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Abstract
For non-monotonic logics, the notion of Rational Closure (RC) is acknowledged as one of the main approaches. In this work we
present an integration of RC within the triple language RDFS (Resource Description Framework Schema), which together with
OWL 2 is a major standard semantic web ontology language. To do so, we start from 𝜌df, an RDFS fragment that covers the
essential features of RDFS, and extend it to 𝜌𝑑𝑓⊥, allowing to state that two entities are incompatible/disjoint with each other.
Eventually, we propose defeasible 𝜌𝑑𝑓⊥ via a typical RC construction allowing to state default class/property inclusions.
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1. Introduction
RDFS (Resource Description Framework Schema)1 is
a main standard semantic web ontology language that
consists of triples (𝑠, 𝑝, 𝑜) (denoting 𝑠 is related via 𝑝
with 𝑜). The introduction of non-monotonic formalisms
in reasoning with ontologies is useful in particular to deal
with situations in which some classes are exceptional
and do not satisfy some typical properties of their super
classes, as illustrated with the following example.

Example 1.1 (Running example). Consider the following
facts (and an intuitive translation into RDFS, where sc is
read as “is a subclass of”).

- Young people are usually happy; (𝑦𝑃, sc, ℎ𝑃 )
- Drug users are usually unhappy; (𝑑𝑈, sc, 𝑢ℎ𝑃 )
- Drug users are usually young; (𝑑𝑈, sc, 𝑦𝑃 )
- Controlled drug users are usually happy; (𝑐𝐷𝑈, sc, ℎ𝑃 )
- Controlled drug users are drug users; (𝑐𝐷𝑈, sc, 𝑑𝑈)

We may consider then reasonable to conclude, for example,
that controlled young drug users are usually happy.

Description Logics provide the logical foundation of
formal ontologies of the semantic Web Ontology Lan-
guage (OWL) family2 and endowing them with non-
monotonic features has been a main issue in the past
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20 years [1, 2, 3, 4, 5, 6]. On the other hand, addressing
non-monotonicity in the context of RDFS, has attracted
in comparison little attention so far, and almost all ap-
proaches we are aware of implement non-monotonicity
by adding a so-called rule-layer on top of RDFS; see
e.g., [7, 8, 9, 2, 10].

In the following, our aim is to show how to integrate
Rational Closure (RC), one of the main constructions in
non-monotonic reasoning [11], directly within the triple
language RDFS. To to do so, we start from 𝜌df [12, 13], a
minimal, but significant RDFS fragment that covers the
essential features of RDFS, and then extend it to 𝜌𝑑𝑓⊥,
allowing to state that two entities are incompatible/disjoint
with each other. The results in this paper are presented
more in detail in a technical report [14].

2. 𝜌𝑑𝑓⊥ Graphs
We rely on a fragment of RDFS, called minimal 𝜌df [12,
Def. 15], that covers all main features of RDFS, and it is
essentially the formal logic behind RDFS. The vocabulary
is composed by two pairwise disjoint alphabets U and L
denoting, respectively, URI references and literals, where
a literal may be a plain literal (e.g., a string) or a typed
literal (e.g., a boolean value) [15]. With UL, the set of
terms, we will denote the union of these sets. A 𝜌df-triple
is of the form 𝜏 = (𝑠, 𝑝, 𝑜) ∈ UL × U × UL.3 We
call 𝑠 the subject, 𝑝 the predicate, and 𝑜 the object. A
graph 𝐺 is a set of triples. 𝜌df is characterised by the set
of predicates {sp, sc, type, dom, range} ⊆ U, that can
appear only as second elements in the triples. Informally,
(𝑖) (𝑝, sp, 𝑞) means that property 𝑝 is a subproperty of
property 𝑞; (𝑖𝑖) (𝑐, sc, 𝑑) means that class 𝑐 is a subclass
of class 𝑑; (𝑖𝑖𝑖) (𝑎, type, 𝑏) means that 𝑎 is of type 𝑏;

3As in [12], we allow literals for 𝑠.
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(𝑖𝑣) (𝑝, dom, 𝑐) means that the domain of property 𝑝 is
𝑐; and (𝑣) (𝑝, range, 𝑐) means that the range of property
𝑝 is 𝑐. We also recall that minimal 𝜌df does not consider
so-called blank nodes [16, 12].

Concerning the semantics of 𝜌df [12], an interpreta-
tion is a tuple ℐ = ⟨ΔR,ΔP,ΔC,ΔL,P[[·]],C[[·]], ·ℐ⟩,
where ΔR,ΔP, ΔC,ΔL are the interpretation domains
of ℐ, which are finite non-empty sets, and P[[·]],C[[·]], ·ℐ
are the interpretation functions of ℐ. In particular: (𝑖)
ΔR are the resources (the domain or universe of ℐ); (𝑖𝑖)
ΔP are property names (not necessarily disjoint from
ΔR); (𝑖𝑖𝑖) ΔC ⊆ ΔR are the classes; (𝑖𝑣) ΔL ⊆ ΔR

are the literal values and contains L ∩ 𝑉 ; (𝑣) P[[·]] is a
function P[[·]] : ΔP → 2ΔR×ΔR ; (𝑣𝑖) C[[·]] is a function
C[[·]] : ΔC → 2ΔR ; (𝑣𝑖𝑖) ·ℐ maps each 𝑡 ∈ UL ∩ 𝑉 into
a value 𝑡ℐ ∈ ΔR ∪ ΔP, and such that ·ℐ is the identity
for plain literals and assigns an element in ΔR to each
element in L.

An interpretation ℐ satisfies a graph 𝐺 if for each
(𝑠, 𝑝, 𝑜) ∈ 𝐺, 𝑝ℐ ∈ ΔP and (𝑠ℐ , 𝑜ℐ) ∈ P[[𝑝ℐ ]], and
moreover ℐ satisfies a series of constraints related to the
𝜌df-predicates. For example, a constraint imposing that
P[[scℐ ]] is transitive over ΔP indicates that the subclass
relation sc must be transitive. We refer to [12, Def. 15]
for the full definition of the satisfaction relation, and of
the correspondent entailment relation.

Definition 2.1 (Entailment ⊨𝜌𝑑𝑓⊥ ). Given two graphs 𝐺
and 𝐻 , we say that 𝐺 entails 𝐻 , denoted 𝐺 ⊨𝜌𝑑𝑓 𝐻 , if
and only if every model of 𝐺 is also a model of 𝐻 .

In [12] the reader can find also a deduction system, con-
sistent and complete w.r.t. the 𝜌df entailment relation, that
is based on rules, such as

(𝐴, sc, 𝐵), (𝐵, sc, 𝐶)

(𝐴, sc, 𝐶)

encoding the transitivity of sc.
Defeasible reasoning can be built only when faced with

a conflict between the properties of a class and of a sub-
class. e.g., in Example 1.1,“Drug users are usually un-
happy” appears in conflict with “Controlled drug users
are usually happy”. 𝜌df is not expressive enough to model
such conflicts. So, we need to introduce at least a no-
tion of incompatibility, of disjunctiveness [17]. Hence we
enrich the 𝜌df vocabulary with two new predicates, ⊥c

and ⊥p, representing incompatible information: (𝑐,⊥c, 𝑑)
(resp., (𝑝,⊥p, 𝑞)) indicates that the classes 𝑐 and 𝑑 (resp.,
the properties 𝑝 and 𝑞) are disjoint. Of course we can
further enrich the language allowing for logically stronger
notions such as negation [18], but it is not necessary for
the purpose of the present paper.

We call the new formalism, obtained by adding ⊥c and
⊥p to 𝜌df, 𝜌𝑑𝑓⊥. Some new constraints are added to the
semantics of 𝜌df [14, Sect. 2.2]. Here are a few examples:

• if (𝑐, 𝑑) ∈ P[[⊥c
ℐ ]] then 𝑐, 𝑑 ∈ ΔC;

• If (𝑐, 𝑑) ∈ P[[⊥c
ℐ ]], then (𝑑, 𝑐) ∈ P[[⊥c

ℐ ]] (sc-
Symmetry);

• If (𝑐, 𝑑) ∈ P[[⊥c
ℐ ]] and (𝑒, 𝑐) ∈ P[[scℐ ]], then

(𝑒, 𝑑) ∈ P[[⊥c
ℐ ]] (sc-Transitivity);

• If (𝑐, 𝑐) ∈ P[[⊥c
ℐ ]] and 𝑑 ∈ ΔC then (𝑐, 𝑑) ∈

P[[⊥c
ℐ ]] (c-Exhaustive).

These new constraints are such to model relevant prop-
erties of disjointedness, and allow the definition of an
entailment relation ⊨𝜌𝑑𝑓⊥ . An important feature of 𝜌𝑑𝑓⊥
is also that it preserves the 𝜌df property that a graph is
always satisfiable, avoiding the possibility of unsatisfia-
bility and the ex falso quodlibet principle. This is in line
with the 𝜌df semantics [12, 19]. From an inference system
point of view, new derivation rules are added to the 𝜌df
derivation system [14, Sect. 2.3]. The following are just a
few examples:

(𝐴,⊥c,𝐵)
(𝐵,⊥c,𝐴)

; (𝐴,⊥c,𝐵),(𝐶,sc,𝐴)
(𝐶,⊥c,𝐵)

; (𝐴,⊥c,𝐴)
(𝐴,⊥c,𝐵)

.

The new derivation relation ⊢𝜌𝑑𝑓⊥ that we have defined is
correct and complete w.r.t. the entailment relation ⊨𝜌𝑑𝑓⊥
[14, Th. 2.1]. Eventually, we say that a graph 𝐺 has a
conflict if, for some term 𝑡, either 𝐺𝑠 ⊢𝜌𝑑𝑓⊥ (𝑡,⊥c, 𝑡) or
𝐺𝑠 ⊢𝜌𝑑𝑓⊥ (𝑡,⊥p, 𝑡) holds. The intuitive meaning is that
𝐺 has a conflict if we can derive for some term 𝑡 that it
is either an empty class, (𝑡,⊥c, 𝑡), or an empty predicate,
(𝑡,⊥p, 𝑡).

Example 2.1 (Running example cont.). In Exam-
ple 1.1 we could add the triple (𝑢ℎ𝑃,⊥c, ℎ𝑃 ) to
indicate that ‘being happy’ and ‘being unhappy’
are incompatible. Notice that from (𝑢ℎ𝑃,⊥c, ℎ𝑃 ),
(𝑐𝐷𝑈, sc, ℎ𝑃 ), (𝑐𝐷𝑈, sc, 𝑑𝑈) and (𝑑𝑈, sc, 𝑢ℎ𝑃 ) we
conclude (𝑐𝐷𝑈,⊥c, 𝑐𝐷𝑈), that is, that being a con-
trolled drug user is incompatible with being a controlled
drug user (that is, 𝑐𝐷𝑈 should be an empty class). Analo-
gously, from (𝑢ℎ𝑃,⊥c, ℎ𝑃 ), (𝑑𝑈, sc, 𝑦𝑃 ), (𝑦𝑃, sc, ℎ𝑃 )
and (𝑑𝑈, sc, 𝑢ℎ𝑃 ) we conclude (𝑑𝑈,⊥c, 𝑑𝑈).

3. Defeasible 𝜌𝑑𝑓⊥

Next we show how to model defeasible information. Here
we consider defeasibility w.r.t. the predicates sc and sp
only, and introduce the notion of defeasible triple:

𝛿 = ⟨𝑠, 𝑝, 𝑜⟩ ∈ UL× {sc, sp} ×UL ,

where 𝑠, 𝑜 ̸∈ 𝜌𝑑𝑓⊥. The intended meaning of
e.g., ⟨𝑐, sc, 𝑑⟩ is “Typically, an instance of 𝑐 is also an
instance of 𝑏”. Analogously, ⟨𝑝, sp, 𝑞⟩ is read as “Typi-
cally, a pair related by 𝑝 is also related by 𝑞”.
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Example 3.1 (Running example cont.). In Exam-
ple 1.1 the statements containing ‘usually’ can
more correctly be modelled using defeasible triples,
that is, ⟨𝑦𝑃, sc, ℎ𝑃 ⟩, ⟨𝑑𝑈, sc, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, sc, 𝑦𝑃 ⟩ and
⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩.

There are various ways of reasoning in a defeasible frame-
work. Here we take under consideration RC [11], since,
despite having some limits from the inferential point of
view [20], it is a main inference relation in conditional
reasoning on top of which we can define other interesting
forms of entailment [20, 21, 22].

We give here only a short overview of the reasoning
procedure, inviting the reader to check [14] for a compre-
hensive presentation. Given a defeasible graph 𝐺 and a
query ⟨𝑠, 𝑝, 𝑜⟩, we decide whether ⟨𝑠, 𝑝, 𝑜⟩ is in the RC
of 𝐺 through a two-step procedure:

1. We rank all the defeasible triples in 𝐺, considering
the potential conflicts and the relative logical specificity
of the first elements of the triples. We give priority (that is,
a higher rank) to more specific triples. To check the pres-
ence of potential conflicts in a graph, we translate all the
defeasible triples into the correspondent 𝜌𝑑𝑓⊥ triples, that
is, we create a new 𝜌𝑑𝑓⊥ graph in which every defeasible
⟨𝑠, 𝑝, 𝑜⟩ is substituted by (𝑠, 𝑝, 𝑜).

Example 3.2 (Running example cont.). In Example 2.1
we have seen that from the 𝜌𝑑𝑓⊥ version of our graph
we obtain (𝑐𝐷𝑈,⊥c, 𝑐𝐷𝑈) and (𝑑𝑈,⊥c, 𝑑𝑈). From
this we conclude that all the defeasible triples with
𝑐𝐷𝑈 or 𝑑𝑈 as first element (e.g., ⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩ and
⟨𝑑𝑈, sc, 𝑢ℎ𝑃 ⟩) have priority (a higher rank) w.r.t. the
other defeasible triples. That is, ⟨𝑦𝑃, sc, ℎ𝑃 ⟩ has
rank 0, while the other defeasible triples are excep-
tional. We then reiterate the procedure consider-
ing only the exceptional triples and the 𝜌𝑑𝑓⊥-triples,
that is, {⟨𝑑𝑈, sc, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, sc, 𝑦𝑃 ⟩, ⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩} ∪
{(𝑐𝐷𝑈, sc, 𝑑𝑈), (ℎ𝑃,⊥c, 𝑢ℎ𝑃 )}. Translating the de-
feasible triples into 𝜌𝑑𝑓⊥-triples, the only conflict we
can still derive is (𝑐𝐷𝑈,⊥c, 𝑐𝐷𝑈), hence we have
that ⟨𝑑𝑈, sc, 𝑢ℎ𝑃 ⟩, ⟨𝑑𝑈, sc, 𝑦𝑃 ⟩ have rank 1, while
⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩ is exceptional. From {⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩}∪
{(𝑐𝐷𝑈, sc, 𝑑𝑈), (ℎ𝑃,⊥c, 𝑢ℎ𝑃 )} we cannot derive any-
more (𝑐𝐷𝑈,⊥c, 𝑐𝐷𝑈), hence ⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩ has rank 2
and we have finished the ranking of the graph.
Note that, given a graph 𝐺, the ranking procedure needs
to be done once and for all.

2. Given a query ⟨𝑠, sc, 𝑜⟩ (resp., ⟨𝑠, sp, 𝑜⟩), we check
the rank of 𝑠, i.e., we check which is the lowest rank in
which we do not derive (𝑠,⊥c, 𝑠) (resp., (𝑠,⊥p, 𝑠)), and
then we check whether we can derive (𝑠, sc, 𝑜) (resp.,
(𝑠, sp, 𝑜)) considering only the defeasible triples with at
least such a rank.

Example 3.3 (Running example cont.). We wonder
whether ⟨𝑐𝐷𝑈, sc, 𝑢ℎ𝑃 ⟩ is in the RC of our graph. This
triple is interesting because it would be derivable in
the monotonic 𝜌𝑑𝑓⊥-graph we have considered up to
Exmple 2.1, but it is undesirable since we are aware
that ⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩ and that ‘Drug users are usually
happy’, that is a defeasible statement. If we consider
our entire graph, we already know (Example 3.2) that
𝑐𝐷𝑈 is exceptional, that is, substituting the defeasi-
ble triples with their 𝜌𝑑𝑓⊥ counterparts, we obtain
(𝑐𝐷𝑈,⊥c, 𝑐𝐷𝑈). The same if we consider the graph
obtained eliminating all the defeasible triples of rank
0. Only once we eliminate also the triples of rank
1, and we consider only the graph {⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩} ∪
{(𝑐𝐷𝑈, sc, 𝑑𝑈), (ℎ𝑃,⊥c, 𝑢ℎ𝑃 )}, we are not able to
derive (𝑐𝐷𝑈,⊥c, 𝑐𝐷𝑈) anymore. That is, we do
not have a conflict anymore on 𝑐𝐷𝑈 . Our query
⟨𝑐𝐷𝑈, sc, 𝑢ℎ𝑃 ⟩ will be decided considering only this
portion of the original graph: {⟨𝑐𝐷𝑈, sc, ℎ𝑃 ⟩} ∪
{(𝑐𝐷𝑈, sc, 𝑑𝑈), (ℎ𝑃,⊥c, 𝑢ℎ𝑃 )}. In order to decide
whether ⟨𝑐𝐷𝑈, sc, 𝑢ℎ𝑃 ⟩, we check whether its 𝜌𝑑𝑓⊥-
counterpart, (𝑐𝐷𝑈, sc, 𝑢ℎ𝑃 ), is derivable from the 𝜌𝑑𝑓⊥-
counterpart of the portion of the graph we consider, that
is, {(𝑐𝐷𝑈, sc, ℎ𝑃 ), (𝑐𝐷𝑈, sc, 𝑑𝑈), (ℎ𝑃,⊥c, 𝑢ℎ𝑃 )}. It
is easy to check that there is no way of deriving
(𝑐𝐷𝑈, sc, 𝑢ℎ𝑃 ) from this graph.
The semantics for defeasible 𝜌𝑑𝑓⊥ are defined with a rank-
ing of 𝜌𝑑𝑓⊥-models: the lowest the rank of the model, the
more expected the situation it describes is considered. As
for the propositional and DL case [23], given a defeasi-
ble graph 𝐺 its RC is determined by its minimal ranked
model, that is, the model of 𝐺 in which every 𝜌𝑑𝑓⊥-model
is ranked as low as possible. The technical details can be
found in [14, Sect. 3].

4. Conclusions
The main features of our approach are: (i) the defeasible
𝜌𝑑𝑓⊥ we propose remains syntactically a triple language
by extending it with new predicate symbols with specific
semantics; (ii) the logic is defined in such a way that any
RDFS reasoner/store may handle the new predicates as
ordinary terms if it does not want to take into account of
the extra non-monotonic capabilities; (iii) the defeasible
entailment decision procedure is built on top of the 𝜌𝑑𝑓⊥
entailment decision procedure, which in turn is an exten-
sion of the one for 𝜌df via some additional inference rules,
favouring a potential implementation; (iv) the computa-
tional complexity of deciding entailment in 𝜌df and 𝜌𝑑𝑓⊥
are the same; and (v) defeasible entailment can be decided
via a polynomial number of calls to an oracle deciding
ground triple entailment in 𝜌𝑑𝑓⊥ and, in particular, decid-
ing defeasible entailment can be done in polynomial time.
While an extended version of the paper is under review at
the moment, a technical report is online [14].
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