
 

Protection of Numerical Information Based on Permutations 
 

Oleksiy A. Borysenko 
1, Oleksii Y. Horiachev 

2, Viktor V. Serdyuk 
3, Andriy O. Horyshnyak 4, 

Oleksandr M. Kobyakov 
5 and  Olga V. Berezhna 

6   

 
1-6 Sumy State University, st. Rimsky-Korsakov, 2, Sumy, Ukraine 

 

 

Abstract  
The article solves the problem of protecting decimal numbers used in systems of information 

transmission, processing and storage from unauthorized access with simultaneous correction of 

single errors in them and detection of error bursts. To protect the decimal number, each of its 

digits is first converted to a binary-decimal digit, and then, using a special table, into a binary-

coded permutation. After that, the digits of the decimal number themselves are mixed. The 

paper gives estimates of the level of secrecy of decimal numbers encoded in this way. Since 

each digit of a decimal number can contain one of 10 digits, 10 permutations are required to 

encode them. To obtain them, at least 4 elements 0, 1, 2, 3 are required. They form 24 

permutations, of which 14 are redundant. Specially selected 10 binary-coded permutations out 

of 24 form a binary-coded permutation code with a minimum code distance equal to 4. This 

allows correction of any single error and detection of double errors on the set of permutations. 
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1. Introduction  

In practice, binary-decimal codes have become 

widespread, with the help of which information 

from various sensors is extracted and transmitted, 

for example, information about the amount of 

consumed thermal and electrical energy, water 

and other similar indications. Usually, each 

binary-decimal digit taken from the sensor is 

transmitted over a communication channel, 

essentially a telecommunication system, which 

includes a buffer memory with an encoder, a 

communication line, an information display 

device, and a receiver with a decoder [1]. The 

communication line can be both wired and 

mobile, using radio communication. In the latter 

case, information can be transmitted directly to 

moving objects, such as cars. 1 
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However, the transmitted information in some 

cases must be protected from unauthorized access. 

To do this, the binary-decimal digits of each 

decimal number are uniformly mixed using the 

appropriate tables. At the receiving end, these 

tables allow to restore the original information. 

They are, in essence, cipher keys. Moreover, the 

secrecy of the mixed each binary-decimal place 

can be significantly increased by additional 

mixing of the bits of binary-decimal numbers. 

However, in addition to protecting against 

unauthorized access, it is often required to further 

increase the noise immunity of the transmitted 

binary-decimal numbers. 

Binary-decimal coding protects to a certain 

extent the transmitted or stored decimal digits 

from interference due to the redundancy of a 

binary-decimal code containing sixteen four-bit 



 

binary-decimal code words. However, the level of 

protection against interference is still low, 

although for a number of practical cases it may be 

acceptable. Therefore, it became necessary to 

increase it. 

 It was proposed to solve this problem in [1-4] 

using binary-decimal error-correcting codes, 

which are essentially decimal digits encoded with 

error-resistant combinations. For this purpose in 

[1] the coding of binary-decimal digits by 

equilibrium code combinations was introduced, 

which significantly increased the ability of the 

telecommunications system to detect errors [1-4].  

To assess the noise immunity of such codes, it 

was proposed to use formulas for the probabilities 

of transition of code combinations into classes of 

correct combinations, allowed erroneous 

combinations that are not detected and forbidden 

combinations that can be detected [5]. According 

to the results of the analysis, it was concluded that 

the use of equilibrium codes provides the 

requirements of the reliability class I1 of the 

international standard IEC 870-5-1-95 in the 

whole range of failure levels of one bit of 

information [1]. At the same time, the secrecy of 

information was increased, since there was no 

reliable test for unravelling their values, because 

statistics for decimal digits presented in the form 

of equilibrium code combinations does not help 

well, unlike text information, for the decoding of 

which the statistical probabilities of letters play an 

essential role. 

However, errors in the transmission of decimal 

digits by equilibrium code combinations are 

difficult to eliminate, and the implementation of 

ARQ in mobile communications is sometimes 

difficult. Therefore, the task arose of developing a 

telecommunication system that would not only 

detect errors, but also correct them, using 

inseparable codes, in order to hide the true value 

of decimal digits during transmission.  

2. Problem statement 

The task of this work is to increase the noise 

immunity of transmitted binary-decimal digits, 

accompanied by error correction, with sufficient 

protection against unauthorized access. 

For this, it is proposed to enhance the noise 

immunity of binary-decimal information by using 

inseparable codes on permutations, since, on the 

one hand, they allow error detection and 

correction, and on the other hand, they can hide 

the true information deeper. 

Permutations are widespread in mathematics. 

Permutations are used in abstract algebra, and 

they are also used to solve combinatorial 

optimization problems, for example, the travelling 

salesman problem [6-8]. 

In addition to solving mathematical problems, 

permutations are used in practical problems of 

protecting information from unauthorized access 

[9-16]. The area of their possible application is 

constantly expanding. Along with this, 

permutations successfully solve the problem of 

anti-jamming coding, since by their nature they 

contain redundant information, which makes it 

relatively easy to find and, which is especially 

important for small mobile devices, to eliminate 

errors in messages transmitted with their help 

[17,18]. In addition, the permutations make it 

possible to combine solutions to the problems of 

anti-jamming coding with effective protection of 

information from unauthorized access. 

3. Coding with permutations 

Any finite sequence of distinct elements of 

length n is a permutation. While any symbols can 

be elements of permutations, most often numbers 

are used as them. For example, a sequence of four 

different digits 0123 would be a permutation of 

length n = 4. At the same time, a sequence of 1011 

of length n = 4 would not be a permutation, since 

it only consists of two different repeating 

elements 0 and 1. 

The set of n! permutations of length n forms a 

permutation code. The difference n·log2n - log2n! 

forms redundant information of this code, which 

with increasing of n can reach a significant value, 

determining the high noise immunity of codes on 

permutations. In addition, permutations do not 

have repeating elements and, therefore, obtaining 

their statistics is difficult. It can be obtained, with 

high effort, only on a large number of 

permutations, which greatly complicates the 

deciphering of information hidden in the 

permutations. 

In the tasks of anti-jamming coding and 

information protection the elements of 

permutations are represented in binary form. Such 

their representation will be called binary-coded. 

The number of binary bits in binary-coded 

permutations is defined as the whole logarithm of 

the permutation elements number n: 
m=⌈ log2n ⌉ (1) 

10 different binary-coded permutations are 

required to encode binary-decimal information. 



 

Therefore, the minimum value of n that can 

provide the required number of permutations will 

be 4, since 4 × 3 × 2 = 24 > 10. Of these 24 

permutations, 10 permutations are used to encode 

10 binary-decimal digits. Each of them encodes 

one of the digits, for example, permutation 0123 

is used to encode 0. The remaining 14 possible 

permutations are redundant. One of the possible 

variants of representation of binary-decimal digits 

by permutations is shown in Table 1. Together, 

binary-decimal digits in Table 1 form a binary-

decimal code (2-10 code). 

 

   Table 1 
   Coding with permutations 

№ 2-10 code Permutations 

0 0000 0123 
1 0001 0132 
2 0010 0213 
3 0011 0231 
4 0100 0312 
5 0101 0321 
6 0110 1023 
7 0111 1032 
8 1000 1203 
9 1001 1230 

3.1. Information secrecy 

The number of encoding variants of binary-

decimal digits by permutations will be equal to the 

number of combinations 10 out of 24, each of 

which can be specified by the corresponding table, 

like Table 1. Each of these variants, in turn, can 

be represented by one of 10! permutations 

encoding 10 digits, each of which can also be 

represented in the form of a table. Each of these 

tables can act as a cipher key, consisting of 

10!·C10
24 permutations for one decimal place. 

In addition, the decimal digits, the number of 

which is equal to k, can also be shuffled in various 

ways during their transmission. Accordingly, the 

total number of permutation variants that can be 

used to encrypt the decimal permutation code will 

be equal to M = k!·10!· ·C10
24. If k, for example, 

equals 10, then the number of variants of the 

cipher M = 10!·10· ·C10
24= 2.58·1019. This is a 

fairly large number of brute force options required 

to break the cipher. It should be borne in mind that 

the statistics of the numbers in the permutation 

cipher is poorly expressed, which greatly 

complicates its disclosure. The dependence of the 

M value, which characterizes the complexity of 

the proposed cipher disclosure, from the 

parameter k is shown in Table 2 and in the graph 

Figure 1. 

 

 

        Table 2 
        Number of permutations М  

k  M  k  M 

1 7.11·1012  5 8.54·1014 
2 1.42·1013  6 5.12·1015 
3 4.27·1013  7 3.58·1016 
4 1.70·1014  8 2.86·1017 

k  M  k  M 

9 2.58·1018  15 9.30·1024 
10 2.58·1019  16 1.48·1026 
11 2.84·1020  17 2.53·1027 
12 3.40·1021  18 4.55·1028 
13 4.43·1022  19 8.65·1029 
14 6.20·1023  20 1.73·1031 

 

 
Figure 1: Graph of M versus k 

3.2. Evaluation of the noise 
immunity of the code on 
permutations 

In addition to secrecy, permutations can 

significantly increase the noise immunity of the 

binary-decimal code. This is due to the fact that 

the binary-coded representation of such 

permutations according to formula (1) will 

contain four digits of length m = 2. Permutations 

P of length n = 4 and their binary-coded 

representation BCP are presented in Table 3. 

 

 Table 3 
  Binary-coded permutations 

P BCP P BCP 

1

10000

1E+08

1E+12

1E+16

1E+20

1E+24

1E+28

1E+32

1 3 5 7 9 11 13 15 17 19

k

M

10
32

10
28

10
24

10
20

10
16

10
12

10
8

10
4

10
0



 

0123 00 01 10 11 2013 10 00 01 11 
0132 00 01 11 10 2031 10 00 11 01 
0213 00 10 01 11  2103 10 01 00 11 
0231 00 10 11 01 2130 10 01 11 00 
0312 00 11 01 10 2301 10 11 00 01 
0321 00 11 10 01 2310 10 11 01 00 
1023 01 00 10 11 3012 11 00 01 10 
1032 01 00 11 10 3021 11 00 10 01 
1203 01 10 00 11 3102 11 01 00 10 
1230 01 10 11 00 3120 11 01 10 00 
1302 01 11 00 10 3201 11 10 00 01 
1320 01 11 10 00 3210 11 10 01 00 

 

Each permutation differs from others by at 

least two elements, and therefore, the minimum 

code distance in a binary code on permutations is 

2. Such a code distance allows detecting in binary-

coded permutations all single errors, as well as all 

errors of odd multiplicity 1, 3, 5, ... 

Increasing the code distance will improve the 

noise immunity of binary-coded permutations. To 

achieve this, out of all 24 permutations of length 

n = 4, 10 allowed permutations should be selected, 

as shown in Table 4, which differ from each other 

by three elements, and thereby ensure the 

minimum code distance between their binary 

representations equal to 4. This allows not only 

detecting double errors in binary-coded 

permutations, but also correcting any single error 

in them.  

 

Table 4 
Permutations with minimum code distance 4 

P BCP P BCP 

0123 00 01 10 11 2013 10 00 01 11 
0231 00 10 11 01 2130 10 01 11 00 
0312 00 11 01 10 2301 10 11 00 01 
1203 01 10 00 11 3021 11 00 10 01 
1320 01 11 10 00 3102 11 01 00 10 

 

3.2.1. The fraction of detected errors 

The noise immunity of a code on binary-coded 

permutations can be estimated using a 

characteristic called the fraction of detected errors 

D [5, 18]. It shows the probability with which any 

error translates the permutation into a forbidden 

combination that can be detected. The D value is 

defined as the ratio of the number of forbidden 

combinations Zf to the total number of 

combinations D = Zf / n
n = 246 / 256 = 0.96. 

4. Error detection  

A transmission error can translate a binary-

coded permutation into either a forbidden 

combination that is not a permutation, or into one 

of the permutations. In the case where an error 

converts a permutation to a non-permutation 

combination, it can be easily detected as follows. 

First, since all permutations contain the same 

elements, arranged in a different order, the sum of 

the binary numbers encoding these elements must 

remain constant. It forms a checksum, the same 

for all permutations, equal to 

S = n·(n - 1) / 2 . (2) 
It can be used to detect erroneous 

combinations, the checksum of which does not 

coincide with the value determined by the formula 

(2) [17]. For the considered code on permutations, 

such a checksum is equal to S = 4·(4 - 1) / 2 = 6.  

Example 1. On the receiving side, during 

permutation transmitting, a sequence of elements 

1231 was received, which is not a permutation. 

Counting the sum of these elements gives the 

result 1 + 2 + 3 + 1 = 7. This number does not 

coincide with the checksum value obtained above 

for the code on permutations S = 6. This means 

that the resulting sequence is not a permutation 

and contains an error. 

Second, the appearance of two or more 

identical elements in a permutation, during its 

transmission or storage obviously transforms it 

into a combination that is not a permutation. Then, 

by comparing the elements of the transmitted 

combinations on the receiving side, it is possible 

to establish whether they are permutations or not. 

Example 2. On the receiving side, a sequence 

of elements 1231 was obtained. As a result of 

comparing the first element of this sequence with 

all other elements, it is found that it coincides with 

the fourth element: 1 23 1. Therefore, the resulting 

sequence is not a permutation and contains an 

error. 

4.1. Double error detection  

In the case when a double error occurs during 

the transmission of a binary-coded permutation, it 

can translate into one of the 14 forbidden 

permutations. The fact that the allowed 

permutation can translate solely into the forbidden 

permutation is explained by using for the 

encoding of numerical information only 

permutations with the minimum code distance 4. 

Such an error can be detected on the receiving side 



 

by comparing the received permutation with all 

allowed permutations given in Table. 4. If a match 

of the received permutation with one of the 10 

allowed permutations is found, then the decision 

is made that it is correct; otherwise it is forbidden 

and contains a double error. 

Example 3. Permutation 0123 (00 01 10 11) 

after the interference translated into permutation 

1023 (01 00 10 11). Comparing this permutation 

with all allowed permutations presented in Table 

4, shows no coincidence with any of them and, 

accordingly, indicates that it is forbidden. 

Therefore, it contains a double error. Indeed, in 

the permutation 0123 0 transformed into to 1, and 

1 into 0. 

4.2. Error correction  

Comparing a binary-coded permutation 

containing an error in any element with all 10 

allowed permutations allows a single error to be 

corrected. All permutations except one will differ 

from the erroneous sequence by more than one 

element. Any permitted permutation that differs 

from a permutation with an error in one element 

will be considered its corrected value. 

Example 4. On the receiving side, a sequence 

of elements 1231 was received. By calculating the 

checksum and comparing the elements with each 

other, it is found that this sequence is not a 

permutation, which means that it contains an 

error. Since the minimum coding distance for 

permutations of Table 4 is 4, it is possible to 

correct a single error. To correct it, the erroneous 

sequence 1231 is compared with all allowed 

permutations in Table 4. As a result of this 

comparison, it is found that among the allowed 

permutations only one permutation 0231 differs 

from the obtained sequence by one element. This 

permutation is recorded as the correct value of the 

received sequence: 1231 → 0231. 

However, the use of specially selected 

permutations for detecting double errors and 

correcting single errors reduces the level of 

secrecy of information, since the opponent can 

start breaking the cipher just from the analysis of 

these permutations. Therefore, it is necessary to 

weigh what is more important for the transmission 

of information, its noise immunity or secrecy, and 

accordingly choose the method of protecting 

decimal digits from interference. 

4.3. Algorithm for detecting and 
correcting errors 

The error detection and correction algorithm 

contains the following steps. 

Step 1. In the received binary combination of 

8 bits, the sum of its permutation elements, each 

of which consists of 2 binary digits, is calculated. 

If the calculated value equals 6, then it is 

considered as one of 24 binary-coded 

permutations, which may be correct or incorrect. 

Step 2. The received permutation is compared 

with 10 allowed binary-coded permutations 

representing decimal digits. In the case when there 

is allowed permutation that coincides with the 

received permutation, then it is written as correct. 

If it differs from all the allowed permutations by 

the value of two or more elements, then it is 

erroneous and can be corrected by ARQ. 

Step 3. If the calculated value doesn’t equal 6, 

then the received binary combination is an 

erroneous sequence that is not a permutation. In 

this case, some of its elements have the same 

value. If the received sequence differs from one of 

the 10 allowed permutations in only one element, 

then this one permutation will be the corrected 

permutation. In other case the error can only be 

corrected by ARQ. 

5. Conclusions 

The inseparable code on permutations 

proposed in the work for encoding digits allows 

solving the problem of digital information 

transmission secrecy, and at the same time ensures 

its noise immunity. Wherein, the secrecy of 

information can reach acceptable values for many 

applications due to the special properties of the 

permutations, which make it possible to hide the 

statistics of the transmitted decimal digits. 

Along with the secrecy the permutations can 

effectively solve the problem of increasing the 

noise immunity of the transmitted digits. They 

allow detection of errors bursts and fix single 

errors. It is also important that the considered 

methods of detecting and correcting errors in 

permutations, used to encode decimal digits, are 

quite simple to implement. 
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