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Abstract  
This paper presents a symmetric key cryptosystem using the sum of real type functions which 
allows to increase the cryptographic strength.  Both transmitter and receiver choose Key 
Functions with the same argument, the interval for setting the argument, and the step for 
changing it. The symbol of the transmitted message is encrypted in an array where each 
element is the sum of Key Functions with random amplitudes. This sum includes those Key 
Functions for which the corresponding bit is one. Decryption uses disproportion functions. The 
system is suitable for encrypting both discrete and continuous messages. 
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1. Introduction 

Widely used cryptosystems are based on the 
set of integers. They implement symmetric and 
asymmetric encryption algorithms. In symmetric 
systems, the same key is used for both encryption 
and decryption. The most famous symmetric 
systems are AES [1] and GOST 28147-89 [2, 3]. 
To hack such a system, an enumeration of 
possible keys is required. The brute-force 
complexity is O(2k), where k is the key length in 
bits. For symmetric systems, if the 
communication channel is open, there is a 
problem of secure key transmission. This problem 
does not exist for asymmetric open key systems. 
In these systems, the most widely used algorithms 
are RSA and El-Gamal [4, 5]. The RSA algorithm 
is based on the computational complexity of the 
integer factorization problem. El-Gamal's 
algorithm is based on the difficulty of computing 
the discrete logarithm, especially over a group of 
points of an elliptic curve [6]. For breaking 
asymmetric cryptosystems, there are 
cryptanalysis methods which are faster than full 
search. This circumstance makes it necessary to 
use longer keys compared to keys in symmetric 
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systems, but it’s not promising due to the 
intensive development of the quantum computers 
[7], which will significantly affect the 
cryptographic strength of existing cryptosystems 
[8]. The ordinal brute force has complexity O(2k), 
meanwhile Grover's quantum algorithm [9] 
reduces it to O(2k/2) [9].  

Implementing quantum algorithms will also 
reduce the robustness of asymmetric systems. The 
RSA system uses the super polynomial 
computational complexity of the factorization of 
natural numbers. At the same time, there is a 
quantum algorithm whose complexity is 
polynomial O(n3) [10]. It means the cryptographic 
strength of asymmetric systems can be reduced as 
a result of the implementation of Shor's quantum 
algorithm for computing the discrete logarithm. In 
[11], Shor's algorithm is given for the group of 
points of an elliptic curve over the field GF(p) 
with complexity O(n3). Implementing quantum 
algorithms will also reduce the robustness of 
asymmetric systems.  A method for increasing the   
crypto resistance of the system under these 
conditions is proposed in [12]. Along with the 
search for ways to hack cryptosystems, methods 
for detecting signals of means of secretly 



obtaining information are also being developed 
[13]. 

The above analysis shows that one should look 
for other ways to create cryptosystems. In 
particular, to complicate the selection of keys 
using the simple enumeration method, one should 
switch from using integers to real ones. It is 
known [14] the set of real numbers has a higher 
cardinality compared to the set of natural 
numbers, so one can expect the cryptographic 
strength of a cryptosystem based on real numbers 
will be higher. The possibilities of creating 
cryptosystems using one or more functions of a 
real variable as keys are considered in [15-18]. 

So, in [15], characters from the ASCII code 
table are encrypted by the sum of 10 functions of 
a real variable, which are keys. Each key-function 
is preceded by a coefficient, which, depending on 
the character being encrypted, is equal to zero or 
one. The amplitudes of these functions are random 
for each new symbol. The resulting sum of the 
values of the functions is transmitted over the 
communication channel. On the receiving side, 
fragments of key functions are recognized, which 
are represented in the received encrypted signal. 
This allows you to decrypt the symbol transmitted 
at the current time using the disproportion 
functions [19-22]. 

In [16, 17], a variant is proposed when 
symbols for transferring binary codes are encoded 
with the help of three key functions of a real 
variable. "1", "0", "space", "new line" are 
encoded. Any other character is recognized as a 
new line. For unauthorized access to the 
intercepted message, you need to select the type 
and parameters of the key functions. 

In [15-17], the disproportion functions over the 
first-order derivative were used. In this case, it is 
necessary to apply numerical methods for 
calculating the current values of the first 
derivatives. The need for these calculations led to 
the fact that the ciphertext significantly exceeded 
the length of the encrypted message. 

A completely different encryption principle 
was proposed in [18]. One function of the real 
variable is used as the key. The disproportion 
function of the numerical representation of the 
encrypted process is calculated with respect to the 
key function. The obtained values of the 
disproportion function are an encrypted message 
and are transmitted over the communication 
channel. To avoid calculating the derivatives, the 
integral disproportions of the first order is used 
[23]. 

The cryptosystems [15-18] in the process of 
computer modeling have shown high 
cryptographic strength when trying to guess the 
parameters of keys functions, even if their form is 
known. To further complicate the work of 
cryptanalysts, the task is to develop a 
cryptosystem that could combine the advantages 
of the systems considered in [15-17] and the 
system [18]. So, it’s necessary to develop the 
algorithms for encryption and decryption of 
analog and discrete messages, using several 
functions of a real variable as keys without the 
necessity to calculate derivatives. 

2. Mathematical  formulation  of  the 
problem 

The message that is encrypted is a sequence of 
T numeric character codes from the ASCII table 
(or numeric values of the pixel brightness 
components in the case of a graphic image 
transmission). Each of them is encrypted using 
one-dimensional arrays of length N values. These 
arrays are obtained using one and the same step h 
of changing the argument of m Key Functions of 
the real variable. In this case, the value y(j, i) of 
the matrix y(T, N) has the form:  

,ሺ݆ݕ ݅ሻ ൌ෍ ݇௤௝
௠

௤ୀଵ
௤݂ሺ݅ሻ, 

(1) 

where: 
j is the number of the character in the transmitted 
message; 
fq(i) = fq(ih), (i = 1, 2, … N > m), (q = 1, 2, … m) 
- an array of values of the q-th Key Function; 
kqj - coefficients that are generated during 
encryption of the j-th element and can be either 
equal to zero or represent random numbers which 
are unknown to the recipient. 

Key Functions can be either continuous or 
discrete. These functions should be the same for 
the transmitting and receiving sides and have the 
same numbering. Also, the step h of changing the 
argument of the Key Functions should be the 
same. An encrypted message in the form of a 
matrix y(T,N) is transmitted over an open 
communication channel. The task is to decrypt the 
message using the matrix received at the receiving 
end. To solve it, the integral disproportion of the 
first order is used [23]. 

3. Disproportion functions 



One of the first publications in which 
disproportion functions were proposed was [19]. 
In particular, the disproportion with respect to the 
n-th-order derivative of the function y(x) with 
respect to x is described by the expression:   
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Here the @ symbol is chosen to denote the 
operation of calculating disproportion. The 
symbol "d" stands for "derivative". The order is 
indicated in parentheses. The left part (2) reads "et 
d n y with respect to x". The order n ≥ 1 is an 
integer. If for any value of x, the function y(x) has 
the form y = kxn, then disproportion (2) is equal to 
zero regardless of the value of the coefficient k. 

For the case when n = 1, 
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(3) 

For defining the functions parametrically, 
when, x = φ(t),  y = ψ(t), where t is a parameter, 
disproportion (3) is described by the expression 
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For ψ(t) = kφ(t) disproportion (4) is equal to 
zero in the entire area of existence x = φ(t), 
regardless of the value of k. In [19], the case was 
considered when 

ሻݔሺݕ ൌ ݇ଵ ଵ݂ሺݔሻ ൅ ݇ଶ ଶ݂ሺݔሻ ൅ ⋯
൅ ݇௠ ௠݂ሺݔሻ	, 

(5) 

where f1(x), f2(x), … fm(x) are known 
functions; k1, k2, … km are coefficients whose 
values are unknown. 

It is shown that the disproportion functions 
allow calculating the values of the unknown 
coefficients in (5) from the data obtained for the 
current value of the argument. This opportunity is 
used to create cryptosystems [15-17]. 

In practice, often the first derivative of the 
function does not exist or is equal to zero on some 
interval. This excludes the possibility of using 
disproportions over the first-order derivative (2-
4). In this case, it is advisable to use the integral 
disproportion of the first order [23]. This 
disproportion of the function y(x) with respect to 
f(x) has the form: 
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where h - is the preset time interval. In the discrete 
representation of signals, this is a time 
quantization step.  

In this case, y(x) and f(x) are represented by 
one-dimensional arrays. If the approximate values 
of the integrals in (6) are calculated using the 
trapezoid formula, then for the one and the same 
step h for y(x) and f(x), disproportion (6) takes the 
following form (7): 
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4. Encrypting  and  decrypting 
messages 

The transmitting and receiving sides must have 
the same system of m Key Functions of the real 
variable, their numbering, the interval of changing 
the argument and step h of its change. The number 
of elements N of the one-dimensional array 
corresponding to the encrypted character must 
also be set. These can be both characters from the 
ASCII table, and components of pixel brightness 
when transmitting color graphic images. Each of 
them is represented by an integer. The required 
number of Key Functions depends on the 
maximum value of this number. For example, to 
encrypt characters from the ASCII table, m = 8 
Key Functions are required. They can be either 
continuous or discrete. If the Key Functions are 
continuous, it is necessary to calculate N elements 
of one-dimensional arrays of their values, 
changing the argument from the initial xmin to the 
final xmax value with a step h. When encrypting 
characters from the ASCII table or the pixel 
brightness, their numerical representations differ 
by one. In these cases, the step h of changing the 
argument must be equal to one. 

An m-bit binary code corresponds to each 
encrypted character. Each bit in this code is 
associated with a specific number of the Key 
Function. If the bit is zero, the value of the 
corresponding Key Function is also zero. If the bit 
is equal to one, then a random value of the 
amplitude of the corresponding Key Function is 
played. The character to be encrypted is 
represented by the sum (1). 

4.1. Encrypting messages 

1. The following is a character encryption 
algorithm: 

2. Calculate arrays of N > m values of Key 
Functions: fq(x), q = 1, 2… m. 

3. Enter the encrypted j-th character and 
calculate its cipher in the form of values of the 



one-dimensional array y(j, i), i = 1, 2... N 
according to (1). 

4. Repeat this point for all characters of the 
message of length T. 

5. A sequence of T arrays is an encrypted 
message transmitted over an open communication 
channel. 

4.2. Decrypting messages 

Pre-compute the arrays fq(i) = fq(ih),  
(q = 1, 2, ... m), (i = 1, 2, ... N > m), of Key 
Functions and to receive T one-dimensional 
arrays y(j , i), j = 1, 2, ... T, i = 1, 2, ... N over the 
communication channel. Further, in order to 
simplify the description of the decryption process, 
an example is given when only three functions are 
used in the cryptosystem - the keys: f1(x), f2(x), 
f3(x). In this case m = 3. Accordingly, the j-th 
character of the message is encrypted as 
,ሺ݆ݕ ݅ሻ ൌ ݇ଵ௝ ଵ݂ሺ݅ሻ ൅ ݇ଶ௝ ଶ݂ሺ݅ሻ ൅ ݇ଷ௝ ଷ݂ሺ݅ሻ,

݅ ൌ 1, 2, …ܰ ൐ 3	,						  
(8) 

The process consists of m = 3 levels in 
accordance with the number of Key Functions. 

First level: It is necessary to calculate the array 
of disproportions (7) y(j,i)  with respect to  any of 
the Key Functions , for example, f1(i): 
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where i = 2, 3…N. 
Also calculate the disproportions (7) of the 

remaining key functions with respect to f1(i): 
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where r = 2, 3.  
Considering that the disproportion of the 

function relative to itself is zero, we get: 
,଴ଵሺ݆ܨ ݅ሻ ൌ ݇ଶ௝ܨଶଵሺ݆, ݅ሻ ൅ ݇ଷ௝ܨଷଵሺ݆, ݅ሻ , (11)

Second level: It is necessary to select any 
disproportion from right-hand of (11), for 
example F21(j, i). It is used to calculate next 
disproportions: 
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Taking into account that the disproportion of 

F21(j, i) with respect to F21(j, i) is equal to zero, we 
get: 

F଴ଵଶଵሺj, iሻ ൌ kଷ௝ܨଷଵଶଵሺj, iሻ, (14)

 
Third level: The disproportion of F0121(j, i) 

with respect to F3121(j,i) is calculated in the 
following way 
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It is equal to zero because, as can be seen from 
(14), there is a proportional relationship between 
F0121(j, i) and F3121(j, i). This fact allows 
calculating from (14) k3j and k2j, k1j for the j-th 
message symbol. 

݇ଷ௝ ൌ
,଴ଵଶଵሺ݆ܨ ݅ሻ
ଷଵଶଵሺ݅ሻܨ

	,	
(16)

 

݇ଶ௝ ൌ
,଴ଵሺ݆ܨ ݅ሻ െ ݇ଷ௝	ܨଷଵሺ݆, ݅ሻ

ଶଵሺ݅ሻܨ
	,	

(17)

 

݇ଵ௝ ൌ
,ሺ݆ݕ ݅ሻ െ ݇ଶ௝ ଶ݂ ሺ݅ሻ െ ݇ଷ௝ ଷ݂ሺ݅ሻ

ଵ݂ሺ݅ሻ
	,	

(18) 

Depending on which of these coefficients are 
nonzero and which are equal to zero, the j-th 
message symbol is decrypted. In practice, it must 
be taken into account that there are calculation 
errors.  

Therefore, it is necessary to compare the 
disproportion (15) calculated at the last level in 
modulus not strictly with zero, but with an 
approximate number ɛ. For example, it could be 
ɛ=10-4. In this case, if | F01213121(j, i) | <= ɛ, then it 
should be assumed that it is zero. 

The value of ɛ is determined during testing of 
the cryptosystem. Theoretically, this 
disproportion is equal to zero for all i = 2, 3, ... N, 
but, taking into account the calculation errors, it is 
recommended to do calculations using formulas 
(16-18) for i, at which the modulus of 
disproportion (15) is minimal. 



4.3. An  example  of  encrypting  and 
decrypting  characters  from  an  ASCII 
table 

Eight Key Functions are used (m =8): 
1. f1(x) = 1000 sin((α1 - β1)x) cos(wβ1x) 
2. f2(x) = 1000 exp(0.1α2x) sin(wβ2x) 

cos((α2 + β2)x) 
3. f3(x) = 1000 exp(-α3x) sin(wβ3x) 
4. f4(x) = 1000 cos((α1x - β1)x) sin(wβ1x) 
5. f5(x) = 1000 exp(0.1sin(α2x)) sin(w 

cos(βx)) cos((α2+β2) x) 
6. f6(x) = 1000 sin(-cos(α3x)) cos(w 

sin(β3x)) 
7. f7(x) = 1000 sin(wx + α1) exp(-β1x2) 
8. f8(x) = 1000 cos(wγx2) 

where α1 = 1, α2 = 0.12, α3 = 0.5, β1 = 0.1,   
β2 = 1.5, β3 = 0.7, γ = 0.5, w = 400 are constants. 

A sequence of numbers corresponding to the 
transmitted characters from the ASCII code table 
is encrypted. Each character is encoded by a sum 
of Key Functions  
yሺxሻ ൌ ݇ଵ ଵ݂ሺxሻ ൅ ݇ଶ ଶ݂ሺxሻ ൅ ݇ଷ ଷ݂ሺxሻ

൅ ݇ସ ସ݂ሺxሻ ൅ ݇ହ ହ݂ሺxሻ
൅ ݇଺ ଺݂ሺxሻ ൅ ݇଻ ଻݂ሺxሻ
൅ ଼଼݂݇ ሺxሻ,	

(19) 

where: 
x = ih – argument; 
h = 1 – step of changing the argument. 
i – is the ordinal number of the element of the 
one-dimensional array for each of the Key 
Functions, as well as the array y0, y1, ..., yN-1, 
which is the character cipher; 
N – a number of elements of each one-
dimensional array. Based on the requirement of 
N > m, the amount of array elements N = 16. 

Table 1 shows the transmitted characters in the 
upper horizontal line. The corresponding ciphers 
are given in the form of arrays arranged vertically. 
The decrypted characters are located horizontally 
on the bottom line. 

It is obvious that the received message matches 
the transmitted one. It should be noted that the 
ciphers (arrays) of the adjacent symbols `t` are 
completely different. 

The codes of the other adjacent identical 
symbols in the message are given in Table 2. The 
above results indicate that the ciphers of the 
adjacent identical symbols in the message differ 
from each other. This circumstance greatly 
complicates the "hacking" of the cryptosystem. In 
order to "crack" the message, it is required to 

select the form of eight Key Functions and the 
values of their parameters.  

 
Table 1  
Encrypted and decrypted characters “Hello” 
y ‘H’ ‘e’ ‘l’ ‘l’  ‘o’

0  ‐323.36050  ‐1096.0141  ‐872.47149  37.134528  ‐112.93721 
1  257.702939  167.391848  1051.01033  532.400561  427.740614 
2  57.298613  175.907791  ‐408.37541  ‐216.26334  ‐116.65218 
3  ‐165.32821  126.358160  ‐324.75198  ‐162.19800  ‐197.22270 
4  ‐186.82906  ‐394.77504  ‐929.02530  ‐439.94548  ‐449.01146 
5  ‐163.70378  ‐392.33753  ‐1059.2853  ‐385.85981  ‐170.75848 
6  37.446166  299.880685  370.310135  74.675455  44.746439 
7  ‐110.70494  426.787248  ‐218.90900  ‐238.68403  ‐314.75860 
8  ‐2.714026  ‐59.278796  115.564604  ‐2.371129  ‐165.23427 
9  9.436954  152.916970  116.697501  ‐23.361501  281.220083 
10  42.465400  ‐412.02347  ‐203.82595  84.424717  150.029168 
11  ‐24.295297  615.002251  349.117675  ‐42.371452  ‐231.55086 
12  101.570285  95.754178  543.764259  227.452661  ‐122.68102 
13  195.422364  132.219196  855.514365  432.359247  754.345004 
14  ‐11.067358  ‐507.14921  ‐252.27430  ‐29.696351  228.457327 
15  214.445079  264.682389  659.731238  467.369970  ‐63.039751 

 
Table 2 
Encrypted and decrypted characters ‘A’ 
y  ‘A’  ‘A’  ‘A’  ‘A’  ‘A’ 

0  ‐597.135343  ‐762.540347  ‐609.489179  ‐1245.052456  ‐917.400855 
1  9.473961  ‐6.667141  ‐2.760240  ‐37.310266  ‐17.407304 
2  274.695430  368.229254  291.933312  625.796927  451.736269 
3  15.193014  87.216540  60.428145  237.898008  138.849052 
4  ‐123.497929  ‐217.377766  ‐165.579209  ‐438.953490  ‐291.370618 
5  ‐58.830278  ‐107.584825  ‐81.548078  ‐221.367775  ‐145.669069 
6  ‐8.280530  ‐11.911812  ‐9.337867  ‐21.332769  ‐14.999968 
7  199.488556  342.700766  261.876769  683.403833  456.291669 
8  ‐76.316724  ‐131.227388  ‐100.265637  ‐261.818697  ‐174.769533 
9  ‐60.158608  103.377062  78.993047  ‐206.183725  137.653657 
10  ‐125.104506  ‐215.011307  ‐164.292499  ‐428.868345  ‐286.313719 
11  214.641127  368.892513  281.874942  735.803375  491.224813 
12  ‐14.047252  24.142272  18.447384  ‐48.154847  ‐32.148341 
13  6.530344  11.223364  8.575899  22.386440  14.945262 
14  ‐223.052958  ‐383.349601  ‐292.921754  ‐764.640006  ‐510.476209 
15  169.891087  291.983039  223.107534  582.397666  388.810617 

 
Below is an example that illustrates the 

resistance of the system obtaining keys, even if 
somehow it was possible to find out the forms of 
Key Functions. Suppose that the above sequence 
of characters is encrypted using functions (7), and 
decrypted using the same kind of functions, but 
the constant w was guessed incorrectly. Instead of 
w = 400 was used w = 399.999 during decryption. 
In this case, the disproportion at the last eighth 
level in absolute value exceeds the permissible 
deviation ɛ from zero. That is, decryption is 
impossible. Only if w = 399.9999, the message 
may be decrypted. This result shows that even 
such a slight deviation of one of the parameters of 
the Key Functions does not allow decryption of 
the transmitted character. 

5. Requirements for Key Functions 

1. The Key Functions must be of real type. 
2. They can’t be constant and must not take 

zero values. 
3. When using the key function, there 

should be no situation where division by a number 



close to zero occurs, which leads to an 
unacceptable calculation error. For this purpose, it 
is recommended to test the cryptosystem for the 
entire alphabet of characters that will be used in 
messages. 

4. Check that the sum of two or more key 
functions does not coincide with any other of the 
key functions. 

5. It is recommended to include all 
parameters in the expression for each key 
function. In this case, a change in the value of any 
parameter leads to a change in all key functions, 
but not one or several of them only. 

6. Before sending an encrypted message, 
first check what the decrypted message looks like 
in order to avoid errors that may occur as a result 
of not taking into account the previous points. 

6. Conclusions 

A cryptosystem with symmetric keys is 
proposed. These keys are real variable functions 
that satisfy the above constraints. They can be 
either continuous or discrete. The number of 
functions is equal to the number of binary digits 
used to encrypt a character, for example, in an 
ASCII table. Each of the functions corresponds to 
a certain binary digit. The symbol of the 
transmitted message is encrypted with a one-
dimensional array. The elements of this array 
represent the sum of Key Functions with random 
amplitudes. This sum includes those Key 
Functions, for which the corresponding binary 
digit is equal to one. 

Decryption is performed using disproportion 
functions. The possibility of encryption and 
decryption of text information is shown. The 
given examples show the complexity the guessing 
Key Functions and the cryptographic strength of 
the proposed cryptosystem. So, for example, a 
real-type constant, which equals 400 during 
encryption, to break the system by brute-force, 
you need to select with an accuracy of 10-4, but 
there can be any number of such constants. It is 
very difficult to find all the constants of the real 
type at the same time with high precision and thus 
hack the system, even with well-known formulas 
of functions - keys.  

It should also be noted that the codes of the 
same adjacent symbols are not repeated, which 
can be seen from Table 2. This also increases the 
cryptographic strength of the system. 
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