
Possibilities of Using Watermarks to Protect Software Code

Vadym Poddubnyi1, Roman Gvozdev2, Oleksandr Sievierinov3, Oleksandr Fediushyn4

1,2,3,4 Kharkiv National University of Radio Electronics, 14 Nauky Ave, Kharkiv, 61166, Ukraine.

Abstract
This paper considers methods for software code protection from modifying and illegal

distribution. Including methods based on digital watermarks, and zero digital signs. One of

the promising methods of program code protection is the KeySplitWatermark method. The

paper considers it and the possibility of modernization.

Keywords
Watermarks, software, zero watermarks, KeySplitWatermark.

1. Introduction

The problem of software protection from

attackers appeared with the advent of the first

commercial program. Despite the modernization

of software development, delivery, and integrity

facilities, the annual cost of distributing

unlicensed software is approximately $46.3

billion. Although in recent years the percentage of

unlicensed software in the world has decreased

from 39% to 37%, the problem of protecting

software code and programs in general will

remain relevant. This problem is especially

important for the post-Soviet space, so in Ukraine

the percentage of unlicensed software is 82%, in

Russia 62% and in Belarus 82%, which is similar

to the indicators of developing countries in Africa

(Nigeria 80%, Kenya 74%, Zambia 80%) [1].

It should be noted that not only unlicensed

distribution can cause damage, attackers can

embed malicious elements in the program, use

separate modules of the program, etc. (Figure 1).
1

III International Scientific And Practical Conference “Information

Security And Information Technologies”, September 13–19, 2021,

Odesa, Ukraine

EMAIL: vadym.poddubnyi@nure.ua (A. 1);

roman.hvozdov@nure.ua (A. 2); oleksandr.sievierinov@nure.ua

(A. 3), oleksandr.fediushyn@nure.ua (А. 4)

ORCID: 0000-0002-4380-491X (A.1); 0000-0002-5408-943X

(A.2); 0000-0002-6327-6405 (A.3); 0000-0002-3600-405X (A.4)

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Software

Copy
software

Copy
software

Software Software

Malicious
code

C

А В D

Developer

Developer

Developer

Malefactor

Malefactor

Malefactor

User

User

User

User

E

B

Figure 1. Possible software attacks

2. Methods of program code
protection

To reduce the loss from unlicensed distribution

and embedding malicious elements in the program

code, software developers are forced to use a

variety of protections.

Some of the most common methods of

software removal are:

1. Adding program code to prevent intrusions;

2. Obfuscation of the program code;

3. Digital watermarks [2].

Obfuscation - is the process of code

reorganization, primarily aimed at complicating

the disassembly of software code by an attacker.

It involves modifying a program, or adding code

to a program to increase its complexity.

The main methods of obfuscation:

• Formatting transformations that change only

the appearance of the program. This group

includes conversions that delete comments,

indents in program text, or rename IDs.

• Transform data structures that change the

data structures that the program works with.

This group includes, for example,

transformations that change the hierarchy of

class inheritance in a program, or

transformations that combine scalar variables

of the same type into an array.

• Convert a program's control flow to change

the structure of its control flow graph, such as

sweeping loops, selecting code snippets into

procedures, and more.

• Preventive transformations that target certain

decompilation methods or use bugs in certain

decompilation tools.

The downside of obusfuscation is the

complexity of the development process and

modernization of software, and the software after

obusfuscation may be more complex and slower

[3].

To ensure the integrity of the software,

developers add to the programs special modules

that to check software integrity. Such code blocks

check the hash values of the program and its

components, encrypt and decrypt the program

code, or monitor the status of the program

(respond to incorrect data or commands, etc.).

To protect the program from hacking, you need

to make sure that it "works as intended" even if

attacker tries to interrupt, control or change the

execution of the program code.

It should be noted that this is different from

obfuscation, where the goal is to make it more

difficult for an attacker to understand and read the

program.

The disadvantages of this method are the

increase in the number of resources for the

operation of the program, as it requires additional

resources of the protection module. Such modules

may also conflict with other software. Also, such

modules can interfere with the operation of parts

of the program or other programs.

In practice, the line between protection against

unauthorized access and obfuscation is blurred: a

program that is more difficult to understand

because it has been confusing will also be more

difficult to modify and attack.

Digital watermarks are special secret messages

that are embedded in the program code or program

data, they serve to confirm the authorship and

preserve the integrity of the data.

Since its inception, digital watermarks have

been commonly used for multimedia data

embedded in various signal characteristics

(frequency, brightness, color, etc.). However,

over time, digital watermarks began to be used to

protect software.

3. Watermark type

According to the methods of embedding in the

program code, digital watermarks are divided into

static and dynamic. Static watermarks are

embedded in program code or data as opposed to

dynamic ones, which store the watermark during

program execution. [4]

According to their characteristics, digital

watermarks are divided into:

• Fragile. Digital watermarks that are

impossible to detect, with the slightest

modification. Used to control integrity;

• Semi-fragile. Digital watermarks that can

withstand some changes in the carrier digital

watermark. Is used to detect an attack;

• Reliable. Watermarks are resistant to all

types of attacks. Used for authentication and

authentication.

There are various types of embedding digital

watermark in the program, the most common of

which are:

1. Replacement of the code;

2. Replacement of code logic;

3. QP algorithm;

4. QPS algorithm;

5. Digital watermark on the basis of graphs.

The downside of digital signs is that the digital

watermark increases the size of the program.

Static watermarks cannot fully protect data and

require additional protection methods [4].

Watermarks and protection against

unauthorized access are also related. In fact, if

perfect protection against unauthorized access

were available, it would be easy to add

watermarks, watermarks should be combined with

any trivial algorithm to protect against

unauthorized access, and an attacker would not be

able to find or destroy the tag. Precisely because

there is no perfect protection against unauthorized

access, you need to worry about masking

watermarks.

It is assumed that an attacker who can find a

watermark will also be able to change the program

to destroy the sign [5]. A graphical representation

of the digital watermark is shown in Figure 2.

Bit File

Developer User

Software

WatermarkWatermark

WatermarkWatermark

Watermark

Key

Key

Key

Key Key

Key

Figure 2. Graphic representation of a digital
watermark

4. Zero digital watermark

One of the methods of solving the problems of

digital watermarks is "zero watermarks".

A traditional digital watermark hides

information about the owner or creator of an

object or objects group of objects somewhere

inside that object. This hidden information can

later be used for many purposes: maintaining

integrity, detecting intentional or accidental

interference, protecting data copyright, etc.

Zero watermarks, unlike "normal" digital

watermarks, are not embedded in program code.

Program, data, or code structure is used to

generate a null character.

Also, one of the advantages of zero digital

characters is that they are resistant to compression

of the embedded object.

Graphical representation of the zero digital

sign is shown in Fig. 3.

Embedded
software

Key

Developer User

Software

Bind

51 24

43 52

44 87

7 12

69 43

52 24

1 75

33 14

51 24

43 52

44 87

7 12

69 43

52 24

1 75

33 14

Key

Figure 3. Graphical representation of the zero
digital watermark

Zero digital watermarks are widely used in

medicine [6] [7] to protect patient data, but zero

digital signs can also be used to protect software.

One example of zero digital watermark

algorithms for program code protection is the

algorithm considered by KeySplitWatermark [8].

There are also algorithms for fragile digital

watermarks to protect the database from

modifications [9].

These algorithms use statistical data and

asymmetric encryption using a certification

authority to generate digital watermarks. The

characteristics of this type of digital watermarks

indicate the prospects for their use to protect

software code from unauthorized changes or from

unlicensed distribution.

5. KeySplitWatermark Algorithm

KeySplitWatermark algorithm is presented by

a group of developers from different universities

around the world such as China, Pakistan, India

and others. KeySplitWatermark is a new approach

based on a blind zero watermark to protect

software source code from cyberattacks.

KeySplitWatermark first analyzes the program

code to determine the keywords, and then divides

the code into sections based on the selected

keyword. The algorithm generates a unique key

using keywords and the program code itself. If

you have any copyright concerns in the future, you

can use this key to verify ownership. The

implementation algorithm does not make any

changes to the program code to create

watermarks, and the extraction algorithms do not

require the use of watermarks as input, which

makes it blind (zero digital sign).

The watermark algorithm consists of two

components; embedding and removing

watermarks. Watermark embedding is performed

by the original owner of the software, and removal

is later performed by a trusted third party.

In this algorithm, the program code is first pre-

processed to identify the ten most common

characters and the five most common keywords.

It is then divided into sections based on the user-

selected keyword KeySplitWatermark, in which

the implementation algorithm accepts the

following input:

• Source code: The source code of the software

to which the watermarks should be applied.

• Cipher: a numeric value that will be used in

the key generation process.

• Watermark: ASCII character group.

The implementation algorithm generates the

owner key as the output. This key is written to the

certificate authority and then used to remove the

watermark (if necessary). The extraction

algorithm accepts the following input data:

• Attacked code file: A program code file that

has been modified or used illegally as a

copyright infringement.

• Owner key: It is obtained from the

certification authority to identify the original

owner

The certificate authority is a requirement of

this algorithm that registers content to the

copyright owner. When an attack is suspected, this

trusted third party removes the watermarks and

provides the original code of the recovery

software if a counterfeit is detected. The fake code

is replaced by the original code, which makes the

actions of the attacker invalid.

The graphical representation of the algorithm

is shown in Figure 2.

Claimer

Bind
Algorithm

Cipher

Buyer

Inquiry
Model

Parameter
Evaluation Valid File? Fail

Watermark
Verification

Pass

Key
F

Safe Software

Figure 4. Graphical representation of the
KeySplitWatermark algorithm

It is impossible to destroy a watermark without

a significant change in the code, and if any

changes occur in the code, the source code is

restored. The results of research conducted by the

authors prove that KeySplitWatermark is reliable,

secure and efficient with minimal computational

requirements.

The results of research conducted by the

authors prove that KeySplitWatermark is reliable,

secure and efficient with minimal computational

requirements (Table 1)[8].

To evaluate the reliability of

KeySplitWatermark, developers of the algorithm

used ASProtect, Upx and Aspack to attack the

program with watermarks and check the

correctness of the removed watermark. The results

of the experiment are shown in Table 2.

The watermark can be properly removed after

encryption, shelling, and watermark compression

attacks. The initial semantics of the program are

preserved, although various attacks are carried

out.

The algorithm is promising, has potential and

requires detailed analysis and study [8]. Since the

algorithm is new, the following vectors of

research and modernization are offered as

improvements:

1. Use Unicode instead of ASCII to generate

keywords;

2. Parse program code with keyword pairs to

increase the number of code split

combinations;

3. National algorithms for certificate authority.

Switching to Unicode is suggested to

potentially increase the languages to use and

increase the length of the keywords generated.

The use of keyword pairs should expand the

variability of the choice and potentially increase

the stability of the algorithm. It is also proposed to

increase the number of keywords for the same

purpose.

The use of national algorithms (such as DSTU

7624 [10], DSTU 4145[11], DSTU 7564[12]) can

improve the stability of the algorithm.

A promising task is to create a certification

center for the use of the KeySplitWatermark

algorithm and its testing.

Table 1
Comparative Results for Increase in the size of the Watermarked Code and in Execution Time for

Crptoencryption With 31KB File

Watermark
length (bit)

Increase in program
(KB)

Increase in program
KeySplitWatermark

Execution
time(ms)

Execution time
KeySplitWatermark

128 18 0 23 18
256 34 0 40 32
512 67 0 45 39
1024 130 0 123 105

Table 2
Attacks and results

Tool Attack
Mode

Extraction Extraction
KeySplit

Watermark

ASProt
ect

Encrypts
program

100% 100%

UPX Conducts
code

compressio
n

100% 100%

Aspack Used to
shell the
program

100% 100%

6. Conclusions

This paper provides a brief overview of

methods for protecting software code from

modification and distribution. One such method is

digital watermarks. This method has many

disadvantages, but they have been eliminated with

the advent of a new type of digital watermarks -

zero digital watermarks.

One of the promising methods of zero digital

sign is KeySplitWatermark. To improve the

characteristics, its modernization and further

research are proposed. It is also proposed to study

and use it together with national algorithms

(DSTU 7624, DSTU 4145, DSTU 7564) and

certification authority.

7. References

[1] Business Software alliance, Software

Management: security imperative, business

opportunity, 2018.

[2] Christian S. Collberg, Clark Thomborson

Watermarking, Temper-Proofing, and

Obfuscation – Tools for Software Protection,

2000.

[3] Чернов А. В., Анализ запутывающих

преобразований программ, 2003, URL:

http://citforum.ru/security/articles/analysis/.

[4] James Hamilton, Sebastian Danicic

Department of Computing, Goldsmiths,

University of London United Kingdom, A

Survey of Static Software Watermarking,

URL: https://www.researchgate.net

/publication/224229798_A_survey_of_static

_software_watermarking.

 [6] Aleš Roček, corresponding author Michal

Javorník, Karel Slavíček, and Otto Dostál,

Zero Watermarking: Critical Analysis of Its

Role in Current Medical Imaging, URL:

https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC7886926/.

[7] Zulfiqar Ali, Muhammad Imran, Mansour

Alsulaiman, Tanveer Zia, Muhammad

Shoaib, A Zero-Watermarking Algorithm for

Privacy Protection in Biomedical Signals.

[8] Celestine Iwendi, Zunera Jalil,

KeySplitWatermark: Zero Watermarking

Algorithm for Software Protection Against

Cyber-Attacks, 2020, URL:

https://ieeexplore.ieee.org/document/906821

7/references#references.

[9] Aihab Khan, Syed Afaq Husain, A Fragile

Zero Watermarking Scheme to Detect and

Characterize Malicious Modifications in

Database Relations, 2013,

URL:https://hindawi.com/journals/tswj/201

3/796726/.

[10] National standard of Ukraine, Information

technologies. Cryptographic information

protection. Symmetric block transformation

algorithm DSTU 7624: 2014.

[11] National standard of Ukraine, Cryptographic

information protection, Based digital

signature on elliptical curves. formation and

verification DSTU 4144-2002.
[12] National standard of Ukraine, Cryptographic

information protection. Hashing function

DSTU 7564: 2014.

