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Abstract
We present QuAPI, an easy to use library for enabling efficient assumption-based reasoning
for arbitrary SAT or QBF solvers. Our library allows applications of SAT or QBF to benefit
from assumptions and thus incremental solving matching the native support of a standard
incremental interface such as IPASIR, but without the need to implement it. This feature is
particularly valuable for applications of QBF solving as most state-of-the-art solvers do not
support assumption-based reasoning, with some not providing any API at all. The users of
QuAPI only need access to an executable of these solvers. The only requirement on the solvers
is to use standard C library functions, either wrapped or directly, for reading input files in the
standard DIMACS or QDIMACS format. No source code or library access is necessary, also not
for API-less solvers. In this paper, we introduce the architecture of QuAPI and discuss crucial
implementation details in depth. Our extensive performance evaluation shows substantial
speedup compared to using unmodified solver binaries on similar incremental reasoning tasks.
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1. Introduction

In SAT solving, assumption-based reasoning is essential for the extraction of minimum
unsatisfiable sets (MUS) [1], the computation of minimal correction sets (MCS) [2], the
realization of cube-and-conquer (CnC) solving [3] or for applications like bounded model
checking (BMC) [4] to name only a few examples. In all these tasks, it is necessary
to successively solve many similar SAT problems which are distinguishable only by
assumptions as introduced by Eén and Sörensson [4]. Concrete use cases of assumptions
are the enabling/disabling of certain clauses in different solver runs or the generation of
subproblems in which some variables are already assigned a value.

Assumptions are literals that, in one particular solver run, enforce the assignment of
the respective variables according to their polarity. To this end, the assumption literals
either impose the first decisions of the solver or they are temporarily added as unit clauses
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and are dismissed after the formula has been decided. Therefore, they are not available
in the next solver run and new assumptions can be provided to the solver. Employing a
solver that supports assumption-based reasoning is not only very programmer-friendly
and convenient from a usability perspective. It also makes the repeated re-parsing
of the same clause set obsolete, thus significantly reducing this unnecessary overhead.
Furthermore, certain repetitive inference steps can be saved. Already introduced by
MiniSat [5], nowadays many SAT solvers provide a programmatic interface to support
SAT solving under assumptions and several approaches have been suggested for their
efficient implementation [6, 7, 8, 9].

Also for applications of quantified Boolean formulas (QBFs), the extension of SAT
with quantifiers over the propositional variables, the value of assumption-based reasoning
has been early recognized [10]. While there has been enormous progress in QBF solving
technology [11] witnessed by a rich solver landscape [12], to the best of our knowledge, only
the search-based QBF solver DepQBF [13] supports assumptions. During the development
of QBF applications, we found this a severe restriction considerably reducing our user
experience when applying modern QBF solvers. This turned out to be especially problem-
atic in projects on incremental model counting, the extraction of minimal unsatisfiable
cores, and our extension of the CnC-solver Paracooba [14] to reasoning on QBF.

In order to overcome this restriction, we developed QuAPI which provides an easy-to-
use interface for assumption-based reasoning even for solvers that do not support any
kind of incremental solving. The requirements on a solver to be used within our QuAPI
framework are very small: its binary needs to be available and it has to use standard
C library functions (or wrap them, e.g. with C++ iostreams) for reading input files
in the DIMACS or QDIMACS format. Other library functions may also be overriden,
with e.g. zlib’s gzread (used by MiniSat) being supported as-well. Neither source code
nor any library access to the solver are necessary. Not requiring API access to solvers
is essential, as some state-of-the-art solvers (e.g. Caqe [15] and RAReQS [16]) do not
offer such interfaces. By instrumenting arbitrary binaries of SAT and QBF solvers, we
provide a user-friendly and efficient solution. This enables the direct integration of broader
solver portfolios by implementing against an established style of C-API, without requiring
specific source-code (or other) extensions.

In this paper, we first introduce QuAPI by an example demonstrating its simple
C-API. We then describe its architecture and implementation in detail. Finally, extensive
experiments show QuAPI’s performance compared to alternative means of interfacing
with solvers. Our library and the Quapify tool which enables giving assumptions as
command-line arguments to generic solvers, are publicly available at

https://github.com/maximaximal/quapi

2. Related Work

Originally introduced by the SAT solver MiniSat [5], incremental SAT solving with
assumption-based reasoning is nowadays implemented in many SAT solvers. To establish
a standard, a simple C interface for incremental SAT solvers is specified by the IPASIR

https://github.com/maximaximal/quapi


quapi_solver *s = quapi_init("/usr/local/bin/caqe", /* solver path */

NULL , /* argv */

NULL , /* envp */

2, /* variables */

2, /* clauses */

1, /* number of assumption vars n */

NULL , /* SAT regex */

NULL /* UNSAT regex */);

quapi_quantify(s, -1); /* ∀x1 */

quapi_quantify(s, 2); /* ∃x2 */

quapi_add(s, 1), quapi_add(s, -2), quapi_add(s, 0); /* x1 ∨ ¬x2 */

quapi_add(s, -1), quapi_add(s, 2), quapi_add(s, 0); /* ¬x1 ∨ x2 */

quapi_assume(s, 1); /* assume x1 to be true */

int status = quapi_solve(s); /* wait for results */

assert(status == 10); /* solved! */

quapi_assume(s, -1); /* assume x1 to be false */

status = quapi_solve(s); /* wait for results */

assert(status == 10); /* solved again! */

quapi_release(s); /* release resources at the end */

Listing 1: Usage example.

(Reentrant Incremental Sat solver API, in reverse) standard [17] first used in the SAT
competition’s incremental track of 2015. The main design goals behind IPASIR are that
it is both easy to use and not too complex to implement efficiently, while also at the same
time covering most usage scenarios of incremental SAT solving. The implementation of
the interface remains in the responsibility of the solver developers. A different approach
is followed by the PySAT [18] framework. This framework integrates several recent SAT
solvers into one library such that they can be used uniformly via a Python interface. If a
new solver is added, then the framework has to be updated respectively.

We are not aware of any unifying standard or framework for incremental QBF solving.
An incremental extension was suggested almost a decade ago in the QBF solver QuBE [10],
but this solver is not available any more. The only recent solver that provides an interface
for incremental solving is the search-based QBF solver DepQBF [13]. Assumption-based
reasoning is deeply integrated into the solving process and required substantial changes
to the solver’s internal cube and clause learning. Also the solver state has to be reset in
each incremental run.

3. The QuAPI Library

Before we discuss the architecture and implementation of QuAPI in detail, we first
illustrate its usage by a simple example.



3.1. QuAPI By Example

Given the QBF ∀x1∃x2((x1 ∨ ¬x2)∧ (¬x1 ∨ x2)), we want to solve this formula first under
the assumption that x1 is true and afterwards under the assumption that x1 is false.
The solving is done with the recent QBF solver Caqe [15] which is implemented in the
programming language Rust and does not provide an incremental interface. Listing 1
shows the code of our example. First, the solver is registered and initialized by calling the
function quapi_init. Besides the path to the solver binary and optional command-line
and environment parameters, the variable and clause number of the formula to be solved
are passed to the solver (in our case we have two variables and two clauses). Further, the
maximum number n of assumption variables is provided. For QBF, the first n variables
in the prefix are then considered for the assumptions. For SAT, which does not impose
any ordering on the variables, there is no restriction on the variables which are used for
assumptions. Next, the prefix of the QBF is added followed by the clauses. By the call of
quapi_assume (s, 1) variable x1 is assumed to be true (note that the QDIMACS format
uses integers for variables names). The call to the solver tells us that the QBF is true
under the respective assumption. Next we assume x1 to be false. Also here the solving
result is true as expected. To release resources we call quapi_release. This example
illustrates how easy assumption-based solving becomes when using QuAPI even if the
solver does not support assumptions. For the user, it is just like calling a solver library
that supports IPASIR-style assumptions. In the background, however, a lot of things are
happening. We discuss the implementation details of QuAPI in the following.

3.2. Architecture and Implementation of QuAPI

Figure 1 shows the general architecture of QuAPI as well as the information flow. In
the following we reference the blue numbers of Figure 1 in order to make the data and
control flow easier to follow. When the user registers a solver with quapi_init, the
application process starts a new factory process via fork (1). Then the local environment
variables (of the host system) are modified such that they contain LD_PRELOAD=<path to

quapi_preload.so>. If the library was built with enabled address sanitizer (CMake Option
DEBUG_ENABLE_ADDRESS_SANITIZER) for debugging, the build system is automatically queried
for the correct path to libasan to also be added to LD_PRELOAD, such that the whole system
may be run using the specified sanitizer. In this way, the factory and solver processes
have all required symbols for providing debugging information. A call of execvpe starts
the solver. Next, the shared object is loaded and ld overwrites other symbols otherwise
loaded from the system’s libc. Most importantly, read and alternatives (getc, _unlocked
variants, etc.) are overwritten in order to gain control over the solver’s input. Once
the solver binary starts up, it tries to read from its standard input, calling QuAPI’s
quapi_read instead of the standard implementation provided by the operating system.
The original symbols are resolved during the preloaded QuAPI runtime’s initialization
using dlsym and are executed if the solver reads from other files than standard input.

After QuAPI’s runtime has been initialized, it reads control messages in its proprietary
binary format from standard-in (STDIN ). Commands are sent by function calls of the
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Figure 1: The QuAPI processes and their message exchange (numbers indicate messages ordering).

user-facing library in the application process. The problem header of the specific formula
instance is sent first in form of a PROBLEM_HEADER message containing variable and clause
counts and pipe file-descriptors (fds) for communication with the parent process. It also
contains an API version identifier, which is matched against the one in the dynamically
loaded runtime in order to keep QuAPI expandable. Also the maximum number of
assumptions is provided. The runtime in the factory process reads the header message
and generates a valid (Q)DIMACS header string p cnf <vars> <clauses>, which it submits
into the read buffer of the already running solver. In this problem header the number of
clauses is increased by the maximum number of assumptions. At this point, the control is
handed over to the solver, which continues with the provided data as if it was read from
some file or pipe.

Next, the application process sends the formula to the solver. In case of QBF, it begins
with the quantifier prefix (multiple calls of quapi_quantify) (2). If n is the maximum
number of assumptions, then the first n variables of the prefix are considered to be
assumptions and are therefore existentially quantified. This is necessary, because fixing a



universally quantified variable by a unit clause would change the semantics of the formula
and render it trivially false. As consequence, universally quantified assumption variables
may not be left unassigned. After the optional quantifier prefix, the formula matrix
is sent (3). Literals are stringified efficiently using the format_int algorithm adapted
from the {fmt} library [19]. When the processing of the formula is finished, assumptions
may be added. To this end a FORK message is issued (4). Control in the factory process
returns to the QuAPI runtime again. The factory process is now forked another time (5),
forming a solver child process. The user-facing library in the application process waits
to receive a FORK_REPORT from the factory process (6), containing the file descriptor to
write the assumptions. They are then transformed into unit clauses, which are sent from
the application process to the solver child process (7), completing the formula with the
assumption unit clauses. The original version of the solver in the factory process is not
changed during this, saving a copy of the solver initialized with the original formula.

Once a SOLVE message is sent (8) by calling quapi_solve, the receiving solver child
process checks if enough clauses have been written to match the problem header given at
the beginning. If there are still clauses missing, the solver child automatically generates
dummy clauses in form of (x ∨ ¬x), with x being 1 for propositional formulas or the
first variable from the quantifier prefix in PCNF formulas and feeds them to the solver.
When the missing clauses have been provided, EOF signals the solver to begin solving. The
factory process now waits for a return code (9) using waitpid. Once the solver child has
finished, the factory process records its return code and sends it as EXIT_CODE back to
the application process (10), which waits for this result (or an abort) using poll on the
respective file descriptors. It receives the result and returns it normally from quapi_solve.
As indicated in purple, the quapi_assume and quapi_solve flow can be repeated, each time
solving the original formula under a different assumption.

In addition to using waitpid and extracting a solver’s result from its return code,
one may provide SAT and UNSAT detection regular expressions. If these are specified,
QuAPI also waits for data from standard output of the process’ grand-child. If no SAT
or UNSAT regular expressions are specified, standard output is not processed further.
Lines are read into a buffer and processed by the PCRE regular expression library, if the
library was available at build time. Using this output parsing mechanism, also solvers
that do not follow the established SAT-solver return code convention (10 meaning SAT
and 20 meaning UNSAT) may be used, without additionally writing wrapper scripts
around solver binaries. This parsing mechanism is disabled if PCRE is not found by the
build system.

The user-facing QuAPI library behaves like a regular solver interface during the
whole interaction, creating processes and waiting for results without further management
required.

4. Performance Evaluation

Our QuAPI library heavily interferes with the solver’s I/O. To assess the impact of our
modifications we performed extensive experiments. With the aim to benchmark QuAPI’s
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Figure 2: Solver initialization times for formulas of different sizes (left) and overhead of file-based
approach compared to QuAPI (right).

performance while minimizing the solver-specific impact, we generated 8400 random
3-SAT instances parameterized over their literal-to-clause ratio (LCR), literal count l,
and total target clause count c. We then prefixed these 3-SAT formulas with randomly
ordered, existentially quantified variables. In order to generate n different problems with
assumptions from one formula, in each such problem we assume the first n variables to
be false, except for one (varying with the index of the assumption), which is true. These
sub-formulas are (purposefully) meaningless, in order for the solve-times of solver calls
to be as equally distributed as possible, thus enabling a fair comparison between the
employed communication methods. We decided to use 3-SAT and not 3-QSAT for our
experiments, to get a uniform setup for the performance evaluation of QuAPI.

For LCR we considered the range 3.27 to 3.47 with 0.01 increments, for l the range
100 to 2000 with 100 increments, and for c the range 20 to 400 with 20 increments.
These ranges showed a good balance between time to completion and observable behavior.
We obtained formulas of up to 45MB. We performed our tests with 1, 2, 4, 8, and
16 solver calls under assumptions. In the following, we focus on the latter case. As
DepQBF is the only QBF solver with an incremental interface, we used this solver for our
experiments. We compare three variants: (1) libDepQBF in which we programmatically
use assumptions via the incremental interface of DepQBF, (2) DepQBF with files such
that for every solver call a file with the formula and the assumptions is written and (3)
QuAPI as a wrapper of the DepQBF binary. All benchmarks were run on Ubuntu 20.04
with dual-socketed Intel(R) Xeon(R) E5645 CPUs @ 2.40GHz (six cores) and 94GB
RAM, with six benchmark instances in parallel.

4.1. Solver Initialization

In our first experiment, we are interested in comparing the costs of providing the input
formula to the solver. Therefore, we consider the time it takes to provide an already
parsed formula either via API calls to libDepQBF or QuAPI or to write it to a file
in /dev/shm. So far, no assumptions are involved in this setup. The outcome of our
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Figure 3: Runtimes to apply all assumptions. Graph on the right is zoomed in to the very beginning
of the full dataset displayed on the left.

experiments is summarized in Figure 2. We see that QuAPI is faster than the file-based
approach, but about five times slower than using libDepQBF directly. This overhead is
not surprising, because the solver called by QuAPI is only given a textual representation
of the formula, has to receive it from a different process and also has to parse it.

Performance parity between the file-based approach and QuAPI, i.e. both being equally
fast at solving just one assumption, was reached by using buffered reading and writing
internally. This was implemented using fread and fwrite, which decreased the formula
transfer time by a factor of three compared to directly relying on the (unbuffered, direct
IO) system calls read and write. The only downside of buffered IO is the requirement to
flush the write-end of the pipe depending on messages sent, as FORK and SOLVE messages
must be sent immediately in order to not break the underlying state machine. If formulas
contain more than 1000 variables, QuAPI’s inter-process communication uses less data
than direct file-writing, as one literal in the internal message format takes 5 bytes to
transfer, while the overhead increases further in text-based (Q)DIMACS.

Additionally to buffered IO, we tried using vmsplice on the write end in conjunction with
splice, memfd, and mmap on the read end to reduce the number of required copies between
user-space and kernel-space. This improved the throughput when writing formulas and
improved the overall speedups by a bit (around 2% over the whole benchmark set), but
also increased the time it takes to apply assumptions. We therefore do not enable this
(almost) zero-copy implementation by default, but instead offer it as the compile-time
CMake option ENABLE_ZEROCOPY. This is useful when solving very big formulas with few
assumptions.

4.2. Addition of Assumptions

For evaluating the performance of applying assumptions to a formula and solving it using
a regular (unmodified) solver binary, every set of assumption literals is added as unit
clauses to a copy of the original formula. We consider the addition of 16 sets of assumption
literals, i.e. we call the solver 16 times on each benchmark under different assumptions.
The newly generated files contain updated problem headers, the whole original formula,



and appended clauses, one unit clause for each added assumption. Assumption files also
are written to /dev/shm in order to efficiently communicate with the solver binary as if it
would use shared memory. We compare this file-writing to using QuAPI for applying
assumptions to the same solver binary, and to using the libDepQBF API. We consider
the time it takes to add one assumption. Solving time is not included.

The results of this experiment are shown in Figure 3. File writing leads to a linear
run-time overhead, while both QuAPI and the DepQBF library stay about constant.
Here QuAPI clearly benefits from its fork approach which omits writing a new file per
assumption. Small files less than 0.5MB tend to be written into shared memory faster
than observed with the fork mechanism as implemented in QuAPI, but with increasing
size, file writing does not scale as well while the fork overhead stays constant. This timing
is not perfect though, as the QuAPI-internal buffered write flushes with a FORK message,
which is sent when applying the first assumption. The real time it takes for assumptions
to be applied therefore decreases a bit further. This makes QuAPI comparable to using
a solver library directly, while still being generically applicable to any solver binary.

4.3. Overall Runtime

In our final experiment, we evaluate the impact on the overall wall-clock time. The time
is calculated by summing up initialization, initial formula writing, summed assumptions,
and summed solve times for all applied assumptions combined. Speedup from t1 to t2 are
calculated using t1

t2
, always comparing file-based execution of a solver binary (Exec) with

QuAPI. We observe smaller speedups for harder to solve formulas, which we show by
scaling formula hardness using multiple LCR values. Randomly generated assumptions on
random 3-SAT formulas have similar solving times between each different set of assumption
literals on the same formula, removing potential influences of changing difficulty between
different assumption sets in our benchmarks. The speedups get larger when using QuAPI
with assumptions that measurably simplify a problem, as less time is spent in each full
solver run.

Figure 4 summarizes the connection between the time it takes to solve a formula and
its size. Increasing formula size leads to larger speedups, as assumption application and
formula parsing times stay constant. Increasing formula hardness decreases effective
speedup, as more time is spent solving the formula compared to the time taken to
continuously re-process the same formula for every assumption. Changing the literal
count does not influence this relation, but higher literal counts make it more pronounced.

5. Conclusion and Future Work

We developed the library QuAPI which provides a user-friendly API to equip arbitrary
SAT and QBF solver binaries with assumption-based reasoning. In our extensive evaluation
we could show that QuAPI not only improves usability compared to a file-based solution,
but also shows substantial performance improvements.

With QuAPI we resolved the problem of reparsing and rewriting the same formula again
and again. The next version of our Paracooba SAT and QBF solver already benefits
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Figure 4: Speedup of using QuAPI compared to using the solver binary with files.

from this, enabling a portfolio of solvers that would each require specific integration code
otherwise. Incremental solvers, however, also exploit inferred knowledge from previous
runs that is still valid under the recent assumptions. At the moment, QuAPI always
starts from scratch with each new set of assumption literals. To learn from previous runs,
proofs produced by the solver could be analyzed and promising clauses (or cubes) could
be provided to the solver. In addition to local solvers being executed with fork, another
goal is to survey the potential of connecting to remote solvers using a TCP socket and
delta-encoded transfers instead of local pipes. This would enable adding cloud-solvers
retroactively into already existing applications to possibly improve run-times.
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