

Protection of Numerical Information Based on Permutations

Oleksiy A. Borysenko
1, Oleksii Y. Horiachev

2, Viktor V. Serdyuk
3, Andriy O. Horyshnyak 4,

Oleksandr M. Kobyakov
5 and Olga V. Berezhna

6

1-6 Sumy State University, st. Rimsky-Korsakov, 2, Sumy, Ukraine

Abstract
The article solves the problem of protecting decimal numbers used in systems of information

transmission, processing and storage from unauthorized access with simultaneous correction of

single errors in them and detection of error bursts. To protect the decimal number, each of its

digits is first converted to a binary-decimal digit, and then, using a special table, into a binary-

coded permutation. After that, the digits of the decimal number themselves are mixed. The

paper gives estimates of the level of secrecy of decimal numbers encoded in this way. Since

each digit of a decimal number can contain one of 10 digits, 10 permutations are required to

encode them. To obtain them, at least 4 elements 0, 1, 2, 3 are required. They form 24

permutations, of which 14 are redundant. Specially selected 10 binary-coded permutations out

of 24 form a binary-coded permutation code with a minimum code distance equal to 4. This

allows correction of any single error and detection of double errors on the set of permutations.

Keywords
Information protection, numerical codes, secrecy, permutations, errors, noise immunity

1. Introduction

In practice, binary-decimal codes have become

widespread, with the help of which information

from various sensors is extracted and transmitted,

for example, information about the amount of

consumed thermal and electrical energy, water

and other similar indications. Usually, each

binary-decimal digit taken from the sensor is

transmitted over a communication channel,

essentially a telecommunication system, which

includes a buffer memory with an encoder, a

communication line, an information display

device, and a receiver with a decoder [1]. The

communication line can be both wired and

mobile, using radio communication. In the latter

case, information can be transmitted directly to

moving objects, such as cars. 1

III International Scientific And Practical Conference “Information

Security And Information Technologies”, September 13–19, 2021,

Odesa, Ukraine

EMAIL: 5352008@ukr.net (A. 1); alevgor@gmail.com (A. 2);

viktman2012@gmail.com (A. 3); a.horishnyak@ias.sumdu.edu.ua

(A. 4); o.kobyakov@ekt.sumdu.edu.ua (A. 5);

o.berezhna@ekt.sumdu.edu.ua (A. 6).

ORCID: 0000-0001-7466-9135 (A. 1); 0000-0002-4251-0813

(A. 2); 0000-0002-1694-8651 (A. 3); 0000-0002-9799-0180 (A.

4); 0000-0003-4591-2102 (A. 5); 0000-0001-7105-1276 (A. 6)

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

However, the transmitted information in some

cases must be protected from unauthorized access.

To do this, the binary-decimal digits of each

decimal number are uniformly mixed using the

appropriate tables. At the receiving end, these

tables allow to restore the original information.

They are, in essence, cipher keys. Moreover, the

secrecy of the mixed each binary-decimal place

can be significantly increased by additional

mixing of the bits of binary-decimal numbers.

However, in addition to protecting against

unauthorized access, it is often required to further

increase the noise immunity of the transmitted

binary-decimal numbers.

Binary-decimal coding protects to a certain

extent the transmitted or stored decimal digits

from interference due to the redundancy of a

binary-decimal code containing sixteen four-bit

binary-decimal code words. However, the level of

protection against interference is still low,

although for a number of practical cases it may be

acceptable. Therefore, it became necessary to

increase it.

 It was proposed to solve this problem in [1-4]

using binary-decimal error-correcting codes,

which are essentially decimal digits encoded with

error-resistant combinations. For this purpose in

[1] the coding of binary-decimal digits by

equilibrium code combinations was introduced,

which significantly increased the ability of the

telecommunications system to detect errors [1-4].

To assess the noise immunity of such codes, it

was proposed to use formulas for the probabilities

of transition of code combinations into classes of

correct combinations, allowed erroneous

combinations that are not detected and forbidden

combinations that can be detected [5]. According

to the results of the analysis, it was concluded that

the use of equilibrium codes provides the

requirements of the reliability class I1 of the

international standard IEC 870-5-1-95 in the

whole range of failure levels of one bit of

information [1]. At the same time, the secrecy of

information was increased, since there was no

reliable test for unravelling their values, because

statistics for decimal digits presented in the form

of equilibrium code combinations does not help

well, unlike text information, for the decoding of

which the statistical probabilities of letters play an

essential role.

However, errors in the transmission of decimal

digits by equilibrium code combinations are

difficult to eliminate, and the implementation of

ARQ in mobile communications is sometimes

difficult. Therefore, the task arose of developing a

telecommunication system that would not only

detect errors, but also correct them, using

inseparable codes, in order to hide the true value

of decimal digits during transmission.

2. Problem statement

The task of this work is to increase the noise

immunity of transmitted binary-decimal digits,

accompanied by error correction, with sufficient

protection against unauthorized access.

For this, it is proposed to enhance the noise

immunity of binary-decimal information by using

inseparable codes on permutations, since, on the

one hand, they allow error detection and

correction, and on the other hand, they can hide

the true information deeper.

Permutations are widespread in mathematics.

Permutations are used in abstract algebra, and

they are also used to solve combinatorial

optimization problems, for example, the travelling

salesman problem [6-8].

In addition to solving mathematical problems,

permutations are used in practical problems of

protecting information from unauthorized access

[9-16]. The area of their possible application is

constantly expanding. Along with this,

permutations successfully solve the problem of

anti-jamming coding, since by their nature they

contain redundant information, which makes it

relatively easy to find and, which is especially

important for small mobile devices, to eliminate

errors in messages transmitted with their help

[17,18]. In addition, the permutations make it

possible to combine solutions to the problems of

anti-jamming coding with effective protection of

information from unauthorized access.

3. Coding with permutations

Any finite sequence of distinct elements of

length n is a permutation. While any symbols can

be elements of permutations, most often numbers

are used as them. For example, a sequence of four

different digits 0123 would be a permutation of

length n = 4. At the same time, a sequence of 1011

of length n = 4 would not be a permutation, since

it only consists of two different repeating

elements 0 and 1.

The set of n! permutations of length n forms a

permutation code. The difference n·log2n - log2n!

forms redundant information of this code, which

with increasing of n can reach a significant value,

determining the high noise immunity of codes on

permutations. In addition, permutations do not

have repeating elements and, therefore, obtaining

their statistics is difficult. It can be obtained, with

high effort, only on a large number of

permutations, which greatly complicates the

deciphering of information hidden in the

permutations.

In the tasks of anti-jamming coding and

information protection the elements of

permutations are represented in binary form. Such

their representation will be called binary-coded.

The number of binary bits in binary-coded

permutations is defined as the whole logarithm of

the permutation elements number n:
m=⌈ log2n ⌉ (1)

10 different binary-coded permutations are

required to encode binary-decimal information.

Therefore, the minimum value of n that can

provide the required number of permutations will

be 4, since 4 × 3 × 2 = 24 > 10. Of these 24

permutations, 10 permutations are used to encode

10 binary-decimal digits. Each of them encodes

one of the digits, for example, permutation 0123

is used to encode 0. The remaining 14 possible

permutations are redundant. One of the possible

variants of representation of binary-decimal digits

by permutations is shown in Table 1. Together,

binary-decimal digits in Table 1 form a binary-

decimal code (2-10 code).

 Table 1
 Coding with permutations

№ 2-10 code Permutations

0 0000 0123
1 0001 0132
2 0010 0213
3 0011 0231
4 0100 0312
5 0101 0321
6 0110 1023
7 0111 1032
8 1000 1203
9 1001 1230

3.1. Information secrecy

The number of encoding variants of binary-

decimal digits by permutations will be equal to the

number of combinations 10 out of 24, each of

which can be specified by the corresponding table,

like Table 1. Each of these variants, in turn, can

be represented by one of 10! permutations

encoding 10 digits, each of which can also be

represented in the form of a table. Each of these

tables can act as a cipher key, consisting of

10!·C10
24 permutations for one decimal place.

In addition, the decimal digits, the number of

which is equal to k, can also be shuffled in various

ways during their transmission. Accordingly, the

total number of permutation variants that can be

used to encrypt the decimal permutation code will

be equal to M = k!·10!· ·C10
24. If k, for example,

equals 10, then the number of variants of the

cipher M = 10!·10· ·C10
24= 2.58·1019. This is a

fairly large number of brute force options required

to break the cipher. It should be borne in mind that

the statistics of the numbers in the permutation

cipher is poorly expressed, which greatly

complicates its disclosure. The dependence of the

M value, which characterizes the complexity of

the proposed cipher disclosure, from the

parameter k is shown in Table 2 and in the graph

Figure 1.

 Table 2
 Number of permutations М

k M k M

1 7.11·1012 5 8.54·1014
2 1.42·1013 6 5.12·1015
3 4.27·1013 7 3.58·1016
4 1.70·1014 8 2.86·1017

k M k M

9 2.58·1018 15 9.30·1024
10 2.58·1019 16 1.48·1026
11 2.84·1020 17 2.53·1027
12 3.40·1021 18 4.55·1028
13 4.43·1022 19 8.65·1029
14 6.20·1023 20 1.73·1031

Figure 1: Graph of M versus k

3.2. Evaluation of the noise
immunity of the code on
permutations

In addition to secrecy, permutations can

significantly increase the noise immunity of the

binary-decimal code. This is due to the fact that

the binary-coded representation of such

permutations according to formula (1) will

contain four digits of length m = 2. Permutations

P of length n = 4 and their binary-coded

representation BCP are presented in Table 3.

 Table 3
 Binary-coded permutations

P BCP P BCP

1

10000

1E+08

1E+12

1E+16

1E+20

1E+24

1E+28

1E+32

1 3 5 7 9 11 13 15 17 19

k

M

10
32

10
28

10
24

10
20

10
16

10
12

10
8

10
4

10
0

0123 00 01 10 11 2013 10 00 01 11
0132 00 01 11 10 2031 10 00 11 01
0213 00 10 01 11 2103 10 01 00 11
0231 00 10 11 01 2130 10 01 11 00
0312 00 11 01 10 2301 10 11 00 01
0321 00 11 10 01 2310 10 11 01 00
1023 01 00 10 11 3012 11 00 01 10
1032 01 00 11 10 3021 11 00 10 01
1203 01 10 00 11 3102 11 01 00 10
1230 01 10 11 00 3120 11 01 10 00
1302 01 11 00 10 3201 11 10 00 01
1320 01 11 10 00 3210 11 10 01 00

Each permutation differs from others by at

least two elements, and therefore, the minimum

code distance in a binary code on permutations is

2. Such a code distance allows detecting in binary-

coded permutations all single errors, as well as all

errors of odd multiplicity 1, 3, 5, ...

Increasing the code distance will improve the

noise immunity of binary-coded permutations. To

achieve this, out of all 24 permutations of length

n = 4, 10 allowed permutations should be selected,

as shown in Table 4, which differ from each other

by three elements, and thereby ensure the

minimum code distance between their binary

representations equal to 4. This allows not only

detecting double errors in binary-coded

permutations, but also correcting any single error

in them.

Table 4
Permutations with minimum code distance 4

P BCP P BCP

0123 00 01 10 11 2013 10 00 01 11
0231 00 10 11 01 2130 10 01 11 00
0312 00 11 01 10 2301 10 11 00 01
1203 01 10 00 11 3021 11 00 10 01
1320 01 11 10 00 3102 11 01 00 10

3.2.1. The fraction of detected errors

The noise immunity of a code on binary-coded

permutations can be estimated using a

characteristic called the fraction of detected errors

D [5, 18]. It shows the probability with which any

error translates the permutation into a forbidden

combination that can be detected. The D value is

defined as the ratio of the number of forbidden

combinations Zf to the total number of

combinations D = Zf / n
n = 246 / 256 = 0.96.

4. Error detection

A transmission error can translate a binary-

coded permutation into either a forbidden

combination that is not a permutation, or into one

of the permutations. In the case where an error

converts a permutation to a non-permutation

combination, it can be easily detected as follows.

First, since all permutations contain the same

elements, arranged in a different order, the sum of

the binary numbers encoding these elements must

remain constant. It forms a checksum, the same

for all permutations, equal to

S = n·(n - 1) / 2 . (2)
It can be used to detect erroneous

combinations, the checksum of which does not

coincide with the value determined by the formula

(2) [17]. For the considered code on permutations,

such a checksum is equal to S = 4·(4 - 1) / 2 = 6.

Example 1. On the receiving side, during

permutation transmitting, a sequence of elements

1231 was received, which is not a permutation.

Counting the sum of these elements gives the

result 1 + 2 + 3 + 1 = 7. This number does not

coincide with the checksum value obtained above

for the code on permutations S = 6. This means

that the resulting sequence is not a permutation

and contains an error.

Second, the appearance of two or more

identical elements in a permutation, during its

transmission or storage obviously transforms it

into a combination that is not a permutation. Then,

by comparing the elements of the transmitted

combinations on the receiving side, it is possible

to establish whether they are permutations or not.

Example 2. On the receiving side, a sequence

of elements 1231 was obtained. As a result of

comparing the first element of this sequence with

all other elements, it is found that it coincides with

the fourth element: 1 23 1. Therefore, the resulting

sequence is not a permutation and contains an

error.

4.1. Double error detection

In the case when a double error occurs during

the transmission of a binary-coded permutation, it

can translate into one of the 14 forbidden

permutations. The fact that the allowed

permutation can translate solely into the forbidden

permutation is explained by using for the

encoding of numerical information only

permutations with the minimum code distance 4.

Such an error can be detected on the receiving side

by comparing the received permutation with all

allowed permutations given in Table. 4. If a match

of the received permutation with one of the 10

allowed permutations is found, then the decision

is made that it is correct; otherwise it is forbidden

and contains a double error.

Example 3. Permutation 0123 (00 01 10 11)

after the interference translated into permutation

1023 (01 00 10 11). Comparing this permutation

with all allowed permutations presented in Table

4, shows no coincidence with any of them and,

accordingly, indicates that it is forbidden.

Therefore, it contains a double error. Indeed, in

the permutation 0123 0 transformed into to 1, and

1 into 0.

4.2. Error correction

Comparing a binary-coded permutation

containing an error in any element with all 10

allowed permutations allows a single error to be

corrected. All permutations except one will differ

from the erroneous sequence by more than one

element. Any permitted permutation that differs

from a permutation with an error in one element

will be considered its corrected value.

Example 4. On the receiving side, a sequence

of elements 1231 was received. By calculating the

checksum and comparing the elements with each

other, it is found that this sequence is not a

permutation, which means that it contains an

error. Since the minimum coding distance for

permutations of Table 4 is 4, it is possible to

correct a single error. To correct it, the erroneous

sequence 1231 is compared with all allowed

permutations in Table 4. As a result of this

comparison, it is found that among the allowed

permutations only one permutation 0231 differs

from the obtained sequence by one element. This

permutation is recorded as the correct value of the

received sequence: 1231 → 0231.

However, the use of specially selected

permutations for detecting double errors and

correcting single errors reduces the level of

secrecy of information, since the opponent can

start breaking the cipher just from the analysis of

these permutations. Therefore, it is necessary to

weigh what is more important for the transmission

of information, its noise immunity or secrecy, and

accordingly choose the method of protecting

decimal digits from interference.

4.3. Algorithm for detecting and
correcting errors

The error detection and correction algorithm

contains the following steps.

Step 1. In the received binary combination of

8 bits, the sum of its permutation elements, each

of which consists of 2 binary digits, is calculated.

If the calculated value equals 6, then it is

considered as one of 24 binary-coded

permutations, which may be correct or incorrect.

Step 2. The received permutation is compared

with 10 allowed binary-coded permutations

representing decimal digits. In the case when there

is allowed permutation that coincides with the

received permutation, then it is written as correct.

If it differs from all the allowed permutations by

the value of two or more elements, then it is

erroneous and can be corrected by ARQ.

Step 3. If the calculated value doesn’t equal 6,

then the received binary combination is an

erroneous sequence that is not a permutation. In

this case, some of its elements have the same

value. If the received sequence differs from one of

the 10 allowed permutations in only one element,

then this one permutation will be the corrected

permutation. In other case the error can only be

corrected by ARQ.

5. Conclusions

The inseparable code on permutations

proposed in the work for encoding digits allows

solving the problem of digital information

transmission secrecy, and at the same time ensures

its noise immunity. Wherein, the secrecy of

information can reach acceptable values for many

applications due to the special properties of the

permutations, which make it possible to hide the

statistics of the transmitted decimal digits.

Along with the secrecy the permutations can

effectively solve the problem of increasing the

noise immunity of the transmitted digits. They

allow detection of errors bursts and fix single

errors. It is also important that the considered

methods of detecting and correcting errors in

permutations, used to encode decimal digits, are

quite simple to implement.

6. References

[1] O. Borysenko, O. Berezhna,

A. Novhorodtsev, V. Serdyuk, M. Yakovlev,

“Information transmission and display

system with numerical data protection”,

Information processing systems. Vol. 2

(157), 2019, pp. 103-108. (in Ukrainian)

[2] O. Borysenko, V. Kalashnikov, Chapter 7:

“Description and applications of binomial

numeral systems complex” in Security and

noise immunity of telecommunication

systems: new solutions to the codes and

signals design problem: Collective

monograph. ASC Academic Publishing,

Minden, Nevada, 2017, pp. 147-159.

[3] A. Kuznetsov, R. Serhiienko,

D. Prokopovych-Tkachenko, B. Akhmetov,

“Chapter 3: Representation of cascade codes

in the frequency domain” in Security and

noise immunity of telecommunication

systems: new solutions to the codes and

signals design problem: Collective

monograph. ASC Academic Publishing,

Minden, Nevada, 2017, pp. 71-101.

[4] A. Kuznetsov, S. Ksvun, Y. Gorbenko,

“Chapter 4: The methodology of evaluating

the energy gains from coding in channels

with grouping errors” in Security and noise

immunity of telecommunication systems:

new solutions to the codes and signals design

problem: Collective monograph. ASC

Academic Publishing, Minden, Nevada,

USA, 2017, pp. 102-119

[5] N.T. Berezyuk, Information coding (binary

codes). Directory. Edited by N.T. Berezyuk,

Vishcha shkola, Kharkiv, 1978. (in Russian)

[6] E. Reinhold, J. Nivergelt, N. Deo,

Combinatorial algorithms: theory and

practice, Mir, Moscow, 1980. (in Russian)

[7] D.Knuth, The Art of Computer

Programming, Vol. 1: Fundamental

Algorithms, 3rd ed., Addison-Wesley

Professional, 1997.

[8] D.Knuth, The Art of Computer

Programming, Vol. 4A: Combinatorial

Algorithms, Part 1, 1st ed., Addison-Wesley

Professional, 2011.

[9] D. Smith, R. Montemanni, “A new table of

permutation code”, Designs, Codes and

Cryptography, Vol. 63, pp. 241–253, 2012.

[10] W. Stallings, Cryptography and Network

Security Principles and Practices, fourth ed.,

Prentice Hall, 2005.

[11] R. Girija, H. Singh, “A new substitution-

permutation network cipher using Walsh

Hadamard Transform” in Proceedings of

International Conference on Computing and

Communication Technologies for Smart

Nation (IC3TSN), 2017, pp. 168 - 172. DOI:

10.1109/IC3TSN.2017.8284470

[12] A. Aryal, S. Imaizumi, T. Horiuchi, H.i Kiya,

“Integrated algorithm for block-permutation-

based encryption with reversible data hiding”

in Proceedings of Asia-Pacific Signal and

Information Processing Association Annual

Summit and Conference (APSIPA ASC),

2017, pp. 203 - 208. DOI:

10.1109/APSIPA.2017.8282028

[13] I. Janiszczak, R. Staszewski, “An improved

bound for permutation arrays of length 10”,

[On-line]. Available: http://www.iem.uni-

ue.de/preprints/IJRS.pdf [October 16, 2014].

[14] R. Montemanni, J. Barta, D.H. Smith,

“Permutation codes: a branch and bound

approach” in Proceedings of the International

Conference on Pure Mathematics, Applied

Mathematics, Computational Methods

(PMAMCM), 2014, pp. 86-90.

[15] J. Barta, R. Montemanni, “Hamming Graphs

and Permutation Codes” in Proceedings of

Fourth International Conference on

Mathematics and Computers in Sciences and

in Industry (MCSI), 2017, pp. 154 -158.

DOI: 10.1109/MCSI.2017.35

[16] J. Barta, R. Montemanni, D.H. Smith, “A

branch and bound approach to permutation

codes” in Proceedings of the IEEE Second

International Conference of Information and

Communication Technology (ICOICT),

2014, pp. 187–192. DOI:

10.1109/ICoICT.2014.6914063

[17] O. Borysenko, O. Horiachev, “Interference-

free transmission of economic information

on the basis of permutations”, Actual

problems of economics. Kyiv, vol. 3 (141),

2013, pp. 156 - 163. (in Russian)

[18] O. Borysenko, O. Horiachev, S.Matsenko,

O.Kobiakov, “Noise-immune codes based on

permutations” in Proceedings of 9th

International IEEE Conference «Dependable

Systems, Services and Technologies

DESSERT’2018», 2018, рp. 645 - 648. DOI:

10.1109/DESSERT.2018.8409204

