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Abstract
We introduce a formalism for bipolar argumentation frameworks that combines different proposals from the literature and
results in a one-to-one correspondence with logic programming. We derive the correspondence by presenting translation
algorithms from one formalism to the other and by evaluating the semantic equivalences between them. We also show that
the bipolar model encapsulates distinct interpretations of the support relations studied the literature.
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1. Introduction
The ability to argue is essential to humans, as discussed
in philosophy since ancient times, in contexts ranging
from politics and law to science and arts [1, 2]. Within
artificial intelligence, argumentation has been boosted
by the seminal work of Dung (1995) on Abstract Argu-
mentation Frameworks (AAFs), where each argument
is understood as an abstract entity whose acceptance
depends only on its attack relations to other arguments.

Since Dung’s paper, the connections between argumen-
tation frameworks and other non-monotonic reasoning
formalisms has been investigated at length. One such
connection, put forward by Dung himself, is to logic
programming. That research agenda was further devel-
oped by Caminada et al. (2015), who managed to prove
equivalences between several of the semantics used by
both formalisms and to present translation algorithms
between them — not all correspondences were obtained
by them, however; in particular, the connection between
logic programming and AAFs breaks down in the con-
text of the latter semi-stable semantics. Proposals for
enlarged AAFs have been made and their equivalence to
logic programming has been explored. Particularly in-
teresting here are the Claim-augmented Argumentation
Frameworks [5, 6]. Such frameworks have each argu-
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ment explicitly associated with a claim. This apparently
minor change to AAFs leads to a nice translation to logic
programming and allows for further semantic equiva-
lences.

In a different direction, Dung’s abstract argumentation
frameworks have been extended with support relations
[7]. And the similarities between logic programming and
Bipolar Argumentation Frameworks, where supports in-
teract with attacks, have also been noted, for instance
by Alfano et al. (2020). Those authors have proposed al-
gorithms that translate different kinds of argumentation
frameworks, including bipolar ones, to logic programs
in order to evaluate their semantic differences. In addi-
tion to the steps previously proposed by Caminada et al.
(2015), Alfano et al. (2020) interpret the support relation
through non-negative atoms of the logic program.

Other relevant proposals have studied connections be-
tween logic programming and various argumentation
formalisms, for instance assumption-based ones [9, 10].
However, to the best of our knowledge, none of these pre-
vious proposals reaches a one-to-one correspondence be-
tween some family of argumentation frameworks expres-
sive enough to convey bipolarity and some well-known
logic programming formalism.

In this work we will address the relationship between
logic programming and argumentation frameworks by
combining existing proposals, in particular the ones by
Dvorák and Woltran (2019) and by Alfano et al. (2020).
In doing so, we reach the Bipolar Conclusion-augmented
Argumentation Framework and prove (for well-formed
and non-redundant frameworks) its one-to-one equiv-
alence to normal logic programming. The translation
algorithms between both formalisms are also introduced.
The proposed framework is able to encapsulate different
versions of the support relation in the literature.

In short, we show that a large family of bipolar argu-

49

mailto:victor.hugo.rocha@usp.br
mailto:fgcozman@usp.br
http://www.poli.usp.br/p/fabio.cozman
https://orcid.org/0000-0002-8984-7982
https://orcid.org/0000-0003-4077-4935
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


mentation frameworks is normal logic programming, and
vice-versa.

Section 2 briefly goes over needed background: ab-
stract argumentation frameworks and their bipolar ex-
tension; logic programs and their semantics. Section 3
starts with relevant results from the literature on the rela-
tionship between Dung’s framework and logic program-
ming and then introduces the conclusion-augmented ar-
gumentation frameworks, showing that they improve
on previous results by refining the equivalence between
various formalisms. The bipolar conclusion-augmented
argumentation model is later used to obtain a one-to-one
equivalence with logic programming while also offering
different interpretations of support. A novel discussion
about the framework and its relationship with other pro-
posals in the literature is developed in Section 4; finally,
Section 5 concludes and describes possible future work.

2. Argumentation Frameworks
and Logic Programming

In this section we review argumentation frameworks,
bipolar frameworks, logic programming, and some of
their semantics.

2.1. Abstract Argumentation Frameworks
(AAFs)

Dung’s argumentation frameworks are based on argu-
ments and attacks between them. Arguments are under-
stood as abstract entities whose internal structure is not
relevant.

Definition 1. An AAF is a tuple (𝒜,ℛ), where 𝒜 is the
set of arguments and ℛ is an attack relationship on 𝒜×𝒜.

An attack from an argument 𝐴 to another argument
𝐵, represented by 𝐴 → 𝐵, intuitively means that if 𝐴 is
accepted, 𝐵 cannot be. An AAF can be represented as a
graph structure, where nodes stand for arguments and
edges as the attack relation between them (see example
in Figure 1).

Dung defined semantics through extensions. The latter
represent sets of arguments that are acceptable according
to some criterion. In this text, however, we will use
labelings to define semantics [11].

Definition 2. A labeling ℒ of an AFF is a function ℒ :
𝒜 → {In,Out,Undecided}.

Some concepts needed later are:

Definition 3. An argument A ∈ 𝒜 is acceptable iff all
arguments 𝐵 such that 𝐵 → 𝐴 are not acceptable.

𝐴3 𝐴1 𝐴0 𝐴2 𝐴4

Figure 1: An Argumentation Graph as proposed by Dung.

Definition 4. A labeling ℒ of the arguments in an AFF is
conflict-free iff there are no arguments 𝐴 and 𝐵 in the set
of arguments labeled In for which 𝐴 → 𝐵.

Definition 5. A conflict-free labeling ℒ of 𝒜 is admissi-
ble iff for every argument 𝐴 labeled Out, there exists an
argument B labeled In such that 𝐵 → 𝐴.

We can define several semantics using these concepts:

Definition 6. An admissible labeling ℒ of an AAF is com-
plete iff for every argument 𝐴 with the label Undecided,
there are no arguments 𝐵 with the label In that attack 𝐴
and every acceptable argument with respect to the set of
arguments In is also labeled In.

Definition 7. A complete labeling ℒ of an AAF is pre-
ferred iff the argument set In is maximal.

Definition 8. A complete labeling ℒ of an AAF is stable
iff the argument set labeled Undecided is empty.

Definition 9. A complete labeling ℒ of an AAF is
grounded iff the argument set In is minimal.

Definition 10. A complete labeling ℒ of an AAF is semi-
stable iff the argument set Undecided is minimal.

There are still other possible semantics [11], but in this
paper we restrict ourselves to the previous ones.

2.2. Bipolar Argumentation Frameworks
(BAFs)

An argumentation scenario seems to require not only
attacks but also “positive” support relations between ar-
guments [12]. The definition of support relations, unlike
the attack relation, varies quite a bit in the literature
[13, 14]. In this text we stick to the three interpretations
explained by Cayrol and Lagasquie-Schiex (2013): the nec-
essary support [15, 16], the deductive support [17], and
the evidential support [18, 19]. A necessary support from
one argument 𝐴 to another 𝐵, represented by 𝐴 ⇒𝑛 𝐵,
means that if 𝐵 is accepted (received the label In), 𝐴 must
also be accepted. A deductive support from one argu-
ment 𝐴 to another 𝐵, on the other hand, is represented
by 𝐴 ⇒𝑑 𝐵, and means that if 𝐴 is accepted (received
the label In), 𝐵 must also be accepted. Finally, there are
two types of arguments in a BAF that contains evidential
support: prima-facie arguments, which do not need any
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𝐴3 𝐴1 𝐴0 𝐴2 𝐴4

Figure 2: A Bipolar Argumentation Graph.

support to be accepted, and common arguments, which
need to be supported by an accepted argument of the
first type to be accepted.

Regardless of the interpretation of the support relation,
a BAF can be defined as [7]:

Definition 11. A Bipolar Argumentation Framework
(BAF) is a tuple (𝒜,ℛ−,ℛ+), where 𝒜 represents the set
of arguments, ℛ− the attack relation and ℛ+ the support
relation.

As AFFs, BAFs can also be represented by graphs. Fig-
ure 2 depicts a BAF where nodes are arguments, edges
encode the attack relation and double edges encode the
support relation (for instance, 𝐴2 supports 𝐴4).

To handle support relations, the semantics, the label-
ing types and the acceptability criteria must be adapted.
Several proposals have been made in order to achieve
this, with differences in the way the relative strength
between attack and support relations is taken into ac-
count [20, 21]. We will follow the proposal by Cayrol and
Lagasquie-Schiex (2005).

We assume for now that support is of the necessary
type; one can proceed analogously for the other types of
support.

Once supports are taken into account, in addition to de-
feat by a traditional attack, an argument can be defeated
indirectly.

Definition 12. An argument𝐵 can be defeated indirectly
by a sequence 𝐴1𝑅1 ... 𝑅𝑛−1𝐵, where 𝑖 = 1, ..., 𝑛 − 2,
𝑅𝑖 = 𝑅+ and 𝑅𝑛−1 = 𝑅− or where 𝑖 = 2, ..., 𝑛 − 1,
𝑅𝑖 = 𝑅+ and 𝑅1 = 𝑅−.

Hence it makes sense to define the defeat/support of
an argument by a set.

Definition 13. Let 𝒮 ⊆ 𝒜 and 𝐴 ∈ 𝒜. The set 𝒮
defeats 𝐴 iff there is a direct or indirect defeat for 𝐴 from
some element of 𝒮 . The set 𝒮 supports 𝐴 iff there is a
sequence of the form 𝐴1𝑅1 ... 𝑅𝑛−1𝐴𝑛, 𝑛 ≥ 2, such that
𝑖 = 1, ..., 𝑛− 1, 𝑅𝑖 = 𝑅+ with 𝐴𝑛 = 𝐴 and 𝐴1 ∈ 𝒮 .

A set of arguments can also defend other arguments:

Definition 14. Let 𝒮 ⊆ 𝒜 and 𝐴 ∈ 𝒜. The set 𝒮
collectively defends 𝐴 iff for some set ℬ ⊆ 𝒜, if ℬ defeats
𝐴 then there is a 𝐶 ∈ 𝒮 such that 𝐶 defeats ℬ.

Given this, a conflict-free set and an admissible set can
be redefined:

Definition 15. Let 𝒮 ⊆ 𝒜. The set 𝒮 is conflict-free iff
there are no 𝐴,𝐵 ∈ 𝒮 such that 𝐴 defeats (directly or
indirectly) 𝐵.

Definition 16. Let 𝒮 ⊆ 𝒜. The 𝒮 set is admissible iff it
is conflict-free and defends all its elements.

We can then redefine the complete semantics for BAF:

Definition 17. A set 𝒮 ⊆ 𝒜 of arguments is complete iff
it is admissible and every argument 𝐴 that can be accepted
together with 𝒮 is part of 𝒮 .

From the definition of complete semantics, the pre-
ferred, grounded, stable and semi-stable semantics can
be adopted as before (as they are all special cases of the
complete semantics in which some label is maximized or
minimized).

2.3. Logic Programming and its Semantics
In this work we focus on propositional normal logic pro-
grams [4]:

Definition 18. A (normal) logic program 𝑃 is composed
by a finite set of rules. Each rule 𝑟 is an expression of the
form 𝑟 : 𝐻 :− 𝐴1, ..., 𝐴𝑛,not 𝐵1, ...,not 𝐵𝑛, where
𝐻 , 𝐴𝑖 and 𝐵𝑖 represent atoms and not is the classical
negation. 𝐻 represents the head of the formula, while the
others are the body. A formula without the body is called a
fact and is written as 𝐻 . The Herbrand Base of the program
𝑃 is the set 𝐻𝐵𝑃 of all atoms that appear in the program.

Example 1. The following is an example of a logic pro-
gram with Herbrand Base consisting of the atoms 𝑎, 𝑏, 𝑐,
𝑑:

𝑟0 : 𝑎 :− not 𝑐, 𝑟1 : 𝑏 :− not 𝑎,not 𝑏,

𝑟2 : 𝑐 :− not 𝑎, 𝑟3 : 𝑏 :− not 𝑏,

𝑟4 : 𝑑 :− 𝑐,not 𝑎.

Definition 19. A three-valued interpretation of a logic
program P is a pair 𝐼 = (𝒯 ,ℱ) such that 𝒯 ∩ ℱ = ∅
and that both 𝒯 and ℱ contain elements from the Her-
brand base of P. 𝒯 is understood as true, ℱ as false and
𝐻𝐵𝑃 \(𝒯 ∪ ℱ) as undecided.

A three-valued model of P is an interpretation such that
for each 𝑎 ∈ 𝐻𝐵𝑃 we have:

• 𝑎 is in 𝒯 if there is a rule whose head is 𝑎 = 𝐻
and where each 𝐴𝑖 is in 𝒯 ;

• 𝑎 is in ℱ if every rule whose head is 𝑎 = 𝐻 is such
that there is some 𝐴𝑖 in ℱ .

The reduct of P with respect to a three-valued interpreta-
tion ℐ , denoted P/ℐ , is a logic program constructed using
the following steps:
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• First, remove from P every rule that contains
not 𝐵 in its body for some 𝐵 ∈ 𝒯 ;

• Then, for each remaining rule, remove not 𝐵 from
the rule body if 𝐵 ∈ ℱ ;

• Finally, replace any remaining occurrences of
not 𝐵′ with a new 𝑢 symbol representing “un-
decided”.

So P/ℐ has a unique three-valued model with 𝒯 mini-
mum and ℱ maximum (with respect to the set inclusion).
We denote this model ΦP(ℐ).

It is then possible to define the semantics of a logic pro-
gram 𝑃 , given an interpretation 𝐼 = (𝒯 ,ℱ), in several
ways [4]:

Definition 20. A partial stable (P-stable) model of 𝑃 is
an interpretation 𝐼 such that ΦP(ℐ) = 𝐼 .

Definition 21. A model of 𝑃 is well-founded iff it is P-
stable and 𝒯 is minimal.

Definition 22. A model of 𝑃 is regular iff it is P-stable
and 𝒯 is maximal.

Definition 23. A model of 𝑃 is stable iff it is P-stable and
𝒯 ∪ ℱ = 𝐻𝐵𝑃 .

Definition 24. A model of 𝑃 is L-stable iff it is P-stable
and 𝒯 ∪ ℱ is maximal.

The definitions above were crafted by Caminada et al.
(2015) to emphasize connections with the corresponding
argumentation semantics.

3. Correspondences between
Argumentation Frameworks
and Logic Programs

In this section we look at equivalences between argu-
mentation frameworks and logic programming. We start
by presenting results in the literature and then introduce
the Conclusion-augmented Argumentation Frameworks
(CAF), where a small change in the representation sig-
nificantly improves the relationship between both for-
malisms. Furthermore, we expand CAFs by adding vari-
ous interpretations of the support relation between argu-
ments and discuss how those relations translate to logic
programming.

3.1. The Connection between Abstract
Argumentation Frameworks (AAFs)
and Logic Programs

To study possible equivalences between AAFs and logic
programs, one must consider translations from each other.
A suitable starting point is the WCG (Wu, Caminada and
Gabbay) algorithm [4], which is summarized below:

• Starting with a set of rules, process one rule at a
time;

• If a rule of the form 𝐻 :− not 𝐵1, . . . ,not 𝐵𝑛

is found, then generate an argument 𝐴 with rules
{𝐻 :− not 𝐵1, . . . ,not 𝐵𝑛}, vulnerabilities
Vul(𝐴) {𝐵1, . . . , 𝐵𝑛}, conclusion 𝐻 and a set of
sub-arguments that contain only 𝐴 itself ;

• If a rule of the form 𝐻 :− 𝐴1, . . . , 𝐴𝑚,not 𝐵1,
. . . ,not 𝐵𝑛 is found and assuming that each
𝐴𝑖 has an associated argument 𝐴𝑟𝑔𝑖, then gener-
ate an argument 𝐴 with a set of sub-arguments
𝐴𝑟𝑔𝑖, conclusion 𝐻 , rules composed by the union
of {𝐻 :− 𝐴1, . . . , 𝐴𝑚,not 𝐵1, . . . ,not 𝐵𝑛}
with the rules of each sub-argument and vulnera-
bilities Vul(𝐴) as the union of {𝐵1, . . . , 𝐵𝑛} with
the vulnerabilities of the sub-arguments;

• After going through all the rules, the relations
between arguments are established. If an argu-
ment 𝐴 has a conclusion that is present in the
vulnerabilities of another argument 𝐵, then 𝐴
attacks 𝐵. With this, the AAF is created.

Example 2. If we apply the WCG algorithm described
above to the rules in Example 1, we obtain the AAF shown
in Figure 1.

Once the logic program is translated into an argumen-
tation framework, we can apply any semantics to the lat-
ter and obtain a labeling ℒ at the argument level. To then
obtain the atom level (or “conclusion” level) labeling of
𝑃 , the following mapping [4] can be used: the labeling of
a conclusion is the one with the highest value among the
arguments that are associated with it. The order of values
between the labels is given by In > Undecided > Out
and the idea behind it is that each conclusion is repre-
sented by the argument that best defends it.

We then ask: if we apply some semantics at the argu-
ment level and map the labeling to the conclusions, is the
result equivalent to applying some other semantics di-
rectly to the logic program? The answer to this question
is positive as was shown in [4].

Theorem 1. (Theorems 19, 20, 21 and 22 of [4]). The
labels of conclusions obtained by the semantics P-stable,
regular, well-founded and stable in a logic program are
equivalent to those obtained by the complete, preferred,
grounded and stable semantics in an AFF respectively, with
the subsequent transformation to the conclusions level.

The attentive reader may have noticed that there is
a notable exception in Theorem 1. There is no equiva-
lence between the semi-stable and L-stable semantics.
Intuitively, this happens because all other semantics are
special cases of the P-stable models in logic programs and
of the complete semantics in argumentation, with one of
the labels maximized or minimized. For the labels In and
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Out this last process is equivalent both at the argument
and at the conclusion levels, but the same is not true for
the label Undecided. Consider the following example:

Example 3. If we apply the complete semantics to the AAF
in Figure 1, we get the following three solutions (expressed
as (In set, Undecided set, Out set)): (∅, {𝐴0, 𝐴1, 𝐴2, 𝐴3,
𝐴4}, ∅), ({𝐴0}, {𝐴3}, {𝐴1, 𝐴2,𝐴4}) and ({𝐴2, 𝐴4}, {𝐴1, 𝐴3},
{𝐴0}). From this, we obtain the conclusion labelings: (∅,
{𝑎, 𝑏, 𝑐, 𝑑}, ∅), ({𝑎}, {𝑏}, {𝑐, 𝑑}) and ({𝑐, 𝑑}, {𝑏}, {𝑎}). As it
can be seem, if the label In is maximized/minimized at
both argument and conclusion levels, we obtain the same
result. The same applies for the label Out. However, for the
label Undecided, at the argument level we obtain only one
solution by minimizing the label, while at the conclusion
level we get two solutions.

Despite this unfortunate feature of the semi-stable
semantics, it is our position that the semi-stable seman-
tics is the most appropriate semantics for argumentation.
Compare with the other semantics. The grounded se-
mantics, in situations of mutual attacks, does not reach
any decisions, while the preferred semantics is very per-
missive. And the stable semantics may fail to produce a
labeling when an Undecided label is unavoidable — in
an argumentative scenario however, we believe that not
arriving at some labeling is undesirable. We would thus
like to choose the semi-stable semantics, but this seems to
clash with our desire to obtain a correspondence between
argumentation frameworks and logic programs. In the
next subsection we show how to enlarge argumentation
frameworks to obtain our desired correspondences.

3.2. The Connection between
Conclusion-Augmented
Argumentation Frameworks (CAFs)
and Logic Programs

The first step in our pursuit of a complete correspondence
between argumentation frameworks and logic programs
is to augment arguments with their associated conclu-
sions. We do so to guarantee that semi-stable semantics
does have a correspondence in logic programming.

To do so, we adopt recent work on Claim-augmented
Argumentation Frameworks (CAFs), where each argument
is augmented with its associated claim [5, 22, 23, 6]. We
prefer to use “conclusion” rather than “claim” as the for-
mer term is employed in most of the previous literature
dealing with connections between argumentation frame-
works and logic programs (for instance, by Caminada
et al. (2015)). So we will use Conclusion-augmented Ar-
gumentation Frameworks (CAFs), but we emphasize that,
despite the slight nomenclature change, the latter are
equivalent to Claim-augmented Argumentation Frame-
works. However we note that the previous work on CAFs

𝐴3(𝑏) 𝐴1(𝑏) 𝐴0(𝑎) 𝐴2(𝑐) 𝐴4(𝑑)

Figure 3: A Conclusion-Augmented Argumentation Graph

seems to take a more complicated route than ours to ar-
rive at them and to study them; we thus describe our
own route in some detail in this section, even though
we acknowledge that the results are equivalent to previ-
ous ones by Dvorák and Woltran, Dvorák et al., Dvořák
et al., Rapberger (2019, 2020, 2020, 2020). We also note
that CAFs have been employed in recent work on proba-
bilistic argumentation frameworks [24].

CAFs are defined as follows:

Definition 25. A Conclusion-augmented Argumentation
Framework (CAF) is a tuple (𝒜,𝒮, 𝑓,ℛ), with 𝒜 being
a finite set of arguments, 𝒮 a set of conclusions, 𝑓 is a
function of arguments to conclusions, and ℛ ⊆ 𝒜×𝒜 is
the attack relation as previously defined.

We then say that every conclusion 𝑐 ∈ 𝒮 is associated
to a finite set of arguments 𝑓−1(𝑐). Analogously to AAFs,
a conclusion-augmented argumentation graph is a direc-
tional graph in which each node represents an argument
associated with its conclusion and each arrow represents
an attack. It is important to note that the CAF maintains
a high degree of abstraction as the internal structure of
the arguments is not explicit. The only change is that
each argument 𝐴 is represented along with its conclusion
𝑎.

To each conclusion 𝑐 ∈ 𝒮 we can assign the labels
In, Undecided, and Out. Naturally, this labeling of con-
clusions is related to the labeling of arguments through
𝑓(𝐴), and the procedure described previously obtains a
labeling of conclusions from one of arguments.

A CAF can be generated by a slightly altered version
of the WGU algorithm presented in Section 3.1, which
associates each argument with a conclusion at the end of
the process. We show in Figure 3 the result of applying
this altered algorithm to the logic program of Example 1.

One can easily adapt the definition of complete label-
ing for arguments to an analogous concept of complete
labeling of conclusions:

Definition 26. Let (𝒜,𝒮, 𝑓,ℛ) be a CAF and ℒ be a
conclusion labeling of 𝒮 . So ℒ is a complete conclusion
labeling if:
(i) a conclusion 𝑎 is Out then for each argument 𝐴 ∈
𝑓−1(𝑎) there is an argument 𝐵 that attacks 𝐴 with a con-
clusion 𝑓(𝐵) labeled In;
(ii) a conclusion 𝑎 is In then for some argument 𝐴 ∈
𝑓−1(𝑎), every argument 𝐵 that attacks 𝐴 must have its
conclusion 𝑓(𝐵) labeled Out.
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(iii) a conclusion 𝑎 is Undecided then there is no argument
𝐴 ∈ 𝑓−1(𝑎) for which all arguments 𝐵 that attack 𝐴
have 𝑓(𝐵) as Out; and for some argument 𝐴 ∈ 𝑓−1(𝑎),
there is no argument 𝐵 that attacks 𝐴 with conclusion
𝑓(𝐵) In, and there is an argument 𝐶 that attacks that
same 𝐴 and whose conclusion 𝑓(𝐶) is not Out.

Given the equivalence between the complete labels at
the conclusion level and at the arguments level proved by
Caminada et al. (2015), we can define the other semantics
for the CAFs. From the results of complete semantics
for the arguments, it is possible to obtain the equivalent
labels at the conclusion level by applying the criteria
described in section 3.1. The latter are the complete con-
clusion labeling solutions and, from them, we can max-
imize/minimize any desired label. With this, we obtain
the other semantics mentioned in this work, which are
defined as:

Definition 27. Assume 𝐿 is a conclusion labeling.
𝐿 is grounded if it is complete and the conclusion set In is
minimal.
𝐿 is preferred if it is complete and the conclusion set In is
maximal.
𝐿 is stable if it is complete and no conclusion remains
Undecided.
𝐿 is semi-stable if it is complete and the conclusion set
Undecided is minimal.

Given that the maximization/minimization process
was done directly at the conclusion level, the desired
equivalences are obtained:

Theorem 2. Let P be a logic program and C =
(𝒜,𝒮, 𝑓,ℛ) the CAF generated by the modified WCG al-
gorithm. Then the complete, preferred, grounded, stable
and semi-stable conclusion labels of C are identical to the
labels assigned respectively by the partial stable, regular,
well-founded, stable and L-stable models of P

Example 4. (continuing Example 3). Since in CAFs we
apply the maximization/minimization of labels directly at
the conclusion level, the semi-stable semantics will yield
two solutions. Thus it is equivalent to applying the L-stable
semantics to the logic program in Example 1.

Consequently, the semantic correspondence between
a logic program and its derived CAF is proved, and it is
also possible to demonstrate it in the opposite direction.
That is, starting from an CAF and generating a logical
program, the correspondences are maintained. We use
the following translation process:

Definition 28. Let C = (𝒜,𝒮, 𝑓,ℛ) be a CAF.
For each argument 𝐴, generate a rule 𝑓(𝐴) :− not
𝑓(𝐵1), ...,not 𝑓(𝐵𝑚) where 𝐵𝑖 are the arguments that
attack 𝐴. We denote PC the logic program that consists of
the generated rules.

Example 5. Applying the algorithm in Definition 28 to
the CAF in Figure 3, we get the following set of rules:

𝑟0 : 𝑎 :− not 𝑐, 𝑟1 : 𝑏 :− not 𝑎,not 𝑏,

𝑟2 : 𝑐 :− not 𝑎, 𝑟3 : 𝑏 :− not 𝑏,

𝑟4 : 𝑑 :− not 𝑎.

Thus, the following theorem proves the desired equiv-
alences:

Theorem 3. Let C = (𝒜,𝒮, 𝑓,ℛ) be a CAF and PC

the corresponding logic program . So the partial stable, reg-
ular, well-founded, stable, L-stable models of P assign the
same labels to the conclusions as respectively the complete,
preferred, grounded, stable, semi-stable semantics of C.

With this, a correspondence between the semantics of
logic programs and argumentation frameworks in both
directions is specified. Due to space constraints we refer
to our previous work [24] to prove both Theorems 2 and
3.

However, it should be clear that the move to CAFs is
not enough to achieve a completely satisfactory one-to-
one equivalence with logic programming. That can be
seem if we compare the rules of Examples 1 and 5. Rule
𝑟4 differs by the omission/inclusion of the conclusion 𝑐
in those examples. That means that repeated translations
between formalisms loses some information. To solve
that problem, in the next section we take the support
relations into account.

3.3. Bipolar Conclusion-augmented
Argumentation Framework (BCAF)

This section introduces Bipolar Conclusion-augmented
Argumentation Frameworks (BCAFs). Most concepts re-
lated to bipolarity are based on previous work by Cayrol
and Lagasquie-Schiex (2005).

We thus introduce:

Definition 29. A Bipolar Conclusion-augmented
Argumentation Framework (BCAF) is a tuple
(𝒜,𝒮, 𝑓,ℛ−,ℛ+), with 𝒜 being a finite set of ar-
guments, 𝒮 a set of conclusions, 𝑓 being a function of
arguments to conclusions, ℛ− ⊆ 𝒜 × 𝒜 is the attack
relation and ℛ+ ⊆ 𝒜×𝒜 is the support relation.

Each argument 𝐴 ∈ 𝒜 can be defined as a
rule 𝐻 :− 𝐴1, . . . , 𝐴𝑚,not 𝐵1, . . . ,not 𝐵𝑛.
We say 𝐴 has conclusion 𝐻 , rules {𝐻 :−
𝐴1, . . . , 𝐴𝑚,not 𝐵1, . . . ,not 𝐵𝑛}, vulnerabili-
ties Vul(𝐴) {𝐵1, . . . , 𝐵𝑛} and necessities Nec(𝐴)
{𝐴1, . . . , 𝐴𝑚}.

The attack relation is defined in the usual sense of
Dung’s work, that is, an argument attacked by another
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that is accepted, must be rejected. In a BCAF, one ar-
gument attacks another when its conclusion is one of
the other’s vulnerabilities. The support relation, for now
based on the discussed necessary support and on the
work by Alfano et al. (2020), is defined as follows:

Definition 30. An argument 𝐴 supports another argu-
ment 𝐵 iff 𝑓(𝐴) = 𝑎 is a necessity of 𝐵. Thus, for 𝐵 to be
accepted, at least one of the supports 𝐴𝑖 with 𝑓(𝐴𝑖) = 𝑎
must also be accepted.

Given the ways of how an argument can relate to an-
other in a BCAF, the definition of a redundant BCAF is
relevant:

Definition 31. Let 𝐴𝐹 = (𝒜,𝒮, 𝑓,ℛ−,ℛ+) be a
BCAF. 𝐴𝐹 is said to be redundant if there is at least pair
of arguments 𝐴,𝐵 ∈ 𝒜 such that 𝑓(𝐴) = 𝑓(𝐵), Vul(𝐴)
= Vul(𝐵) and Nec(𝐴) = Nec(𝐵).

Also of interest is the definition of the well-formed
BCAF as adapted from Dvorák and Woltran (2019):

Definition 32. Let 𝐴𝐹 = (𝒜,𝒮, 𝑓,ℛ−,ℛ+) be a
BCAF. 𝐴𝐹 is said to be well-formed if all the arguments
𝐴 ∈ 𝒜 that hold the same conclusion 𝑓(𝐴) attack and
support the same arguments.

From this point on we will assume the BCAFs to be
well-formed and non-redundant unless stated otherwise.

As previously mentioned, Caminada et al. (2015) stud-
ied the WCG algorithm for the translation of logic pro-
grams into Dung’s argumentation frameworks. Here,
this translation is adapted for BCAFs and the semantic
equivalences are once again proved. We thus propose an
adapted WCG algorithm for BCAFs:

1. Starting with a rule set, process each rule at a
time;

2. If a rule of the form 𝐻 :− not 𝐵1, . . . ,not 𝐵𝑛

is found, then generate an argument 𝐴 with con-
clusion 𝐻 , rules {𝐻 :− not 𝐵1, . . . ,not 𝐵𝑛}
and vulnerabilities Vul(𝐴) {𝐵1, . . . , 𝐵𝑛};

3. If a rule of the form 𝐻 :− 𝐴1, . . . , 𝐴𝑚,not 𝐵1,
. . . ,not 𝐵𝑛 is found, then generate an ar-
gument 𝐴 with conclusion 𝐻 , rules {𝐻 :−
𝐴1, . . . , 𝐴𝑚,not 𝐵1, . . . ,not 𝐵𝑛}, vulnerabil-
ities Vul(𝐴) {𝐵1, . . . , 𝐵𝑛} and necessities Nec(𝐴)
{𝐴1, . . . , 𝐴𝑚};

4. After going through all the rules, the relations
between arguments are established. If an argu-
ment 𝐴 has a conclusion that is present in the
vulnerabilities of another argument 𝐵, then 𝐴
attacks 𝐵. On the other hand, if the conclusion
of 𝐴 is present in the necessities of 𝐵, then 𝐴
supports 𝐵. With this, and keeping that each
argument is linked to a conclusion, the bipolar
conclusion-augmented argumentation graph is
created.

𝐴3(𝑏) 𝐴1(𝑏) 𝐴0(𝑎) 𝐴2(𝑐) 𝐴4(𝑑)

Figure 4: A Bipolar Conclusion-augmented Argumentation
Graph

Figure 4 shows a bipolar conclusion-augmented graph,
where the adapted WCG algorithm was applied to the
rules in Example 1.

One should ask whether, like the original WCG algo-
rithm, the adapted version guarantees the equivalence
of the P-stable semantics in logic programming and the
complete semantics in the bipolar conclusion-augmented
argumentation framework. The answer to this question
is once again yes, but to prove it a few definitions must
be stated.

First, the rule for translating labels from arguments
to conclusions is the same as the one discussed earlier,
where each conclusion is represented by the argument
that best defends it.

Second, we define the functions that translate labelings
from arguments to conclusions and vice versa. These
definitions are adapted from Caminada et al. (2015) to
the context of BCAFs:

Definition 33. Let 𝑃 be a logical program and 𝐴𝐹𝑃 =
(𝒜,𝒮, 𝑓,ℛ−,ℛ+) its associated bipolar conclusion-
augmented argumentation structure. Let ArgLabs be the
set of all argument labels from 𝐴𝐹𝑃 and let ConcLabs be
the set of all conclusion labels from 𝑃 and 𝐴𝐹𝑃

1. We define an ArgLab2ConcLab function: ArgLabs
→ ConcLabs such that for each ArgLab ∈ ArgLabs,
it is true that ArgLab2ConcLab(ArgLab) is the as-
sociated conclusion labeling of ArgLab;

2. We define an ConcLab2ArgLab function: ConcLabs
→ArgLabs such that for each ConcLab∈ConcLabs
and each 𝐴 ∈ 𝒜 it is true that:

a) ConcLab2ArgLab(ConcLab)(𝐴) = In if for
each 𝑣 ∈ Vul(𝐴) it is true that ConcLab(𝑣) =
Out and for each 𝑤 ∈ Nec(𝐴) it is true that
ConcLab(𝑤) = In;

b) ConcLab2ArgLab(ConcLab)(𝐴) = Out if
there is a 𝑣 ∈ Vul(𝐴) such that ConcLab(𝑣)
= In and/or if there is a 𝑤 ∈ Nec(𝐴) such
that ConcLab(w) = Out;

c) ConcLab2ArgLab(ConcLab)(𝐴) =
Undecided if not for all 𝑣 ∈ Vul(𝐴)
ConcLab(𝑣) = Out; if there is no 𝑣 ∈ Vul(𝐴)
such that ConcLab(𝑣) = In; if it is not true
that for all 𝑤 ∈ Nec(𝐴) ConcLab(𝑤) =
In and there is no 𝑤 ∈ Nec(𝐴) such that
ConcLab(𝑤) = Out.
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Given the definitions above we can state the following
theorem, inspired by Theorem 19 from [4]:

Theorem 4. In the case of complete argument labellings
and complete conclusion labellings, the functions Ar-
gLab2ConcLab and ConcLab2ArgLab are bijections and
each other’s inverse

Proof. The proof is inspired by the proof of Theorem 19
from [4]. It is enough to prove two things:

1. ConcLab2ArgLab(ArgLab2ConcLab(ArgLab)) =
ArgLab.
Let ArgLab be a complete argument labeling and
let 𝐴 be an argument. Three cases are distin-
guished.

a) ArgLab(𝐴) = In. From the fact that ArgLab
is a complete labeling, it follows that
ArgLab(𝐵) = Out for every attacker 𝐵 of
𝐴 and that ArgLab(𝐶) = In for at least
one argument 𝐶 with 𝑓(𝐶) = 𝑐 for each
conclusion 𝑐 that supports 𝐴. From the
definition of attack it follows that for every
𝑏 ∈ Vul(𝐴) and for every argument 𝐵
with f(𝐵) = 𝑏, ArgLab(𝐵) = Out. This then
implies that for every 𝑏 ∈ Vul(𝐴) it is true
that ConcLab2ArgLab(ArgLab2ConcLab(
ArgLab))(𝑏) = Out. Similarly, from the def-
inition of support, it follows that for every
𝑐 ∈ Nec(𝐴), for at least one argument 𝐶
with f(𝐶) = 𝑐, ArgLab(𝐶) = In, that is, Con-
cLab2ArgLab(ArgLab2ConcLab(ArgLab)
)(𝑐) = In. By the definition of
ConcLab2ArgLab, we finally
obtain that ConcLab2ArgLab(
ArgLab2ConcLab(ArgLab))(𝐴) = In;

b) ArgLab(𝐴) = Out. From the fact that
ArgLab is a complete argument labeling,
it follows that there is an attacker 𝐵 of
𝐴 such that ArgLab(𝐵) = In or there is a
set of supporters 𝐶 of 𝐴 with the same
conclusion 𝑐 such that ArgLab(𝐶) = Out.
Let 𝑏 = f(𝐵) and 𝑐 = f(𝐶). From the defini-
tion of attack, it follows that 𝑏 ∈ Vul(𝐴).
From the definition of ArgLab2ConcLab, it
follows that ArgLab2ConcLab(ArgLab)(𝑏)
= In. Likewise, from the definition of
support, it follows that 𝑐 ∈ Nec(𝐴) and
ArgLab2ConcLab(ArgLab)(𝑐) = Out.
From the definition of ConcLab2ArgLab,
it follows that ConcLab2ArgLab(
ArgLab2ConcLab(ArgLab))(𝐴) = Out;

c) ArgLab(𝐴) = Undecided. From the fact
that ArgLab is a complete argument label-
ing, it follows that not every attacker 𝐶 of
𝐴 has ArgLab(𝐶) = Out and/or not every

argument 𝐸 with 𝑓(𝐸) = 𝑒 for each con-
clusion 𝑒 that supports 𝐴 has ArgLab(𝐸)
= In (i). There is also no attacker 𝐷 of 𝐴
that has ArgLab(𝐷) = In and/or no conclu-
sion 𝑒 ∈ Nec(𝐴) such that all arguments
𝐸 with 𝑓(𝐸) = 𝑒 have ArgLab(𝐸) =
Out (ii). From (i) together with (ii) it fol-
lows that there is an attacker 𝐵 of 𝐴 with
ArgLab(𝐵) = Undecided and/or a group
𝐸 of arguments with the conclusion 𝑒 ∈
Nec(𝐴) with ArgLab(𝐸) = Undecided. Let
𝑏 = 𝑓(𝐵) and 𝑒 = 𝑓(𝐸). From (ii) to-
gether with the definition of attack, it fol-
lows that there is no argument 𝐵′ with
𝑓(𝐵′) = 𝑏 such that ArgLab(𝐵′) = In. So
ArgLab2ConcLab(ArgLab)(𝑏) = Undecided.
Likewise, (ii) together with the definition
of support implies that for some conclusion
𝑒 ∈ Nec(𝐴) ArgLab2ConcLab(ArgLab)(𝑒)
= Undecided (iii). Furthermore, from (ii)
together with the definitions of attack and
support, it follows that for each argument
𝐷 with 𝑓(𝐷) ∈ Vul(𝐴) it is valid that
ArgLab(𝐷) ̸= In and for at least one ar-
gument 𝐹 with a conclusion 𝑓 ∈ Nec(𝐴),
ArgLab(𝐹 ) ̸= Out. Therefore, for every
𝑑 ∈ Vul(𝐴), ArgLab2ConcLab(ArgLab)(𝑑)
̸= In and for at least one 𝑓 ∈ Nec(𝐴),
ArgLab2ConcLab(ArgLab)(𝑓 ) ̸= Out (iv).
Finally, From (iii) and (iv), and the def-
inition of ConcLab2ArgLab, it follows
that ConcLab2ArgLab(ArgLab2ConcLab(
ArgLab))(𝐴) = Undecided.

2. ArgLab2ConcLab(ConcLab2ArgLab(ConcLab)) =
ConcLab.
Let ConcLab be a complete conclusion la-
beling. This, by definition, implies that
there is a complete labeling of ArgLab ar-
guments with ArgLab2ConcLab(ArgLab) =
ConcLab. As noted earlier, it is true that
ConcLab2ArgLab(ArgLab2ConcLab(ArgLab)) =
ArgLab. It then follows that ConcLab2ArgLab(
ConcLab) = ArgLab. This implies that Ar-
gLab2ConcLab(ConcLab2ArgLab( ConcLab))
= ArgLab2ConcLab(ArgLab). Combining
these observations, we finally get Ar-
gLab2ConcLab(ConcLab2ArgLab(ConcLab)) =
ConcLab.

We thus obtain the desired result.

Given the proof above, the desired equivalence can be
stated:

Theorem 5. Let P be a logic program and 𝐴𝐹𝑃 =
(𝒜,𝒮, 𝑓,ℛ−,ℛ+) the BCAF generated by the modified
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WCG algorithm. Then the complete, preferred, grounded,
stable and semi-stable conclusion labels of 𝐴𝐹𝑃 are identi-
cal to the labels assigned respectively by the partial stable,
regular, well-founded, stable and L-stable models of P

Proof. Given the proof of theorem 4, the results obtained
by the P-stable semantics in the logic program and by the
complete semantics in the BCAF are equivalent. From
that, we can prove the equivalences between the pre-
ferred, grounded, stable and semi-stable semantics of
the BCAF with respectively the regular, well-founded,
stable and L-stable semantics from logic programming.
This is due to the fact that the latter are special cases of
complete/P-stable solutions in which there is a maximiza-
tion or minimization of a given label at the conclusion
level.

Example 6. (Continuing Examples 3 and 4.) The results
obtained by the complete semantics when applied to the
BCAF in Figure 4 are the same as the one shown in Example
3. Since the maximizing/minimizing of labels is done at
the conclusion level, the BCAF semi-stable semantics pro-
duces the same results as the logic programming L-stable
semantics.

The translation of BCAFs to a logic program is slightly
changed from the version shown for CAFs:

Definition 34. Let C = (𝒜,𝒮, 𝑓,ℛ−,ℛ+) be a
BCAF. For each argument 𝐴, a rule is generated as
𝑓(𝐴) :− 𝑓(𝐴1), ..., 𝑓(𝐴𝑚),not 𝑓(𝐵1), ...,not 𝑓(𝐵𝑛)
where 𝐴1...𝐴𝑚 are the arguments that support 𝐴 and
𝐵1...𝐵𝑛 are the ones that attack it. We denote as PC the
logical program constructed by this method.

Interestingly, two-way translations ensure that there
is no loss of information, so the logic programs and non-
redundant BCAFs generated in repeated translations are
always the same. That can be seem if we apply the transla-
tion algorithm to the graph in Figure 4. We obtain exactly
the rules of Example 1, which in turn are the same rules
that were translated to the BCAF. It is thus clear that
well-formed and non-redundant BCAFs guarantee cor-
respondences with logic programming in translations in
both directions.

Hence we now have the desired one-to-one equiv-
alence between argumentation (well-formed and non-
redundant BCAFs) and logic programs.

We also argue that, despite not being a one-to-one
equivalence, the results are relevant even for the redun-
dant BCAF case. It is so because even if the BCAF graph
generated by multiple translations is not the same, the
conclusions and the relations they hold to each other
will remain the same. That means that the adapted WCG
algorithm eliminates the redundancies, keeps the desired
relations between conclusions and maintains the equiva-
lence of semantics.

In short, by introducing the support relation first pro-
posed by Alfano et al. (2020) to well-formed and non-
redundant CAFs and proving the equivalence between
semantics, we have shown that both formalims yield the
same results and can be translated from one to the other
without any loss of information.

3.4. Modeling Different Types of Support
As discussed in Section 2.2, there is, in the literature,
more than one possible interpretation for the meaning
of the support relation in argumentation frameworks.
So far, BCAF has been dealt with using a specific inter-
pretation of the support relation which, in the special
case where each conclusion is uniquely associated with
an argument, converges to the necessary support (For
more general cases, the definition changes a little, since
in BCAFs support is given from the conclusions and if
an argument 𝐴 is accepted and another 𝐴′ is not, where
𝑎 = 𝑓(𝐴) = 𝑓(𝐴′), an argument supported by 𝑎 can
still be accepted).

However it seems natural that the BCAFs should be
able to model different types of support. The results by
Cayrol and Lagasquie-Schiex (2013) that show that there
is a translation between the deductive and the necessary
supports and by Polberg and Oren (2014) that deduced
the same for the evidential and the necessary supports
reinforces the intuition behind the previous sentence.
We now show that in addition to the similarity with the
necessary support, it is possible to redefine the BCAF in
order to encompass other interpretations of support.

Let us take the deductive support as an example. This
support means that if an argument 𝐴 supports 𝐵, if 𝐴
is accepted, 𝐵 must also be accepted. We can adapt
Definition 30 to reflect this different interpretation [8]:

Definition 35. An argument 𝐴 supports another 𝐵, if
𝑓(𝐵) = 𝑏 is a necessity of 𝐴. Thus, for 𝐴 to be accepted,
at least one of the arguments 𝐵𝑖 with 𝑓(𝐵𝑖) = 𝑏 must
also be accepted.

Given this, the other definitions for the BCAF remain
mostly the same, but a different interpretation of the
support relation is modeled. However, this definition only
corresponds to the deductive support in the special case
that each argument has an unique conclusion. For the
more general case, there is a similar divergence. Figure 5
shows the BCAF generated once again from the rules in
Example 1.

The same procedure can be run in order to adapt the
definition of support to the evidential support: A BCAF
that contains the evidential support differentiates be-
tween two types of arguments: the prima-facie argu-
ments, which do not need any support to be accepted,
that is, they do not have a set of necessities; and common
arguments, which need to be supported by an accepted
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𝐴3(𝑏) 𝐴1(𝑏) 𝐴0(𝑎) 𝐴2(𝑐) 𝐴4(𝑑)

Figure 5: The Bipolar Conclusion-augmented Argumentation
Graph generated from the rules in example 1 using Definition
35. It differs from the BCAF in Figure 4 only by the direction
of the support.

argument of the first type in order to be accepted as well,
that is, they have a set of necessities.

Again, the remaining definitions for the BCAF are
mostly retained when considering the different support
interpretation and, as before, the definition given above
is broader than the original definition of evidential sup-
port. That is, the two converge only in the special cases
where either each conclusion is linked to a single argu-
ment and/or no conclusion is linked to both types of
arguments.

Example 7. The graph in Figure 4 is also the representa-
tion of the BCAF created from the rules in example 1 using
the support definition based on the evidential support. The
arguments 𝐴0, 𝐴1, 𝐴2, 𝐴3 are considered prima-facie and
𝐴4 a normal argument

In general, therefore, it is clear that BCAF have pow-
erful tools for different forms of support, and in spe-
cial cases, they can correspond exactly to the definitions
given for BAFs, and in others, to a more general version
of the same principle. Thus, for all interpretations of sup-
port, the translation algorithm and the proofs presented
can be adapted. That is, regardless of which form the
support takes, the properties of well-formed and non-
redundant BCAF remain the same, including its one-to-
one correspondence to logic programming.

4. Discussion and Related Work
BCAFs have all the advantages that their version without
bipolarity (the CAFs) obtains. One gets correspondence
between semi-stable and L-stable semantics and, due to
their equivalence with the logic program, BCAFs main-
tain the same computational complexity as the original
model. In addition to that, BCAFs have two additional
benefits over CAFs. The first is that the argumentation
model now has some form of positive relationship, that
is, a form of support. This makes it more expressive (in
argumentation terms) than the CAFs and closer to the
human way of arguing, as discussed in [7, 13].

The second advantage over CAFs is the one-to-one cor-
respondence with logic programming, i.e. no information
is lost in repeated translations between the formalisms

(in the well-formed and non-redundant case). In the orig-
inal model, if we start from an logic program, translate
to a CAF and then go back to the logic program, we may
lose relationships between the conclusions expressed in
the original logic program. With the proposed model
and its translations, this no longer happens. This sug-
gests that BCAFs and logic programs can be understood
as two different but equivalent formalisms, so that the
properties of one can be properly translated to the other.

Despite the several proposals in the literature about
possible translations between logic programs and some
form of argumentation framework, to the best of our
knowledge, ours is the only one that generates an one-
to-one translation between the two formalisms, where
translation runs in both directions, for some sizeable
class of argumentation frameworks — moreover, with
the additional degree of argumentative expressiveness
provided by the bipolarity.

Alfano et al. (2020) propose methods of translation be-
tween logic programs and BAFs that are very similar to
those proposed in this text in definitions 30 and 35. How-
ever, our BCAFs model places conclusions as the main
goal of the argumentative process; this also changes the
translations. In addition, Alfano et al. (2020) focus their
work on the translations from Dung’s argumentation
graphs to logic programs, but not in the reverse case.
Our model, on the other hand, deals with translations in
both directions and guarantees semantic equivalences by
focusing on conclusions.

Kawasaki et al. (2019) also propose a similar translation
between logic programs (a variation for legal settings
called PROLEG) and BAFs in order to develop a system
capable of aiding in legal reasoning. The authors however
only deal with the translations from PROLEG to BAFs
and not the other way around. In addition to that, we feel
our approach is more straightforward and encompasses
different interpretations of support.

Other notable proposals include various translation
schemes that employ Assumption-Based Argumentation
Frameworks [10] and are able to prove equivalences to
logic programming [9]. A similar proposal was put forth
by Pisano et al. (2020), in which the author created the
Arg-tuProlog, a tool capable of dealing with the 𝐴𝑆𝑃𝐼𝐶+

formalism [28] for logic programming and the Dung style
AAFs with preferences and weights [27, 29]. None of
them obtain both the properties our model introduces.

5. Conclusion
It is well-known that both abstract argumentation frame-
works and logic programs capture broad elements of non-
monotonic reasoning. It is also well-known that several
semantics for abstract argumentation frameworks corre-
spond to semantics for logic programs and vice-versa, but
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not all popular semantics satisfy this property. In addi-
tion, it is also known that conclusion(claim)-augmented
arguments lead to a satisfactory set of semantic corre-
spondences; we have rehearsed here those recent re-
sults around CAFs through a hopefully simpler approach.
And it is well-known that the semantic correspondences
between CAFs and normal logic programs are actually
based on translations from argumentation frameworks
to logic programs and vice-versa. However, these trans-
lations are not satisfactory because they are not really
“associative” — a translation followed by a back trans-
lation does not necessarily get back to the same point.
By bringing ideas from bipolar argumentation, namely
the recently explored fact that supports can be trans-
lated to positive atoms in rules, we obtained the desired
correspondences and translations for a sizeable class of
frameworks. We thus have that any well-formed and
non-redundant BCAF can be readily translated to a nor-
mal logic program and any normal logic program can be
readily translated to a BCAF, without any informational
loss.

Intuitively, a well-formed and non-redundant BCAF is
a normal logic program, and a normal logic program is a
BCAF. To summarize the whole reasoning in this paper,
we obtained these equivalences by combining existing
results on conclusion(claim)-augmented argumentation
frameworks and on the translation of supports.

In addition, we showed that our bipolar model allows
the support relation to be interpreted in several differ-
ent ways, converging, in special cases, with the most
common definitions found in the literature for bipolar
argumentation models.

In future work, BCAFs should be expanded to include
uncertainty, and in particular to handle probabilistic argu-
mentation, while maintaining their desirable properties
in relation to logic programming. We hope the resulting
probabilistic formalism will improve the debate about
the meaning of probabilities in argumentation and will
provide a solid basis for argumentation algorithms to be
implemented for real systems.
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