
Methods of quality assurance of software development based on
a systems approach

Iryna Ushakova1, Yuri Skorin2, Alexander Shcherbakov3

1,2,3 Simon Kuznets Kharkiv National University of Economics, Nauky Ave., 9-A, Kharkiv, 61166, Ukraine

Abstract
The aim of the work is to analyze the problems and develop recommendations for quality as-

surance of software and testing during its creation in IT companies based on a systems

approach. The object of research is the processes of testing, quality control and quality

assurance. The subject of the study is the functions of quality assurance (QA) and testing (QC)

within the system of development and the characteristics and models of quality assessment and

software dependability. The research processes used a systematic approach, comparative

analysis of quality assessment methods and approaches to the organization of testing, quality

control and quality assurance of software products. The essence and main differences of the

concepts "testing", "quality control" and "quality assurance" were determined. To assess the

quality of the software, various aspects of quality in accordance with international standards,

the relationship between them and a multi-level model of software quality were considered. To

ensure the quality of the software product, it was proposed to use methods of integrated quality

assessment, which allow to obtain the final integrated value of software quality as a whole,

expressed in certain quantitative indicators, or its individual characteristics, and considered the

most common methods based on costs and hierarchical models. A systematic approach to

software quality assurance involves the creation of a QA team, which is an independent

subsystem within the software development system while maintaining links with team

members. To assess the differences between quality control and quality assurance, an analysis

of responsibilities, work planning and documentation of relevant groups in IT companies was

conducted, which made it possible to compare the functions performed and working conditions.

Thus, the QC function confirms that a specific result meets standards and specifications, and

QA is a broader function that covers planning and control throughout the development lifecycle.

Testing is an integral part of quality control. In order for an IT company to provide management

processes, QA and QC teams must work together. The scientific novelty of the work is to

develop a methodological basis for assessing the quality of software, developing

recommendations for improving the processes of quality assurance and testing in software

development in an IT company.

Keywords 1
Software, testing, quality control, quality assurance, dependability, security, quality model,

metrics, quality indicators, system approach

III International Scientific And Practical Conference “Information

Security And Information Technologies”, September 13–19, 2021,

Odesa, Ukraine

EMAIL: varavina.ira@gmail.com (A. 1);

skorin.yuriy@gmail.com (A. 2);

oleksandr.shcherbakov.kafis@gmail.com (A. 3)

ORCID: 0000-0001-8315-0917 (A. 1); 0000-0002-4613-3154 (A.

2); 0000-0001-8315-0917 (A. 3)

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

1. Introduction

The fourth industrial revolution, of course,

poses great challenges for "traditional" software

development. This is due to the unpredictable

behavior of software systems, lack of centralized

control, cybersecurity, scalability, fault tolerance,

reliability, development, definition of interfaces

and communication channels and their

management. However, most of these problems

can also be seen as opportunities for further

development of software development and testing

processes [21, 24].

Quality assurance or software quality

assurance is an integral part of the development

process and is used in the IT industry by quality

assurance professionals as well as testers. Quality

assurance is associated with the concept of

dependability. Dependability is, first, a guarantee

of increased cybersecurity, reliability and

protection against failures. In cases where the

failure of a software system that belongs to the

class of "high confidence" or "high integrity

system" can lead to extremely negative

consequences, the overall warranty of the system,

which includes hardware, software and man, is the

main and priority quality requirement in relation

to the main functionality of the system.

Both quality assurance and software testing are

designed to guarantee the quality of the software

application that meets customer requirements.

However, these two concepts have a fundamental

difference. Testing is performed after the

application has been created or for static testing

after the software requirements have been defined

and recorded in the relevant document [11,25].

Quality assurance involves activities that ensure

the quality of the application during its creation at

all stages, from the definition of requirements to

the transfer of the finished application to the

customer [17,28].

To understand the differences between these

components of the software development process,

it is necessary to give a clear definition of these

concepts, to relate between their characteristics, to

determine methods for assessing the quality of

software.

Successful solution of software quality

assurance problems is possible only with a

systematic approach to software development

processes, active involvement of quality

assurance specialists and testers, so the work will

identify differences between the responsibilities

of these specialists, differences in planning tests

and documentation, as well as developed

recommendations for improving software

development processes in terms of quality

assurance.

The main purpose of the article is to analyze

the problems and develop recommendations for

quality assurance of software and testing during

its creation in IT companies based on the

principles of a systems approach.

2. Review of literature sources

To clarify the differences between the

concepts of testing and software quality

assurance, consider the related concepts of

"testing", "quality control" and "quality

assurance", which are widely covered both in the

domestic literature and in foreign sources. [6-9,

11, 17].

Software testing according to ISO / IEC TR

19759: 2005 is a process of research, software

testing, which aims to verify the correspondence

between the actual behavior of the program and its

expected behavior on the final set of tests selected

by a particular.

Quality Control (QC) according to ISO 9000 is

a part of quality management focused on

compliance with the requirements for assessing

the number of defects, bugs (if any) in the

application. Quality control role is a set of

processes (actions) aimed at assessing the

developed application (draft document,

development system, etc.) and compliance with

customer requirements. Execution of these

processes guarantees check of quality of the

delivered application and defines, how well it is

designed and executed. The purpose of quality

control is to find defects and ensure their

correction. Thus, testing is an integral part of

quality control (fig. 1).

Quality Assurance (QA) is defined in

ISO 9000 as a part of quality management that

focuses on ensuring that defect elimination

requirements are met. The purpose of quality

assurance is to ensure that the application will

meet customer requirements. Quality assurance

consists of processes aimed at ensuring the quality

of application development at each stage of the

life cycle. These actions usually precede

application development and continue while the

process is under development. Quality assurance

is responsible for the development and

implementation of processes and standards to

improve the development life cycle, and to ensure

that these processes are performed [1, 2]. The

main purpose of quality assurance is to prevent

defects at all stages of software development and

its continuous improvement. While quality

assurance is an activity aimed at ensuring the

development of quality software, quality control

is an activity that captures and evaluates the

quality of an already created application. So

testing is a subsystem of quality control, and

quality control is a subsystem of quality assurance

system.

Figure 1: The relationship between the concepts
of "testing" and "quality control"

The relationship between quality assurance,

quality control and testing shows in fig. 2. Quality

assurance activities include setting standards and

processes, quality control, and selecting

appropriate tools.

Figure 2: The relationship between QA, QC and
Testing

The quality of software is defined in ISO 9126

as the whole set of its characteristics related to the

ability to meet the stated or implied needs of all

stakeholders.

There are the following aspects of software

quality [6,26]:

1. The quality of technological processes of

software development, which affects the creation

of quality software;

2. The internal quality of the software

associated with its characteristics, without taking

into account the behavior of the software

application;

3. External quality that characterizes the

software in terms of its behavior;

4. The quality of the software when used in

different contexts, that is the quality of the

software application, which is manifested in its

use by users in different specific scenarios.

Metrics have been created for all these aspects

of quality that allow them to be evaluated

In fig. 3 shows the relationship of different

aspects of software quality.

In addition, the standard describes a multi-

level software quality model that can be used to

describe both internal and external software

quality (fig. 4). At the top level of the model there

are 6 main characteristics of software quality,

each of which has its own attributes:

functionality: ability to interact, functional

suitability, compliance with standards and rules,

security, accuracy;

reliability: completeness, ability to recover,

compliance with standards, resistance to failure;

usability: intelligibility, ease of learning, ease

of operation, attractiveness, compliance with

standards;

productivity: time efficiency, resource

efficiency, compliance with standards;

ease of maintenance: analysis, ease of making

changes, stability, ease of verification,

compliance with standards;

transfer: adaptability, ease of installation,

ability to coexist, ease of replacement,

compliance with standards.

Quality
Control

Testing

Quality
Assurance

Quality
Control

Testing

Figure 3: Communication of different aspects of software quality according to ISO 9126

Figure 4: Multi-level software quality model according to ISO 9126

A set of metrics is defined for each attribute

that allow it to be evaluated. Metrics must have

the following properties:

1) reliability; which is associated with an

accidental error; the metric is free from random

error, if random changes do not affect the results

of the metric;

2) recurrence; the re-use of metrics for the

same application and by the same evaluators when

using the same evaluation specification (including

the environment), the same type of users and

environment, should lead to the same results with

appropriate tolerances; appropriate tolerances

should take into account such components as

fatigue and the result of accumulated knowledge;

3) uniformity; the application of metrics for the

same application by different assessment

professionals using the same assessment

specification (including the environment), the

same type of users and environment, should lead

to the same results with appropriate tolerances;

4) possibility of application; the metric must

clearly indicate the conditions (for example, the

presence of certain attributes) that limit its use;

5) showiness; it is the ability of a metric to

identify parts or elements of a program that need

to be improved, based on a comparison of

measured and expected results;

6) correctness; the metric must have the

following properties:

objectivity; the results of the metric and its

input should be based on facts and not be subject

to the feelings or opinions of experts in

assessment or testing (excluding metrics of

satisfaction or attractiveness, which measure the

feelings and opinions of the user);

impartiality; the measurement should not be

aimed at obtaining any specific result;

adequacy of accuracy; accuracy is determined

when designing metrics and especially when

choosing descriptions of facts that are used as a

basis for metrics; the metric developer must

describe the accuracy and sensitivity of the

metric;

7) significance; the measurement must give

significant results concerning the behavior of the

program or the quality characteristics.

Metrics must also be cost-effective. This

means that more expensive metrics should

provide better evaluation results [1, 2].

The developer of the metric must prove its

validity. The metric must meet at least one of the

following criteria for the validity of the metric:

1) correlation; the change in the values of

quality parameters (promptly determined by

measuring the basic metrics), due to a change in

the values of the metric, should be determined by

a linear relationship;

2) tracing; if the metric M is directly related to

the value of the quality characteristic Q, then the

change in value 𝑄(𝑇1), available at the time 𝑇1, to

the value of 𝑄(𝑇2), obtained at time 𝑇2, must be

accompanied by a change in the value of the

metric from 𝑀(𝑇1) to 𝑀(𝑇12) in the same

direction (for example, if 𝑄 increases, then 𝑀 also

increases);

3) consistency; if the values of quality

characteristics (promptly obtained by measuring

the main metrics) 𝑄1, 𝑄2, . . . , 𝑄𝑛, associated with

applications or processes 1,2 ..., n, are determined

by the ratio 𝑄1> 𝑄2> . . . > 𝑄n, associated with

applications or processes 1,2 ..., n, are determined

by the ratio 𝑀1 > 𝑀2 > . . . > М𝑛;

4) predictability; if the metric is used at time

𝑇1 to predict the value (promptly obtained by

measuring the main metrics) of the quality

characteristics Q at time 𝑇2, the prediction error

must fall within the allowable range of prediction

errors:

(𝑄𝑝 (𝑇2) – 𝑄𝑓 (𝑇2)) / 𝑄𝑓 (𝑇2), (1)

where 𝑄𝑝 (𝑇2) – the forecast value of the quality

characteristics at the time 𝑇2,

 𝑄𝑓 (𝑇2) – the actual value of the quality

characteristic at the time 𝑇2;;

5) selectivity; the metric must be able to

distinguish between high and low quality

software.

Improving the quality of software

development and testing allows you to create a

software application that meets customer

requirements [10, 12-15,27]. Attention should be

paid to the thorough improvement of all software

development processes, both directly related to

the development of perfect software code and all

processes that affect its quality: definition and

management of requirements, creation of test

scenarios and testing as early as possible (starting

with requirements testing), organization of

teamwork, division of responsibilities between

participants in the process, etc.

Recently, considerable attention in the field of

software quality assurance is paid to warranty.

Dependability of software includes such

characteristics as fault tolerance, safety of use

(safety in the context of acceptable risk to human

health, business, property, etc.), information

security or security - protection of information

from unauthorized transactions, including access

to reading, as well as guaranteeing the availability

of information to authorized users, in the amount

of their rights), as well as convenience and ease of

use (usability) [27]. Reliability is also a criterion

that can be defined in terms of warranty.

Special attention is paid to creating a perfect

code despite the current trends in the field of

information technology and in particular testing,

[3-5, 16].

Analysis of modern strategies, approaches and

methods of testing, identification of their

advantages and disadvantages paid attention in

[22, 25].

Ways to solve the problem of improving the

quality of software development and testing can

be the introduction of appropriate methods in IT

companies to assess the quality of software, which

will contribute to its warranty.

3. A systematic approach to
improving quality assurance and
testing processes in software
development

The need for software quality assurance

increases with the size of the organization and the

level of its quality policy. Quality assurance is a

complex multifaceted process. Therefore, the

system approach provides its required level in full.

This approach considers quality assurance as a

separate subsystem, which is part of the

development system, has certain connections with

it, as well as certain independence as a system.

The IT Company creates a QA group (quality

assurance group). It is important that the QA

function remains independent of project

management and operations. But the links

between the QA team and the project team are

very important and should provide them with

strong support.

Some organizations have a QA feature built

into the project management office. Such a model

also meets the criteria of independence. However,

with such an organization, you need to make sure

that the QA group consists of qualified quality

assurance analysts.

Given the differences between the concepts of

software testing, quality control and quality

assurance, there are also differences between the

responsibilities of the QA group and testers.

The responsibilities of testers include:

testing planning,

writing test scripts and test cases, checking

tests,

performing tests,

analysis of test results,

creation and analysis of reporting on test

results for different levels of tests.

As part of their quality control role, testers may

make demands on:

checking samples of project documents,

activities for managing software

configurations, design, code, etc.

At the same time, the QA group performs the

functions:

formation of organizational policy on quality,

standards and development processes;

providing assistance with quality assurance

training and project quality assurance plans;

checking compliance between project

processes and quality plans;

conducting regular inspections of design

applications and processes;

regular presentation of the results of quality

assessment analysis to management;

resolving a situation with a deviation from

guidelines or standards.

As part of its quality assurance role, the QA

group monitors:

independent reviews;

availability of project change management

procedures;

availability of project configuration

management procedures;

availability of retrospective planning and

implementation of development life cycle

processes;

quality assurance based on the development of

the life cycle system;

carrying out continuous improvement in the

process of quality control and implementation of

recommendations based on previous experience.

Performing the duties of the QA group does

not mean their development by the team, but only

ensuring their implementation.

When planning tests, testers prepare test

strategies and plans based on basic test

documents, such as software application

requirements and design solutions. These test

planning documents are the basis for the

implementation of processes at various planned

test levels. For each level of testing, tests, sets of

input data and expected results, detailed test

schedules, environmental requirements,

documents for defect management, test

management and reporting are compiled. In

contrast, software application quality assurance

documentation or quality plans include a broader

set of actions throughout all stages of

development. This affects the project

management methodology.

A typical draft quality plan includes customer

expectations, acceptance criteria, planned quality

control and process audits, configuration

management plans, and change management

procedures. Quality plans are based on the

organization's own policies, standards, or

guidelines that form the basis of quality assurance.

The project quality assurance plan is monitored

continuously and the planned quality indicators

are updated on its basis during the project

creation. There are different intersections between

risk management and quality, and therefore the

risk register can make a significant contribution to

the preparation of quality plans.

Recommendations for improving quality

assurance processes:

independence. To be successful the QA group

must be dependent on the project team. This

provides the QA group with the opportunity to

conduct an objective evaluation of projects.

Testers and QA specialists can be in the same

group in small organizations. However, there is a

possibility of creating a conflict of interest in

monitoring the testing activities. The solution

depends on the policy of the organization in the

field of quality and is as follows. A separate group

can be created for reporting;

relationships within the project team. Quality

assurance analysts may be overly process-

oriented and may insist on processes or

documentation that are of little relevance to the

project. This can worsen relationships with

project managers. It will be much easier for the

QA group to work with project teams if they work

on the principle of taking into account the project

objectives. In addition, the assistance and

assistance of project teams forms the basis for

maintaining good relations. This is an important

aspect of successful testing;

involvement of the necessary specialists.

Qualitative HR policy plays a leading role in the

successful operation of the QA Group. People

with experience in LС development who have

knowledge of ISO standards and CMMI

principles for software development have the

necessary competencies for the QA team;

requirements list. Standard checklists are a

useful mechanism for auditing projects, especially

if they are designed in accordance with the LC

phases. To ensure fruitful cooperation with

project managers, it is important to ensure the

participation of stakeholders in the project. This

makes it possible to get feedback from them in

response to suggestions for changes to the lists;

communication and reporting. Regular

reporting is very important to management,

developing the right templates and metrics to

provide management with the information it

needs to ensure that these reports are given the

proper attention. This is best achieved by meeting

with relevant senior management representatives,

providing them with reports and receiving

feedback and comments from them. In addition,

the QA team must continually obtain approval for

changes to quality control processes and standards

and ensure effective communication with

stakeholders;

constant improvement. Taking into account

previous experience provides the QA team with a

basis for evaluating processes and

recommendations for quality assurance, including

continuous improvement. The QA team must be

flexible, maintain good relationships with

stakeholders when making improvements in

management reporting. Continuous improvement

may also require amendments to the methodology

of development of software systems, so QA group

recommended to keep development methodology

IT company.

4. Introduction of methods of
integrated quality assessment of
software applications

Methods of integrated quality assessment have

the advantage that they allow to obtain the final

integrated value of the quality of the software as a

whole or its individual characteristics, expressed

in certain quantitative indicators. Cost-based and

hierarchical model-based methods of integral

software quality assessment are the most

common.

The method of integrated software quality

assessment, which is based on costs, belongs to

the group of calculation methods. According to

this method, a quantitative criterion of software

quality 𝑇 is formulated, focused on its life cycle.

(LC).

The costs of software development, operation

and maintenance include:

𝑅 – one-time software development costs;

𝑉 – one-time software implementation costs;

𝐸 – recurring costs 𝑆 for software operation for

the period of operation time 𝑡е during the life cycle

Т:

𝐸 = (Т / 𝑡𝑒) ∗ 𝑆; (2)

𝐶 – repeated at random intervals maintenance

costs, which are on average 𝑛 − 𝑡ℎ part of the

costs 𝑅 and 𝑚 − 𝑡ℎ part of the costs 𝑉 and are

carried out during the life cycle 𝑇 on average over

time 𝑡𝑐:

С = (𝑛 ∗ 𝑅 + 𝑚 ∗ 𝑉) ∗ Т / 𝑡𝑐; (3)
В – accidental losses due to unreliability or

lateness of the result:

В = 𝑆е ∗ Т / 𝑡е, (4)

where 𝑆е – the average amount of losses incurred

by a single operation of the software during

its LC.

Thus, the total cost 𝑍 in the software life cycle

of the software will be determined as follows:

𝑍 = 𝑅 + 𝑉 + (𝑆 е + 𝑆) ∗
Т

 𝑡 е
+

+(𝑛 ∗ 𝑅 + 𝑚 ∗ 𝑉) ∗ Т / 𝑡с,
(5)

As a quality criterion, it is proposed to use the

minimization of total costs for software

development, operation and maintenance. The

criterion for software quality is to minimize the

total cost Z:

𝑍 → 𝑚𝑖𝑛. (6)

The main disadvantage of this method is that

the actual cost values included in the formula can

be determined after the development of the

software application, and therefore it cannot be

used as a tool in the development process to

achieve a given level of quality.

The choice of the nomenclature of quality

indicators according to the method of quality

assessment based on a hierarchical model for a

particular software application is based on its

purpose and requirements for the scope depending

on the affiliation of the software to a subclass

determined by the software classifier:

operating systems and means of their

expansion;

database management software;

tool-technological means of programming;

software applications for interface and

communication management;

software applications for the organization of

the computational process (planning, control);

service programs;

software applications for computer

maintenance;

research applications;

design applications;

applications for control of technical devices

and technological processes;

applications for solving economic problems;

other software applications.

Evaluation of software quality is the choice of

nomenclature of indicators, their evaluation and

comparison with the basic values. A four-level

hierarchical quality model is the basis of this

evaluation method. It includes:

level 1 - quality characteristics;

level 2 - quality attributes;

level 3 - metrics;

level 4 - evaluation indicators (software

attributes).

For each of the selected quality characteristics,

a four-level hierarchical model is developed,

which reflects the relationship of characteristics,

attributes, metrics and indicators. The type of this

model depends on the phase of the LC.

Tables are used for practical application of the

model. These tables are created for each

characteristic. So to assess the characteristics of

information security, you can use the indicators

that are in table 1.

Table 1
Indicators of assessment of the characteristic of information security

Indicator Evaluation method Evaluation form

Proportion of
incidents by type, 𝑃𝑡

Registration,
calculated

𝑃𝑡 =
𝐾𝑆𝑡

∑ 𝐾𝐼𝑡𝑡

,
(7)

𝐾𝐼t – the number of 𝑡 − 𝑡ℎ incidents

Proportion of
deadlines incidents,

𝑃𝑠

Registration,
calculated

𝑃𝑠 =
𝐾𝐼𝑠

𝐾𝐼
,

(8)

𝐾𝐼𝑆 – the number of incidents closed
in time

KI – the total number of incidents
Probability of
trouble-free
operation, Р

Registration,
calculated

𝑃 = 1 − 𝑞/𝑛, (9)
𝑛 – number of tests,

𝑞 – number of registered failures

Quality assessment is a deterministic process

that consists of certain stages. Its implementation

involves the main stages:

determining the purpose of evaluation,

development of quality model,

creating a model of metrics,

search for basic metrics,

determination of derived metrics,

formalization of metrics,

determination of metric limit values,

determination of actual values of metrics,

definition of integrated software quality

assessment,

software quality analysis.

The first stage involves determining the

purpose of evaluation:

evaluate the quality of the finished software

application, for example in accordance with the

quality standard;

evaluate the quality of the software application

during its development.

A certain model of integrated assessment is

chosen depending on the goal and then

consistently performs certain steps.

To determine, for example, the proportion of

incidents of a certain type, it is necessary to record

all incidents for a certain period. Then the

percentage of a certain incident is determined

(table 2). To assess the quality of software for this

indicator, the values are compared with the

allowable value. These data are used for analysis

(fig. 4) and subsequent integrated evaluation of

application quality.

Table 2
Proportion of incidents "Injection of malicious
code", 01-06/2021

Month 01 02 03 04 05 06

Proportion of
incidents,%

20 22 18 16 20 14

Figure 4: Proportion of incidents "Injection of
malicious code"

To ensure quality in the process of software

application development, both methods should be

used:

to perform quality assessment during

development to quickly ensure compliance of

processes with certain standards and compliance

of the software application with customer

requirements,

to estimate the total cost of development,

operation and maintenance of the finished

software application with.

5. Conclusions

The paper compares the concepts of "testing",

"quality control" and "quality assurance", which

showed that testing is part of quality control, and

quality control coincides with quality assurance in

the field of quality control. Dependability, which

includes fault-tolerance, safety, information

security or security, as well as usability, should be

provided primarily for software systems of high

reliability, high availability within the quality

guarantee.

Software quality assessment should take into

account international standards in this field, which

define various aspects of quality, such as process

quality, internal quality, external quality and

quality of use. To assess quality, it is

recommended to use a multi-level model that

includes the following characteristics:

functionality,

reliability,

usability,

productivity,

convenience of support,

transfer.

From the point of view of the systems

approach, quality assurance can be defined as a

separate subsystem, which is a component of the

development system, has certain connections with

it, as well as a certain independence as a system.

To assess the differences between quality

assurance and quality control processes, an

analysis of the responsibilities of the relevant

groups of specialists, their work planning and

documentation was carry out, which made it

possible to compare the functions performed and

working conditions. Thus, QC functions are

aimed at confirming that specific results meet

standards and specifications, and QA is a broader

function. It covers planning and control

throughout the development lifecycle. Testing is

an integral part of quality control. In order for an

IT company to have effective quality management

processes, the QA and QC group must work

together.

A successful QA group can add significant

value to an organization, namely:

improving the quality and warranty of

software applications;

consistency in the delivery of software

applications;

improving the organization of processes;

reduction of total delivery costs;

use applications for application support

documentation.

At the same time, it should be borne in mind

that QA specialists require additional costs:

firstly, in the staffing schedule for software

quality analysts,

secondly, due to the complexity of processes.

At the beginning of implementation it may

adversely affect the team.

0

10

20

30

1 2 3 4 5 6

Proportion
of incidents

Permissible
level

Critical
level

Software quality assurance requires the

introduction of integrated quality assessment

methods and individual quality indicators.

Integrated evaluation processes include:

defining the purpose of evaluation,

developing a quality model,

creating a model of metrics,

searching for basic metrics, defining derived

metrics,

formalizing metrics,

defining metric limits,

determining actual metric values,

defining integrated software quality

assessment,

software quality analysis.

To ensure quality, it is necessary to carry out

its operational integrated assessment at all stages

of LC and integrated assessment of costs for

development, operation and maintenance of the

finished software application.

6. References

[1] Dzh. Folk, Kaner, E. Nhuen, Testyrovanye

prohrammnoho obespechenyia.

Fundamentalnыe kontseptsyy

menedzhmenta byznes–prylozhenyi, per. s

anhl., Yzdatelstvo «Dya-Soft», Kyev, 2001.

[2] K. A. Kulakov, V. M. Dymytrov, Osnovы

testyrovanyia prohrammnoho

obespechenyia, Yzdatelstvo PetrHU,

Petrozavodsk, 2018.

[3] Dzh. Makhrehor D. Saiks, Testyrovanye

obъektno-oryentyrovannoho prohrammnoho

obespechenyia, Dyasoft, Kyev, 2002.

[4] S. Makkonnell, Sovershennыi kod. Master-

klass, Yzdatelsko-torhovыi dom «Russkaia

redaktsyia», Moskva, Sankt-Peterburh,

Pyter, 2005.

[5] M. A. Plaksyn, Testyrovanye y otladka

prohramm dlia professyonalov budushchykh

y nastoiashchykh, 2-e yzd. (эl.), BYNOM.

Laboratoryia znanyi, Moskva, 2013.

[6] Prohramna inzheneriia. Yakist produktu.

Chastyna 1. Model yakosti (ISO/IEC 9126-

1:2001, IDT): DSTU ISO/IEC 9126-1:2013,

Chynnyi vid 2014-07-01,

MINEKONOMROZVYTKU Ukrainy ,

Kyiv, 2014.

[7] Prohramna inzheneriia. Yakist produktu.

Chastyna 2. Zovnishni metryky (ISO/IEC

TR 9126-2:2003, IDT): DSTU ISO/IEC TR

9126-2:2008,Chynnyi vid 2010-07-01,

Derzhspozhyvstandart Ukrainy, Kyiv, 2011.

[8] Prohramna inzheneriia. Yakist produktu.

Chastyna 3. Vnutrishni metryky (ISO/IEC

TR 9126-3:2003, IDT): DSTU ISO/IEC TR

9126-3:2012,Chynnyi vid 2013-05-01,

MINEKONOMROZVYTKU Ukrainy,

Kyiv, 2013.

[9] Prohramna inzheneriia. Yakist produktu.

Chastyna 4. Metryky yakosti pid chas

vykorystannia (ISO/IEC TR 9126-4:2004,

IDT): DSTU ISO/IEC TR 9126-4:2012,

Chynnyi vid 2013-05-01,

MINEKONOMROZVYTKU Ukrainy,

Kyiv, 2013.

[10] S. V. Synytsыn, N. Yu. Naliutyn,

Veryfykatsyia prohrammnoho

obespechenyia, Yntuyt NOU, Moskva, 2016.

[11] I. O. Ushakova, Metodyka upravlinnia

vymohamy v hnuchkykh metodolohiiakh,

Zbirnyk naukovykh prats KhNUPS, Vyp.

2(56) (2018): 93 – 98.

[12] I. O. Ushakova, Proektuvannia

informatsiinykh system: praktykum, KhNEU

im. S. Kuznetsia, Kharkiv, 2015.

[13] I. O. Ushakova Roli i kliuchovi yakosti IT-

spetsialista, v: Tezysы VII Mezhdunarodnoi

nauchno-praktycheskoi konferentsyy

“Problemы y perspektyvы razvytyia, 2015, s.

23.

[14] I. O. Ushakova, Systemnыi podkhod k

upravlenyiu trebovanyiamy pry

proektyrovanyy ynformatsyonnыkh system,

v: Ynformatsyonnыe systemы v upravlenyy,

obrazovanyy, promыshlennosty :

monohrafyia. Vyd. TOV «Shchedra sadyba

plius», Kharkiv :, 2014, ss. 86-91.

[15] M. Fauler, Refaktorynh. Uluchshenye

sushchestvuiushcheho koda, per. s anhl.,

Symvol-Plius, Sankt-Peterburh, 2003.

[16] H. Foidl, M. Feldere. Integrating software

quality models into risk-based testing,

Software Quality Journal, V 26 (2018): 809

– 847.

[17] H. V. Gamido, M. V. Gamido, Comparative

review of the features of automated software

testing tools, International Journal of

Electrical and Computer Engineering, Vol. 9,

No. 5, (2019): 4473~4478

[18] P. M. Jacob, P. A. Mani, Framework for

evaluating performance of software testing

tools, Journal of Scientific and Technology

Research, V. 9, Iss. 2 (2020): 2175–2180.

[19] R. S. Kenett, R. S. Swarz, A. Zonnenshain,

Zonnenshain. Systems Engineering in the

Fourth Industrial Revolution: Big Data,

Novel Technologies, and Modern Systems

Engineering, Wiley, New York, NY, 2020.

[20] R. Pietrantuono, On the testing resource

allocation problem: Research trends and

perspectives, Journal of Systems and

Software, V. 161 (2020): 42 р.

[21] A. A. Sawant, P. H. Bari, P. M. Chawan,

Software Testing Techniques and Strategies,

International Journal of Engineering

Research and Applications, Vol. 2, Iss. 3

(2012): 980-986.

[22] Software Testing, Verification and

Reliability: Special Issue 10th IEEE

International Conference on Software

Testing, Verification, and Validation (ICST

2017), Software Testing, Verification and

Validation, Vol. 30, Iss. 7–8. (2020). URL:

https://onlinelibrary.wiley.

com/toc/10991689/2020/30/7-8:

[23] V. Garousi, A. Rainer, P. Lauvås jr, A.

Software-testing education: A systematic

literature mapping, Journal of Systems and

Software, V. 165 (2020). URL:

https://www.researchgate.net/

publication/339814384_Software-testing_

education_A_systematic_literature_

mapping.

[24] Androshchuk, А., Yevseiev, S., Melenchuk,

V., Lemeshko, O., Lemeshko, V.

Improvement of project risk assessment

methods of implementation of automated

information components of non-commercial

organizational and technical systems.

EUREKA, Physics and Engineeringthis link

is disabled, 2020, 2020(1), pp. 48–55

[25] Oleksandr Laptiev, Savchenko Vitalii, Serhii

Yevseiev, Halyna Haidur, Sergii Gakhov,

Spartak Hohoniants. The new method for

detecting signals of means of covert

obtaining information. 2020 IEEE 2nd

International Conference on Advanced

Trends in Information Theory (IEEE ATIT

2020) Conference Proceedings Kyiv,

Ukraine, November 25-27. pp.176 –181.

[26] Korchenko, A., Breslavskyi, V., Yevseiev,

S., Sievierinov, O., Tkachuk, S.

Development of a Method for Constructing

Linguistic Standards for Multi-Criteria

Assessment of Honeypot Efficiency.Eastern-

European Journal of Enterprise

Technologiesthis link is disabled, 2021,

1(2(109)), pp. 14–23

[27] Try QA. URL: http://tryqa.com/

[28] N. G. Bardis, N. Doukas, V. Kharchenko, Vl.

Sklyar, S. Yaremchuk, Dependable IoT for

Human and Industry: Modeling,

Architecting, Implementation, in:

Approaches and Techniques to Improve IoT

Dependability, River Publishers, 2019, pp.

307-328.

