
Modification of Query Processing Methods in Distributed
Databases Using Fractal Trees

Olha Svynchuk1, Andrii Barabash2, Serhii Laptiev3 and Tetiana Laptieva4

1,2National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Politehnichna str. 56, 5,

Kyiv, 03056, Ukraine
3,4Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, Kyiv, 01601, Ukraine,

Abstract
Today in database management systems there is an acute problem of searching for data in large

data sets. To solve this problem, we propose a modified search tree and its improvement using

a fractal index search tree with a multilevel structure. Each level in such a structure is a separate

fractal tree. Algorithms for data processing in DBMS RAM by modified methods are described.

These methods can be used to search for the same data from different tables. Increased the

minimum filling of the node, which reduces the height of the tree. The symmetry of the fractal

tree helps to execute the query quickly and, as a result, reduce the number of requests to the

disk subsystem. Also, due to the self-similarity property, the most frequently used indexes will

be loaded into the DBMS RAM much faster after selection. This will speed up the process of

finding the information you need for the request. Loading data indexes into RAM based on

statistics on the frequency of use of indices and index size weights will reduce the number of

indexes that are loaded into RAM, in contrast to the classic loading where the loading of indexes

occurs during their use and after filling the memory, it is deleted. Another big advantage is that

indexes that are almost never used will not be loaded into RAM. The proposed approach with

fractal trees also has an important scaling property, as fractal trees are divided into a large

number of smaller trees, which is especially true in the era of multicore modern computer

systems. To study the effectiveness of the use of indexes based on a modified fractal search tree

in the database and select the best system for hosting the database server, we measured the

speed of information retrieval in tables for the Windows 10 operating system. During the

experiments it was shown that the search speed on the modified trees in comparison with the

modified fractal search tree is reduced by 12%.

Keywords 1
database, data search, B + -trees, modified trees, fractal trees, indexes

1. Introduction

In today's world we can see a rapid increase in

information, which complicates the process of its

storage and management. Therefore, for its

organization and quick search using databases

(DB), which are organized according to the

III International Scientific And Practical Conference “Information

Security And Information Technologies”, September 13–19, 2021,

Odesa, Ukraine

EMAIL: 7011990@ukr.net mailto: (A. 1);

andrew.barbsh@gmail.com (A. 2); salaptiev@gmail.com (A. 3);

tetiana1986@ukr.net (A.4)

ORCID: 0000-0001-9032-6335 (A. 1); 0000-0001-8433-2827

(A. 2); 0000-0002-7291-1829 (A. 3); 0000-0002-5223-9078 (A. 4)

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

concept that describes the characteristics of this

data. In modern information systems for high-

quality work with databases use DBMS database

management systems that provide the ability to

create, store, update and search for the necessary

information. DBMSs also provide a number of

useful services: schema to control data semantics,

query language to organize access to part of the

mailto:
mailto:tetiana1986@ukr.net

database, data granulation, data integrity

management, compression to reduce database

size, indexing to speed up query processing.

However, the integration of different databases

into the production process at enterprises and

other institutions has a number of shortcomings

associated with the organization of their

management and monitoring of events in

databases [1-5].

In modern databases, an important element is

the search for data in tables that contain many

rows and columns and are not always ordered.

Therefore, to implement a quick search, indexes

are created that are formed from the values of one

or more columns and pointers to the

corresponding rows. Indexes allow you to avoid

sequential or step-by-step browsing of the file in

search of the desired data. They are ordered, each

element of the index contains the name of the

searched object and a pointer-identifier of its

location. The more indexes, the better the

performance of database queries, but a very large

number of indexes does not guarantee high

performance [5-10].

Many databases use different trees and their

modifications to build such indexes. However, if

the tree has an insufficient number of nodes and

their fullness, the data search time increases [11-

13]. The disadvantages may also be the use of

identical indexes for different tables and sending

to the RAM of indexes that are rarely used [14-

15].

The base trees in index construction and data

retrieval are B-trees, namely their type B + trees.

These trees easily implement the independence of

the program from the structure of the information

record, have the ability to sequential access and

all key data are contained only in the sheets. The

main disadvantages of such trees are the

compactness of filling and the number of levels of

trees [16-18].

You can also select K-trees, which contain all

the characteristics of the B + tree, but have a better

strategy of splitting and merging nodes. Also,

these trees have more elements at the root of the

node and the fullness of the node is ¾. All this

saves hard disk space and increases the speed of

access to information [19-20].

However, the index structures used in modern

databases have some limitations due to the long

process of restructuring the index structure in the

case of adding or removing new data.

Accordingly, this leads to a slow process of

searching for information in a database with large

data sets.

The aim of the article is to improve the process

of processing indexes in databases using fractal

trees and speed up query execution.

2. Modified search tree

The existing mechanisms of data modification

in the tables have a certain feature - the change of

keys in the corresponding nodes of the tree is

performed with the subsequent restructuring of

the index. This significantly affects the speed of

writing information to the database and,

accordingly, is an important factor in increasing

the number of queries to the database. You also

need to store only the most frequently used

indexes, then, accordingly, the access time to the

data storage location will be reduced. Therefore,

the existing methods need to be improved, which

will allow to find the necessary information faster

[21-22].

In the + tree we will improve as follows:

• increase the minimum filling of the node,

which will reduce the height of the tree;

• change the rule of separating the nodes of

the tree - splitting the node with its two

neighbors into four new nodes;

• change the rule of connecting tree nodes -

connecting four nodes into three new

nodes;

• in the tree leaf we will store records of

links to the same fields in different tables,

which will increase the time of receipt of

links to data in the tree and speed up the

search.

We describe the search for data using indexes.

Indexes are loaded into the RAM of the database

after receiving the request. Next, a list of data is

formed, which contains the necessary

information, and the found data is sent to RAM.

However, in the classical algorithm for loading

indexes in the RAM are indexes that are almost

not used, and, accordingly, take place until they

are replaced by other indexes. Therefore, it is

necessary to improve the procedure for processing

indexes in the RAM of the database (Picture 1) by:

• reducing the specific storage in the RAM

of indexes that are little used;

• processing little-used indexes by reading

them from disk.

Figure 1: Algorithm for loading indexes in the
DBMS RAM by hashing

Here is an algorithm for loading indexes into

memory based on the index hashing method:

• DBMS loads indexes into RAM according

to the classical algorithm and collects

statistics on the number of used indices

during ∆t;

• after collecting statistics, the DBMS loads

into RAM only those data that were used

most often during the time period ∆t;

• if there is no data in the RAM during the

query, the search is performed by reading

nodes from the disk index space of the

database;

• if the time ∆t has expired, then in RAM are

loaded those indexes that are used most

often and have not been loaded before.

This algorithm is implemented in two stages:

1. statistics are collected on the number of

used indices for the corresponding period

∆t;

2. the indices that were most often used in the

previous time interval ∆t are loaded into

RAM.

We have a formula for calculating time:

∆𝑡 =
(∑ 𝑘𝑖𝑊𝑖

𝑛
𝑖=1)𝑡

(∑ 𝑊𝑖
𝑛
𝑖=1)𝑘

,
(1)

where 𝑘𝑖 – the number of used i-th index, 𝑘 – the

number of indexes used, 𝑊𝑖 – the weighting

factor of the i-th index, 𝑡 – time of statistics

collection.

Loading data indexes into RAM (figure 1)

based on statistics on the frequency of use of

indices and index size weights leads to a decrease

in the number of indexes that are loaded into

RAM, in contrast to the classic loading, where the

loading of indexes occurs during their use, and

after filling the memory, it is deleted. Another big

advantage is that indexes that are almost never

used will not be loaded into RAM.

3. A modified method of searching

for queries using fractal trees

Recently, fractals are increasingly being used

in various areas of our lives. Fractals can be used

to model and describe various phenomena in the

fields of radio engineering and electronics, digital

information processing, and computer graphics

[23].
The concept of «fractal» was proposed by the

French-American mathematician Benoit

Mandelbrot. In 1977, he published Fractal

Geometry of Nature, describing repetitive

drawings from everyday life. According to him,

many geometric shapes consist of smaller shapes,

which when enlarged accurately repeat a large

shape. After research, he also found that fractals

have chaotic behavior, fractional infinite

dimension and can be described mathematically

using simple algorithms.

Fractal in a more general sense means an

irregular, self-similar structure, set, subsets and

elements of which are similar to the set itself.

Fractals can be deterministic or stochastic. They

can also be classified according to self-similarity.

There are three types of self-similarity in fractals:

exact self-similarity (looks the same at different

magnifications); almost self-similarity (fractal

looks approximately (but not exactly) self-similar

at different magnifications); statistical self-

similarity (fractal has numerical or statistical

measures that persist with magnification).

Examples of fractals are the Cantor set, the

Lyapunov fractal, the Serpinsky triangle, the

Serpinsky carpet, the Menger sponge, the

Apollonia grid, the dragon curve, and the Koch

curve. Also recently, attention is paid to fractal

trees: from each branch depart smaller, similar to

it, from them - even smaller (figure 2). By a

separate branch of mathematical methods can

describe the properties of the whole tree.

Collection of
statistics on
the use of

indices

Loading
indexes in

DBMS
RAM

Change of
indices for

the new
period

Figure 2: An example of constructing a fractal
tree

To construct the structure of the indices will be

used Pythagorean fractal tree - a flat fractal,

consisting of interconnected right triangles of

squares built on the legs and hypotenuse

(figure 3).

Figure 3: Pythagorean tree

The Pythagorean tree with N levels is a trunk

and two Pythagorean trees with N-1 levels depart

from it symmetrically, so that the length of their

trunks is 2 times less and the angle between them

is 90 degrees (figure 4).

The Pythagorean tree is divided into subtree

blocks, where each tree is a full-fledged fractal

tree. We present this subtree in the form of a new

horizontal level, which complements the vertical

structure of the original tree. If the new horizontal

level is too large, then in order to fit into one block

of the disk, it is divided into two blocks and

indexed in the third horizontal level.

Figure 4: Pythagorean tree for 6 levels

These indexes can be easily used for large

databases. The structure of such indexes is

presented in the form of arrays with a length equal

to powers of number 2. This structure is easily

scalable for a large number of keys, and is not

sensitive to the content of the entered queries.

The main advantage of using fractal trees is

that the resulting structure is symmetrical and

internally balanced. Symmetry helps to execute

the request quickly and, as a result, there will be

much fewer requests to the disk subsystem. Also,

due to the self-similarity property, the most

frequently used indexes will be loaded into the

DBMS RAM much faster after selection. This

will speed up the process of finding the

information you need for the request.

The index uses a new multi-level approach -

additional levels of the tree allow you to search in

the data block that contains the information on

request. Each request accesses the same number

of levels, which provides balanced access to the

index and disk subsystem.

Updating, inserting and deleting indexes

can be done very efficiently. The update is

performed as a sequential deletion of the old key,

followed by the insertion of a new key value.

Inserting a key into a fractal tree involves adding

one new node or adding an edge to an existing

node. Inserting requires changes to only one block

at level 1. First, look for a block to update - if the

block is crowded, it must be divided, and this

leads to the creation of a new node in level 2.

Separation of blocks is very rare and does not

affect performance.

To study the effectiveness of indexes based on

a modified fractal search tree in the database and

choose the best system for hosting the database

server, we measured the speed of information

retrieval in tables for Windows 10. Experiments

show that the search speed of modified trees

compared to modified fractal search tree is

reduced by 12% (Picture 5).

The average error of the result for the modified

search tree is 0.91%, and for the modified fractal

search tree is 0.89%. Therefore, the experiments

are performed correctly and provide the results

with a given accuracy.

Figure 5: Comparison of query search speed for
modified tree and modified fractal tree

4. Conclusions

New methods of index processing in

databases for speeding up information processing

are offered. The developed modified methods

differ from the known methods of processing

queries in databases in that they can be used for a

large amount of information. Loading data indices

into RAM based on statistics on the frequency of

use of indices and index size weights leads to a

decrease in the number of indexes that are loaded

into RAM. A modification of the data processing

algorithm in RAM has been performed, which has

made it possible to exclude indexes that are rarely

used in memory. The resulting structure is

balanced and optimized for storage in the disk

subsystem, reduces the number of I / O operations

to a minimum. The method of constructing

indexes based on a modified fractal tree allows to

increase the data search speed by 12% compared

to the modified method of index search based on

a classic B + tree. The proposed approach also has

an important property of scaling, as fractal trees

are divided into a large number of smaller trees,

which is especially true in the era of multicore

modern computer systems.

Prospects for further research are seen in

the creation of new methods for processing

queries in distributed databases based on index

hashing using fractal trees.

5. References

[1] V.A. Mashkov, O.V. Barabash, Self-Testing
of Multimodule Systems Based on Optimal
Check-Connection Structures. Engineering
Simulation. Amsterdam: OPA, 13 (1996) 479-
492.

[2] V.A. Mashkov, O.V. Barabash, Self-
checking and Self-diagnosis of Module
Systems on the Principle of Walking
Diagnostic Kernel. Engineering Simulation.
Amsterdam: OPA, 15 (1998) 43-51.

[3] O. Barabash, G. Shevchenko, N. Dakhno, O.
Neshcheret, A. Musienko, Information
Technology of Targeting: Optimization of
Decision Making Process in a Competitive
Environment. International Journal of
Intelligent Systems and Applications. Hong
Kong: MECS Publisher, 9 (12) (2017) 1-9.

[4] O.V. Barabash, P.V. Open’ko, O.V. Kopiika,
H.V. Shevchenko, N.B. Dakhno, Target
Programming with Multicriterial
Restrictions Application to the Defense
Budget Optimization. Advances in Military
Technology, 14(2) (2019) 213-229.

[5] V. Sobchuk, О. Barabash, A. Musienko, O.
Svynchuk, Adaptive accumulation and
diagnostic information systems of
enterprises in energy and industry sectors. 1st
Conference on Traditional and Renewable
Energy Sources: Perspectives and Paradigms
for the 21st Century (TRESP 2021), Volume
250, 09 April 2021.
doi.org/10.1051/e3sconf/202125008002

[6] H. Zhenbing, V. Mukhin, Ya. Kornaga, O.
Herasymenko, Y. Bazaka, The scheduler for
the grid system based on the parameters
monitoring of the computer components.
Eastern European Journal of Enterprise
Technologies, 1 (2017) 31-39.

[7] V. Savchenko, O. Ilin, N. Hnidenko, O.
Tkachenko, O. Laptiev, S. Lehominova,
Detection of Slow DDoS Attacks based on
User’s Behavior Forecasting. International
Journal of Emerging Trends in Engineering
Research (IJETER) 8(5) (2020) 2019-2025.

[8] O. Laptiev, O. Stefurak, I. Polovinkin, O.
Barabash, V.Savchenko, O. Zelikovska. The
method of improving the signal detection
quality by accounting for interference. 2020

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 20 40 60

TI
M

E,
 M

/S

NUMBER OF RECORDS

В+-tree Modified fractal tree

IEEE 2nd International Conference on
Advanced Trends in Information Theory
(IEEE ATIT 2020) Conference Proceedings
Kyiv, Ukraine, November 25-27, pp.172-176.

[9] V. Tkachov, V.Tokariev, Y. Dukh, V.
Volotka, Method of Data Collection in
Wireless Sensor Networks Using Flying Ad
Hoc Network. 2018 5th International
Scientific-Practical Conference Problems of
Infocommunications. Science and
Technology, October 9-12, 2018 Kharkiv,
Ukraine, pp. 197-201.

[10] K. Smelyakov, S. Smelyakov, A. Chupryna
Advances in Spatio-Temporal Segmentation
of Visual Data. Chapter 1. Adaptive Edge
Detection Models and Algorithms. Series
Studies in Computational Intelligence (SCI),
volume 876, publisher Springer, Cham,
2020, pp. 1-51.

[11] S. Yevseiev, R. Korolyov, A. Tkachov, O.
Laptiev, I. Opirskyy, O. Soloviova,
Modification of the algorithm (OFM) S-box,
which provides increasing crypto resistance
in the post-quantum period. International
Journal of Advanced Trends in Computer
Science and Engineering (IJATCSE) 9(5)
(2020) 8725-8729.

[12] O. Barabash, O. Laptiev, O. Kovtun, O.
Leshchenko, K. Dukhnovska, A. Biehun,
The Method dynavic TF-IDF. International
Journal of Emerging Trends in Engineering
Research (IJETER), 8(9) (2020) 5713-5718.

[13] O. Laptiev, V.Savchenko, S. Yevseiev, H.
Haidur, S. Gakhov, Spartak Hohoniants, The
new method for detecting signals of means of
covert obtaining information. 2020 IEEE 2nd
International Conference on Advanced
Trends in Information Theory (IEEE ATIT
2020) Conference Proceedings Kyiv,
Ukraine, November 25-27, pp.176 –181.

[14] V. Sobchuk, V. Pichkur, O. Barabash, O.
Laptiev, I.Kovalchuk, A. Zidan, Algorithm of
control of functionally stable manufacturing
processes of enterprises. 2020 IEEE 2nd
International Conference on Advanced
Trends in Information Theory (IEEE ATIT
2020) Conference Proceedings Kyiv,
Ukraine, November 25-27, pp. 206-211.

[15] V. Savchenko, O. Laptiev, O. Kolos, R.
Lisnevskyi, V. Ivannikova, I. Ablazov,
Hidden Transmitter Localization Accuracy
Model Based on Multi-Position Range
Measurement. 2020 IEEE 2nd International
Conference on Advanced Trends in
Information Theory (IEEE ATIT 2020)
Conference Proceedings Kyiv, Ukraine,
November 25-27, pp.246-251.

[16] Z. Hu, V. Mukhin, Ya. Kornaga, O.
Herasymenko, Y. Mostoviy, The Analytical
Model for Distributed Computer System
Parameters Control Based on Multi-factoring
Estimations. Journal of Network and Systems
Management, 27(2) (2019) 351-365.

[17] O. Barabash, O. Laptiev, V. Tkachev, O.
Maystrov, O. Krasikov, I. Polovinkin, The
Indirect method of obtaining Estimates of the
Parameters of Radio Signals of covert means
of obtaining Information. International
Journal of Emerging Trends in Engineering
Research (IJETER), 8(8) (2020) 4133-4139.

[18] S. Yevseiev, R. Korolyov, A. Tkachov, O.
Laptiev, I. Opirskyy, O. Soloviova,
Modification of the algorithm (OFM) S-box,
which provides increasing crypto resistance
in the post-quantum period. International
Journal of Advanced Trends in Computer
Science and Engineering (IJATCSE) 9(5)
(2020) 8725-8729.

[19] М. Pratsiovytyi, O. Svynchuk, Spread of
values of a Cantor-type fractal continuous
nonmonotone function. Journal of
Mathematical Sciences, 240(3) (2019) 342-
357. doi.org/10.1007/s10958-019-04354-0

[20] О. Laptiev, G. Shuklin, O.Stefurak, O.
Svynchuk, O. Urdenko, S. Hohoniants,
Method of the increasing the detection
system and recognition of digital
radiosignals. Wschodnioeuropejskie
Czasopismo Naukowe, East European
Scientific Journal, 2 (54) (2020) 4-16.

[21] O. Svynchuk, O. Barabash, J. Nikodem, R.
Kochan, O. Laptiev, Image compression
using fractal functions Fractal and Fractional,
5(2), (2021) 31.

[22] O.V. Barabash, A.P. Musienko, V.V.
Sobchuk, N.V. Lukova-Chuiko, O.V.
Svynchuk, Distribution of Values of Cantor
Type Fractal Functions with Specified
Restrictions. Chapter in Book
“Contemporary Approaches and Methods in
Fundamental Mathematics and Mechanics”.
Editors Victor A. Sadovnichiy, Michael Z.
Zgurovsky. Publisher Name: Springer,
Cham, Switzerland AG 2021, pp. 433-455.
doi.org/10.1007/978-3-030-50302-4_21

[23] S. Toliupa, N. Lukova-Chuiko, O. Oksiuk.

Choice of Reasonable Variant of Signal and

Code Constructions for Multirays Radio

Channels. Second International Scientific-

Practical Conference Problems of

Infocommunications. Science and

Technology. IEEE PIC S&T 2015. pp. 269 –

271.

