relative closure [19]:

(relative closure) 𝐵 ∩ Cn(c(𝐵, 𝛼)) ⊆ c(𝐵, 𝛼).

Nonetheless, kernel contractions and Cn* kernel
pseudo-contractions satisfy relative closure if they are
smooth:
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Definition 12 (Smooth incision function and smooth
kernel contraction [6]). An incision function 𝑓 for 𝑋 is
smooth if 𝑋 ′ ∩ 𝑓 (Ker[𝑋 , 𝛼]) ≠ ∅ for all 𝑋 ′ ⊆ 𝑋 such that
Cn(𝑋 ′) ∩ 𝑓 (Ker[𝑋 , 𝛼]) ≠ ∅. A kernel (pseudo-)contrac-
tion is smooth if its incision function is smooth.

Proposition 13. If 𝑓 is smooth and Cn* satisfies inclu-
sion, then the Cn* kernel pseudo-contraction cCn*𝑓 satisfies
relative closure.

Proof sketch. If the proposition does not hold, then there
must be a sentence 𝛽 ∈ (𝐵 ∩ Cn(cCn*𝑓 (𝐵, 𝛼))) such that

𝛽 ∉ cCn*𝑓 (𝐵, 𝛼), and 𝛽 must be in 𝑓 (Ker[Cn*(𝐵), 𝛼]) and
in Cn*(𝐵) due to inclusion of Cn*. The set 𝐵′ ∶=
𝐵⧵𝑓 (Ker[Cn*(𝐵), 𝛼]) is such that 𝛽 ∈ Cn(𝐵′) from its defi-
nition, thusCn(𝐵′)∩𝑓 (Ker[Cn*(𝐵), 𝛼]) is non-empty, and
smoothness of 𝑓 implies that 𝐵′ ∩ 𝑓 (Ker[Cn*(𝐵), 𝛼]) ≠ ∅,
which contradicts the definition of 𝐵′.

The vacuity postulate states that the set should re-
main unchanged if it does not entail the sentence to be
contracted:

(vacuity) If 𝛼 ∉ 𝐵, then c(𝐵, 𝛼) = 𝐵.

Cn* kernel pseudo-contraction does not satisfy vacuity:
as shown by [13], it is not satisfied by Cn* partial meet
pseudo-contraction. However, a weaker version of this
property is satisfied:

(vacuity*) If 𝛼 ∉ Cn(𝐵), then c(𝐵, 𝛼) = Cn*(𝐵).

Proposition 14. If Cn* satisfies subclassicality, an oper-
ation that satisfies inclusion* and core-retainment* also
satisfies vacuity*.

Proof sketch. Inclusion* implies that c(𝐵, 𝛼) ⊆ Cn*(𝐵),
and ⊇ is a consequence of core-retainment* and
the assumptions that Cn* is subclassical and Cn is
Tarskian.

4. Pseudo-contraction plug-in for
Protégé: a prototype

We have implemented a prototype of a tool that com-
putes Cn* (partial meet and kernel) pseudo-contractions.
The algorithms for obtaining remainder and kernel sets
were adapted from Guimarães’ repository [20]7. It is a
Protégé plug-in that provides a tab which can be added
to the program window. The user can type the sentence
to be contracted using Manchester syntax [21] and the
traditional notation of Description Logics is displayed
below the input field, as shown in Figure 2.

Besides the sentence 𝛼 to be removed, the user chooses:

7https://gitlab.com/rfguimaraes/owl-change

Figure 2: Screenshot of Protégé window with the pseudo-
contraction tab.

• Cn*: the types of consequences that will be gen-
erated by the reasoner before the operation;

• construction: partial meet or kernel;

• strategies: methods used to compute the remain-
der and kernel sets (see: [22, 23, 24, 25, 20]).

After the user clicks on Run, the program obtains the
set Cn*(𝒪) from the original ontology 𝒪 and computes
Rem[Cn*(𝒪), 𝛼] or Ker[Cn*(𝒪), 𝛼], according to the cho-
sen construction. The remainders or kernels are then
shown on a dialogue window, where they can be se-
lected by the user. The kernel set and the incision func-
tion discussed in Example 6 are depicted in Figure 3
(it contains more kernels than in the example because
the consequence generator Class assertions is more gen-
eral than Cn*break and generates the additional sentence
𝑠 ∶ 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛).
In all cases, the sentences that will be removed are

displayed in red. To avoid cluttering the window, Decla-
ration sentences and obvious tautologies (such as 𝑎 ∶ ⊤
and 𝐶 ⊑ ⊤) are omitted. After a click on the button
Execute operation, the plug-in transforms the active on-
tology 𝒪 into pmcCn*𝑔 (𝒪, 𝛼) or kcCn*𝑓 (𝒪, 𝛼), where Cn* is
determined by the selected sentence generators and the
chosen remainders or kernel elements define the function
𝑔 or 𝑓 .
The plug-in is written in Java 8 and supports Protégé

5.5.0, which is the latest version at the time of writing. It
uses OWL API8 4.2.5 to manipulate OWL objects9. The
source code is available on GitLab10.

8http://owlcs.github.io/owlapi/
9Version 5.1.17 of OWL API is already available, but it is not sup-
ported by Protégé yet, which is why we had to use a previous
version.
10The source code is publicly available in a GitLab repository: https:
//gitlab.com/viniciusbm/pseudo-contraction-protege-plugin.
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Figure 3: Screenshot of Protégé window with the kernel set
of Example 6.

5. Ontology Repair
Ontology Repair consists in transforming an ontology so
that it does not imply a certain formula. In what follows,
we define the main concepts based on the presentation
given by [12]. Consider that 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩ is an ontology
consisting of a static and a refutable part (𝒪𝑠 and 𝒪𝑟,
respectively), which are assumed to be disjoint.11 The
static part contains the axiomswhichwewant to preserve
when we repair the ontology, while the refutable part
contains those which we are willing to give up if needed.
We assume that the separation into static and refutable
is given.

Definition 15 (Repair). Let 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩ be an ontology
and let 𝛼 be a sentence entailed by 𝒪 but not by 𝒪𝑠. An
ontology 𝒪 ′ is a repair of 𝒪 with respect to 𝛼 if Cn(𝒪𝑠 ∪
𝒪 ′) ⊆ Cn(𝒪) ⧵ {𝛼}.

Classically, a repair consists of a subset of the refutable
part of the ontology:

Definition 16 (Classical repair). A repair 𝒪 ′ of the on-
tology 𝒪with respect to the sentence 𝛼 is a classical repair
if it is contained in 𝒪𝑟.

In order to preserve as much knowledge as possible,
we look for an optimal repair (which in general does not
exist [12]):

11The notation ⟨𝒪𝑠, 𝒪𝑟⟩ is meant to represent the set 𝒪𝑠 ∪ 𝒪𝑟 in a way
that makes it possible to tell if a sentence is in the static part or in
the refutable part.

Definition 17 (Optimal repair). A repair 𝒪 ′ of the on-
tology 𝒪 with respect to the sentence 𝛼 is an optimal
repair if no other repair 𝒪″ (of 𝒪 w.r.t. 𝛼) is such that
Cn(𝒪𝑠 ∪ 𝒪 ′) ⊂ Cn(𝒪𝑠 ∪ 𝒪″).

An optimal classical repair is a classical repair which
is optimal in the sense that no classical repair contains it.
Unlike optimal repairs, optimal classical repairs always
exist.

In order to find classical repairs, a construction based
on justifications and hitting sets can be used. Justifica-
tions are minimal subsets of a base that imply the un-
wanted sentence:

Definition 18 (Justification [9]). Let 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩ be an
ontology and 𝛼 a sentence entailed by 𝒪 but not by 𝒪𝑠. A
justification for 𝛼 in 𝒪 is an inclusion-minimal subset 𝐽
of 𝒪𝑟 such that 𝛼 ∈ Cn(𝒪𝑠 ∪ 𝐽 ). We will denote the set of
all justifications for 𝛼 in 𝒪 as Just(𝒪, 𝛼).

The definition above is often presented without parti-
tioning the ontology, which corresponds to a particular
case where 𝒪𝑟 = ∅.
[26] has proposed an algorithm to debug incoherent

ontologies inspired by Reiter’s hitting set tree [22]. Other
authors [9, 24, 11] extended and generalised this algo-
rithm to find all justifications for any given entailment.

Definition 19 (Hitting set [22]). Given a set 𝒥 of justifi-
cations for a sentence in an ontology, a hitting set of 𝒥 is
a set 𝐻 of sentences contained in⋃𝒥 such that 𝐻 ∩𝐽 ≠ ∅
for every 𝐽 ∈ 𝒥.

A repair 𝒪 ′ of 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩ with respect to 𝛼 is ob-
tained by computing an inclusion-minimal hitting set
𝐻 of 𝐽𝑢𝑠𝑡(𝒪, 𝛼) and defining 𝒪 ′ as the set 𝒪𝑟 after the
removal of each sentence in 𝐻.

Example 20. Let 𝛼 be the sentence 𝑎𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 ∶ 𝑃𝑒𝑟𝑠𝑜𝑛.
Consider the knowledge base 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩, where 𝒪𝑠 =
{𝑎𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 ∶ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑃𝑟𝑜𝑔𝑟𝑎𝑚} and

𝒪𝑟 = {𝑎𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 ∶ 𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 ,
𝑎𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 ∶ 𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟 ,
𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 ⊔ 𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟 ⊑ 𝑃𝑒𝑟𝑠𝑜𝑛}.

In order to obtain a repair of the ontology 𝒪 with re-
spect to 𝛼, we start by computing the set of justifica-
tions 𝒥, which in this case is {{𝑎𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 ∶ 𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 ,
𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 ⊔ 𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟 ⊑ 𝑃𝑒𝑟𝑠𝑜𝑛}, {𝑎𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 ∶
𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟 , 𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 ⊔ 𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟 ⊑ 𝑃𝑒𝑟𝑠𝑜𝑛}}. Then,
it obtains a minimal hitting set of 𝒥, which may be
the set 𝐻 ∶= {{𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 ⊔ 𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟 ⊑ 𝑃𝑒𝑟𝑠𝑜𝑛}}.
Lastly, it returns the set obtained by removing from
𝒪𝑟 the elements of 𝐻, i.e. the set 𝒪 ′ ∶= {𝑎𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 ∶
𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 , 𝑎𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 ∶ 𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟}.
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A special case of Ontology Repair is ABox Repair,
where the TBox is fixed, i.e., the TBox is contained in 𝒪𝑠.
It is easy to see that when 𝒯 = 𝒪𝑠 and 𝒜 = 𝒪𝑟, an ABox
repair is an optimal repair according to Definition 17.
Previously, we have shown that contraction opera-

tions in classical Belief Revision are too restrictive for
belief bases because of the inclusion postulate, and we
analysed pseudo-contraction operations — a generalisa-
tion of contraction that satisfies logical inclusion rather
than inclusion. Similarly, in Ontology Repair, classical
repairs do not allow the inclusion of new sentences, and
the same issue is present: sentences are either kept or
removed altogether. In our Example 20, the sentence
𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 ⊔ 𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟 ⊑ 𝑃𝑒𝑟𝑠𝑜𝑛 was discarded, but we
might want to replace it with a less constraining sentence
that preserves some of the original information. A very
similar idea was introduced by [12] in Ontology Repair:
in a gentle repair, one can either remove a sentence or
substitute it with a weaker version, retaining part of the
information it represented.

Definition 21 (Weakening [12]). A sentence 𝛼1 is
weaker than a sentence 𝛼2 if Cn({𝛼1}) ⊂ Cn({𝛼2}).

Definition 22 (Gentle Repair [12]12). Let 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩
be an ontology and let 𝛼 be a sentence entailed by 𝒪 but
not by 𝒪𝑠. An ontology 𝒪 ′ is a gentle repair of 𝒪 with
respect to 𝛼 if Cn(𝒪𝑠 ∪ 𝒪 ′) ⊆ Cn(𝒪) ⧵ {𝛼} and, for every
𝜑 ∈ 𝒪 ′, either 𝜑 ∈ 𝒪𝑟 or 𝜑 is weaker than 𝜓 for some
𝜓 ∈ 𝒪𝑟 ⧵ 𝒪 ′.

The algorithm that computes a gentle repair is very
similar to the procedure described earlier. The only differ-
ence is that 𝒪 ′ is defined by replacing sentences that are
in 𝐻 with weaker versions rather than removing them.
More specifically, for each 𝛽 that would be removed by
the original algorithm, we replace it with a 𝛽′ weaker
than 𝛽 such that 𝛼 ∉ Cn (𝒪𝑠 ∪ (𝐽 ⧵ {𝛽}) ∪ {𝛽′}) for ev-
ery 𝐽 ∈ 𝒥 such that 𝛽 ∈ 𝐽. Such a 𝛽′ always exists: a
tautology satisfies the requirements (note, though, that
replacing a sentence with a tautology is logically equiva-
lent to removing it, which means that a classical repair is
obtained if we only use tautologies). In order to illustrate
what is different in the outcome of this algorithm, we
will use the same example:

Example 23. Consider again the problem discussed in
Example 20. Starting with 𝒪 ′ = 𝒪𝑟, we compute 𝒥 and 𝐻
as before. Then, instead of removing the sentence 𝛽 ∶=
𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟 ⊔ 𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟 ⊑ 𝑃𝑒𝑟𝑠𝑜𝑛, it is replaced with a
weaker version, such as 𝛽′ ∶= (𝐶ℎ𝑒𝑠𝑠𝑃 𝑙𝑎𝑦𝑒𝑟⊔𝐺𝑜𝑃𝑙𝑎𝑦𝑒𝑟)⊓
¬𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ⊑ 𝑃𝑒𝑟𝑠𝑜𝑛. This procedure is repeated
until the set 𝒪𝑠 ∪ 𝒪 ′ fails to entail 𝛼. In our example,

12In [12], the concept of gentle repair has not been formally defined,
only explained in intuitive terms. Wewill use this definition, which
we proposed in [27].

replacing 𝛽with 𝛽′ is enough to prevent such entailment,
and the algorithm stops, returning the repair {𝒪𝑟 ⧵ {𝛽}) ∪
{𝛽′}.

A modified version of the procedure above was pro-
posed by [12] where, instead of weakening each ele-
ment of the minimal hitting set, only a single formula
in each justification needs to be changed. Starting with
𝒪𝑟 = 𝒪 ′, if 𝛼 ∈ Cn(𝒪𝑠 ∪ 𝒪 ′), a single justification 𝐽 for
𝛼 in 𝒪𝑠 ∪ 𝒪 ′ is computed, and for some arbitrary sen-
tence 𝛽 in 𝐽, we replace it with a weaker 𝛽′ such that
𝛼 ∉ Cn (𝒪𝑠 ∪ (𝐽 ⧵ {𝛽}) ∪ {𝛽′}) (as discussed earlier, such
as 𝛽′ always exists). [12] remark that as the unmodi-
fied version requires the computation of minimal hitting
sets, which is expensive, the modified version has an
important advantage, even though both may consume
exponential time [12]. They are guaranteed to stop after
a number of steps that grows at most exponentially in
the size of the refutable part [12].

6. Correspondence between
Belief Revision and Repairs in
Description Logics

In this section, we will analyse the close relationship
between the concepts and constructions presented for
Ontology Repair and Belief Revision.

We start by giving two definitions that generalise sev-
eral concepts in the literature.

Definition 24 (Maximal Non-Implying Subsets [27]).
Let 𝐵 be a knowledge base, 𝛼 a sentence, and Φ a set
of static sentences (i.e. which should be preserved in any
operation). The set of maximal 𝛼-non-implying subsets
of 𝐵 with respect to Φ, denoted by MaxNon(𝐵, 𝛼, Φ), is
such that 𝑋 ∈ MaxNon(𝐵, 𝛼, Φ) if and only if 𝑋 ⊆ 𝐵,
𝛼 ∉ Cn(Φ ∪ 𝑋), and there is no 𝑌 such that 𝑋 ⊂ 𝑌 ⊆ 𝐵
and 𝛼 ∉ Cn(Φ ∪ 𝑌 ).

For brevity, we shall omit the last argument ofMaxNon
whenever it is empty: MaxNon(𝐵, 𝛼, ∅) is the same as
MaxNon(𝐵, 𝛼).

Remark 25 ([27]). If Φ ⊆ 𝐵, then the maximal 𝛼-non-
implying subsets of 𝐵 with respect to Φ contain all of the
elements of Φ, i.e., 𝑋 ⊇ Φ for every 𝑋 ∈ MaxNon(𝐵, 𝛼, Φ).

Definition 24 corresponds to a remainder if Φ = ∅, i.e.,
MaxNon(𝐵, 𝛼) = Rem[𝐵, 𝛼].

Definition 26 (Minimal Implying Subsets [27]). Let 𝐵
be a knowledge base, 𝛼 a sentence, and Φ a set of static
sentences. The set of minimal 𝛼-implying subsets of 𝐵
with respect toΦ, denoted byMinImp(𝐵, 𝛼, Φ), is such that
𝑋 ∈ MinImp(𝐵, 𝛼, Φ) if and only if 𝑋 ⊆ 𝐵, 𝛼 ∈ Cn(Φ ∪𝑋),
and there is no 𝑌 ⊂ 𝑋 such that 𝛼 ∈ Cn(Φ ∪ 𝑌 ).
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As in the previous definition, the last argument will
be omitted if empty: MinImp(𝐵, 𝛼) = MinImp(𝐵, 𝛼, ∅).

Remark 27 ([27]). The minimal 𝛼-implying subsets of 𝐵
with respect toΦ do not contain elements ofΦ, i.e.,𝑋∩Φ = ∅
for every 𝑋 ∈ MinImp(𝐵, 𝛼, Φ).

If Φ = ∅, Definition 26 corresponds to Definition 3,
i.e., MinImp(𝐵, 𝛼) = Ker[𝐵, 𝛼]. Moreover, Definition 26
is closely related to Definition 18: MinImp(𝐵, 𝛼, Φ)
= Just(⟨Φ, 𝐵 ⧵ Φ⟩ , 𝛼), or conversely, Just(⟨𝒪𝑠, 𝒪𝑟⟩ , 𝛼) =
MinImp(𝒪𝑠 ∪ 𝒪𝑟, 𝛼 , 𝒪𝑠). As shown in [27], the definitions
ofMaxNon andMinImp also encompass concepts such
as MaNAs (maximal non-axiom sets), MinAs (minimal
axiom sets), MISs (minimal inconsistent sets) and argu-
ments [28, 29, 30].
We can now analyse the relation between the defi-

nitions and operations of Belief Revision and Ontology
Repair.
Let 𝐵 ⊆ 𝔏 and 𝛼 ∈ 𝔏. The following two properties

follow straightly from Definition 3 and Definition 18.

Proposition 28 (Kernel ∼ Justification [27]). If 𝛼 ∈
Cn(𝐵), then a set 𝑋 is an 𝛼-kernel of 𝐵 with respect to 𝛼 if
and only if 𝑋 is a justification for 𝛼 in ⟨∅, 𝐵⟩.

The set of those sets, which we denote by
MinImp(𝐵, 𝛼), unifies the concepts of the following
proposition:

Remark 29 (Kernel set ∼ Set of all justifications [27]).
If a sentence 𝛼 and a set 𝐵 are such that 𝛼 ∈ Cn(𝐵), then
Ker[𝐵, 𝛼] = Just(⟨∅, 𝐵⟩ , 𝛼).

A classical repair (Definition 16) can be seen as a con-
traction operation that satisfies two of Hansson’s postu-
lates for base contraction (success and inclusion) [27].

The following proposition, which is an immediate con-
sequence of the upper bound property [31], will be useful
to show the connection between partial meet base con-
traction and classical repairs.

Proposition 30 (Existence of 𝛼-remainder preserving 𝒪𝑠
[27]). Let 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩ be an ontology and 𝛼 be a sentence
entailed by 𝒪 but not by 𝒪𝑠. Then, there is at least one
𝛼-remainder 𝑋 of 𝒪𝑠 ∪ 𝒪𝑟 such that 𝒪𝑠 ⊆ 𝑋.

Now we can show that partial meet base contractions
that include the static part of the ontology yield classical
repairs.

Theorem 31 (Partial meet base contraction ⟹ Classi-
cal repair [27]). Under the conditions of Proposition 30, if
𝑔 is such that 𝒪𝑠 ⊆ 𝑋 for every 𝑋 ∈ 𝑔(Rem[𝒪, 𝛼]), then the
operation Rep𝑔 defined as Rep𝑔(𝒪, 𝛼) = pmc𝑔(𝒪, 𝛼) ⧵ 𝒪𝑠
yields a classical repair.

We can now show the relationship between pseudo-
contractions and gentle repairs.

Proposition 32 (Gentle Repair ⟹ Pseudo-
contraction). LetGRep be an operation that yields a gentle
repair. Define the operation c(GRep) as

c(GRep)(𝐵, 𝛼) = {
GRep(⟨∅, 𝐵⟩ , 𝛼), if 𝐵 ⊧ 𝛼;
𝐵, otherwise.

Then, c(GRep) is a pseudo-contraction operation.

The result above follows from Definition 22, which
guarantees that c(GRep) satisfies success and logical in-
clusion.

For the other direction (pseudo-contractions as gentle
repairs), we will introduce general partial meet pseudo-
contractions and general kernel pseudo-contractions.
Pseudo-contractions allow the result to contain some
weakened versions of formulae that were originally in
the belief base. This can be achieved by applying a partial
meet or kernel operation on a “weak closure” of the belief
base [14]. However, as this closure does not depend on
the sentence that is being contracted, we cannot add only
weakenings of formulae that would be removed. General
(partial meet and kernel) pseudo-contractions employ a
consequence operator (Cn**) that depends on both the
set of beliefs and the input sentence. Before defining
them, we need the following concepts:

Definition 33 (Extension of a selection function [32,
adapted]). Let 𝑔 be a selection function for 𝐵, and let 𝐵 ⊆
𝐵∗ ⊆ 𝔏. We say that a selection function 𝑔′ for 𝐵∗ is an
extension of 𝑔 to 𝐵∗ if 𝑔′ is such that for every 𝛼 ∈ 𝔏 and
𝑋 ∈ 𝑔(MaxNon(𝐵, 𝛼)) there is a 𝑌 ∈ 𝑔′(MaxNon(𝐵∗, 𝛼))
such that 𝑋 ⊆ 𝑌.

Definition 34 (Extension of an incision function). Let 𝑓
be an incision function for a set of sentences 𝐵, and let 𝐵 ⊆
𝐵∗ ⊆ 𝔏. The incision function 𝑓 ′ for 𝐵∗ is an extension
of 𝑓 for 𝐵∗ if 𝑓 ′(MinImp(𝐵∗, 𝛼)) ⊇ 𝑓 (MinImp(𝐵∗, 𝛼)) for
all sentences 𝛼.

The general partial meet pseudo-contraction13 was
proposed by [32] and generalised by [14] as a way to
weaken sentences in belief base pseudo-contractions, in-
stead of removing them:

Definition 35 (General partial meet pseudo-contrac-
tion). [32, 14] Let 𝛼 ∈ 𝔏, 𝐵 ⊆ 𝔏, Cn’ be a conse-
quence relation, and 𝑔 be a selection function for 𝐵. Let
us define Cn**(𝐵, 𝛼) ∶= Cn’(𝐵 ⧵ ⋂𝑔(MaxNon(𝐵, 𝛼))) ∪
𝐵, and let 𝑔′ be an extension of 𝑔 to Cn**(𝐵, 𝛼).
The general partial meet pseudo-contraction of 𝐵 by
𝛼, denoted by gpmcCn**𝑔,𝑔′ (𝐵, 𝛼), is defined as the set
⋂𝑔′(MaxNon(Cn**(𝐵, 𝛼), 𝛼)).
13In [27], this operation was referred to as “two-place partial meet
pseudo-contraction”, which in [14] refers to a more general type
of operations.
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We will use a similar idea to define the general kernel
pseudo-contraction:

Definition 36 (General kernel pseudo-contraction). Let
𝛼 ∈ 𝔏, 𝐵 ⊆ 𝔏, Cn’ be a consequence relation, and 𝑓 be
an incision function for 𝐵. Let us define Cn**(𝐵, 𝛼) ∶=
𝐵 ∪ Cn’(𝑓 (MinImp(𝐵, 𝛼))), and let 𝑓 ′ be an extension of
𝑓 to Cn**(𝐵, 𝛼). The general kernel pseudo-contraction
of 𝐵 by 𝛼, denoted by gkcCn**𝑓 ,𝑓 ′ (𝐵, 𝛼), is defined as the set

Cn**(𝐵, 𝛼) ⧵ 𝑓 ′(MinImp(Cn**(𝐵, 𝛼), 𝛼)).

Consider the following properties for selection and
incision functions:

Definition 37 (𝐴-inclusion [27]). Let 𝐵 ⊆ 𝔏, and let
𝐴 ⊆ 𝐵. A selection function 𝑔 for 𝐵 satisfies𝐴-inclusion if,
for all 𝛼 ∉ Cn(𝐴), 𝐴 ⊆ 𝑋 for every 𝑋 ∈ 𝑔(MaxNon(𝐵, 𝛼)).

Definition 38 (𝐴-exclusion). Let 𝐵 ⊆ 𝔏, and let 𝐴 ⊆
𝐵. An incision function 𝑓 for 𝐵 satisfies 𝐴-exclusion if
𝐴 ∩ 𝑓(MinImp(𝐵, 𝛼)) = ∅ for all 𝛼 ∉ Cn(𝐴).

Intuitively, a selection function (for 𝐵) that satisfies
𝐴-inclusion only selects 𝛼-remainders that preserve 𝐴,
unless 𝛼 itself is entailed by𝐴, in which case𝐴 cannot be a
subset of any 𝛼-remainder; similarly, an incision function
(for 𝐵) that satisfies 𝐴-exclusion only selects sentences
that are not in 𝐴, preserving 𝐴 in the operation, unless
𝛼 is entailed by 𝐴, in which case it is impossible to have
an incision function that does not contain elements of 𝐴.

Lemma 39. Consider a general partial meet pseudo-con-
traction defined as in Definition 35. For every sentence 𝜑
in 𝐵 ⧵ ⋂𝑔(MaxNon(𝐵, 𝛼)), there is a set 𝑋 such that 𝑋 ∈
𝑔′(MaxNon(Cn**(𝐵, 𝛼), 𝛼)) and 𝜑 ∉ 𝑋.

Proof sketch. The conditions imply the existence of a
set 𝑌 ∈ 𝑔(MaxNon(𝐵, 𝛼)) such that 𝜑 ∉ 𝑌. Since 𝑔′
is an extension of 𝑔 to Cn**(𝐵, 𝛼), there is an 𝑋 ∈
𝑔′(MaxNon(Cn**(𝐵, 𝛼), 𝛼)) such that 𝑌 ⊆ 𝑋, and such 𝑋
cannot contain 𝜑 due to the definition of remainder.

If a consequence operator returns only sentences that
are in the given set or are weaker than some of its sen-
tences, then we say it is strictly weakening:

Definition 40 (Strictly weakening operator [27]). A con-
sequence operator Con is strictly weakening if, for every
𝜑 ∈ 𝔏 and every 𝐵 ⊆ 𝔏, 𝜑 ∈ Con(𝐵) if and only if 𝜑 ∈ 𝐵
or Con({𝜑}) ⊂ Con({𝜓 }) for some 𝜓 ∈ 𝐵.

Now we can show under which conditions a general
(partial meet or kernel) pseudo-contraction yields a gen-
tle repair.

Lemma 41. Let c be a contraction operation for a set
of sentences 𝐵. Let cCn** be a pseudo-contraction opera-
tion such that cCn**(𝐵, 𝛽) ⊆ Cn**(𝐵), where (𝐵 ⧵ c(𝐵, 𝛽))∩

cCn**(𝐵, 𝛽) = ∅ and Cn**(𝐵) ∶= 𝐵 ∪ Cn’(𝐵 ⧵ c(𝐵, 𝛽)) for
all sentences 𝛽 and the consequence relation Cn’ is mono-
tonic, subclassical and strictly weakening. If the ontology
𝒪 ∶= ⟨𝒪𝑠, 𝒪𝑟⟩ is such that 𝒪𝑠 ⊆ c(𝒪, 𝛽) ∩ cCn**(𝒪, 𝛽) for
all sentences 𝛽 and 𝛼 is a sentence such that 𝛼 ∉ Cn(𝒪𝑠),
then the set 𝒪 ′ ∶= cCn**(𝒪, 𝛼) ⧵ 𝒪𝑠 is a gentle repair of 𝒪
with respect to 𝛼.

Proof sketch. Using monotonicity, inclusion and idempo-
tence of Cn, and also subclassicality of Cn’ and success
of cCn**, we can show that 𝒪 ′ is a repair, and the extra
condition required for it to be a gentle repair is derived
from the assumption that Cn’ is strictly weakening.

Theorem 42 (When a general partial meet pseudo-
contraction is a gentle repair [27, adapted]). Let
gpmcCn**𝑔,𝑔′ and Cn** be as in Definition 35, Cn** based
on a consequence relation Cn’ that satisfies subclassical-
ity, 𝑔 and 𝑔′ satisfy 𝒪𝑠-inclusion, Cn’ be monotonic and
strictly weakening, and 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩. If 𝛼 ∉ Cn(𝒪𝑠), then
𝒪 ′ ∶= gpmcCn**𝑔,𝑔′ (𝒪, 𝛼) ⧵ 𝒪𝑠 is a gentle repair of 𝒪 w.r.t. 𝛼.

Proof sketch. The result follows from Lemma 41 by tak-
ing pmc𝑔 as c and gpmcCn**𝑔,𝑔′ as cCn**.

Theorem 43 (When a general kernel pseudo-contraction
is a gentle repair). Let gkcCn**𝑓 ,𝑓 ′ and Cn** be as in Defini-
tion 36, Cn** based on a consequence relation Cn’ that
satisfies subclassicality, 𝑓 and 𝑓 ′ satisfy 𝒪𝑠-exclusion, Cn’
be monotonic and strictly weakening, and 𝒪 = ⟨𝒪𝑠, 𝒪𝑟⟩.
If 𝛼 ∉ Cn(𝒪𝑠), then 𝒪 ′ ∶= gkcCn**𝑓 ,𝑓 ′ (𝒪, 𝛼) ⧵ 𝒪𝑠 is a gentle
repair of 𝒪 w.r.t. 𝛼.

Proof sketch. The result follows from Lemma 41 by tak-
ing kc𝑓 as c and gkcCn**𝑓 ,𝑓 ′ as cCn**.

7. Conclusions
In this paper, we have introduced a construction for
pseudo-contraction based on kernel contraction, and we
have characterised it by means of a representation theo-
rem. Furthermore, we have implemented a prototype of
a tool that computes Cn* partial meet and kernel pseudo-
contractions, built upon existing software that computes
remainder and kernel sets. Lastly, we have analysed the
similarities between some concepts and definitions of
Belief Revision and Ontology Repair (more specifically,
pseudo-contractions and gentle repairs, respectively), ex-
tending previous work [27] and showing that the new
operation that we have introduced is also connected to
gentle repairs. The last two theorems show that gentle
repairs can be constructed by restricted forms of pseudo-
contraction. One question that remains is whether we
need these restrictions from the point of view of Ontol-
ogy Repair, i.e., whether it makes sense to define more
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general forms of repair that lie in between gentle and
classical repairs.
In the future, we would like to evaluate the perfor-

mance of pseudo-contractions in both artificial and real-
world ontologies in order to compare the practical effi-
ciency of the constructions. In particular, it would be
useful to apply the operations to benchmarks designed
for ontology repair problems such as [33].

Also, we think it would be relevant to explore families
of Cn* consequence operators that are interesting for
theoretical or practical purposes. As an example, we can
think of approximations as defined in [34] as generating
consequences in less expressive logics.
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