
On SGGS and Horn Clauses?

Maria Paola Bonacina1,∗,†, Sarah Winkler2,†

1Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
2Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy

Abstract
SGGS (Semantically-Guided Goal-Sensitive reasoning) is a refutationally complete theorem-
proving method that offers first-order conflict-driven reasoning and is model complete in the
limit. This paper investigates the behavior of SGGS on Horn clauses, which are widely used in
declarative programming, knowledge representation, and verification. We show that SGGS
generates the least Herbrand model of a set of definite clauses, and that SGGS terminates on
Horn clauses if and only if hyperresolution does, with the advantage that SGGS builds a model.
We report on experiments applying the SGGS prototype prover Koala to Horn problems, with
promising performances especially on satisfiable inputs.
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1. Introduction

SGGS (Semantically-Guided Goal-Sensitive reasoning) [1, 2, 3] is a first-order theorem-
proving method with a rare combination of properties. SGGS is semantically guided
by a fixed initial Herbrand interpretation I, that in this paper is either all-negative
(I−) or all-positive (I+). SGGS is model-based, as it searches for a model of the input
set of clauses by building candidate models, obtained by modifying I. Each candidate
model is represented by a sequence of clauses, called a trail. SGGS is conflict-driven, as it
applies inferences such as resolution only to explain conflicts between candidate model and
clauses to be satisfied. Indeed, SGGS generalizes to first-order logic the CDCL (Conflict
Driven Clause Learning) procedure for propositional satisfiability [4]. In addition to being
refutationally complete, SGGS is model complete in the limit, which means that given a
satisfiable input, the limit of a fair derivation represents a model.

Horn clauses are a standard language for declarative programming and knowledge
representation, where definite clauses represent knowledge and negative clauses play the
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role of queries. Horn clauses are also an essential language for program verification [5]. A
Horn theory is a theory presented by a set of definite clauses, and Horn theories are those
such that the intersection of models is still a model [6, 7]. Thus, a set of definite clauses
admits a least Herbrand model, the intersection of all its Herbrand models. The least
Herbrand model is also the least fixpoint of a functional associated to a set of definite
clauses [8, 9, 10].

In this paper we analyze the behavior of SGGS on Horn clauses and relate it to that of
hyperresolution [11]. The interest in this parallel stems from the fact that SGGS with
I− or I+ and hyperresolution have sign-based semantic guidance in common. Indeed,
hyperresolution is the instance of semantic resolution [12] that adopts I− or I+ for
semantic guidance. Positive hyperresolution employs I− and negative hyperresolution
employs I+. In this paper we consider positive hyperresolution that we call hyperresolution
for short. After an overview of SGGS (Sect. 2), we describe the behavior of SGGS with
I− or I+ on Horn clauses, and show that SGGS with I− generates the least fixpoint model
(Sect. 3). It is well-known that hyperresolution has this property. We continue by proving
that given a set of Horn clauses SGGS halts if and only if hyperresolution halts, but
SGGS can learn from Horn subproblems useful information for termination on first-order
problems (Sect. 4). As another well-known property of hyperresolution is that it behaves
linearly if given a set of ground Horn clauses, we show that SGGS also has this property
(Sect. 5). In the experiments we apply the SGGS prototype prover Koala [13] to Horn
sets from the TPTP library [14], with promising results on satisfiable problems (Sect. 6).

2. Basic Definitions and Overview of SGGS

We assume the basic notions in theorem proving, and we use a, b for constants, P,Q,R,T
for predicates, f, g for functions, x, y, z for variables, t, u, v for terms, Var(t) for the set of
variables in t, and top(t) for the top symbol of t. We also use L,M,P,Q for literals, at(L)
for L’s atom, C,D,E for clauses, Greek lower case letters for substitutions, and I, J for
Herbrand interpretations. The at notation extends to sets of literals and the Var notation
to literals. A clause is positive if all its literals are positive, negative if all its literals are
negative, and mixed otherwise. A clause is Horn if it has at most one positive literal, and
definite if it has exactly one positive literal. C+ and C− denote the disjunctions of the
positive and negative literals in C.

We refer the readers to [1] for a simple exposition of SGGS, and to [2, 3] for a complete
treatment. In SGGS, a clause C may have a constraint A, written AB C. The atomic
constraints have the form true, false, top(t) = f , or t≡u, where ≡ is syntactic identity.
The negation, conjunction, and disjunction of constraints is a constraint. Constraints may
be omitted for brevity. The set Gr(ABC) of constrained ground instances (cgi’s) of ABC
is the set of the ground instances of C that satisfy A, and hence are the effective ground
instances. Literals AB L and B BM intersect if at(Gr(AB L)) ∩ at(Gr(B BM)) 6= ∅,
and are disjoint otherwise.

SGGS is semantically guided by an initial interpretation I. Given a set S of clauses, if
I 6|= S, SGGS seeks a model of S, by building candidate partial interpretations different



from I, and using I as default to complete them. If the empty clause ⊥ is generated,
unsatisfiability is reported. If I is I− (I+) SGGS tries to discover which positive (negative)
literals need to be true to satisfy S.

SGGS works with a trail of clauses Γ = A1BC1[L1], . . . , AnBCn[Ln], where AiBCi[Li]
occurs at index i and the brackets mean that literal Li is selected in Ci. The length of Γ
and its prefix of length j are denoted |Γ| and Γ|j . An SGGS trail Γ represents a partial
interpretation Ip(Γ): if Γ is empty, denoted ε, Ip(Γ)=∅; otherwise, Ip(Γ)=Ip(Γ|n−1) ∪
pcgi(An B Ln,Γ), where pcgi abbreviates proper constrained ground instances. A pcgi of
An B Cn[Ln] is a cgi C[L] that is not satisfied by Ip(Γ|n−1) (i.e., Ip(Γ|n−1) ∩ C[L] = ∅)
and can be satisfied by adding L as ¬L 6∈ Ip(Γ|n−1). Thus, pcgi’s are productive instances
as they produce Ip(Γ). For the selected literal, pcgi(An B Ln,Γ) = {L : C[L] ∈
pcgi(An B Cn[Ln],Γ)}. Ip(Γ) is completed into an interpretation I[Γ] by consulting I for
the truth value of any literal undefined in Ip(Γ).

A literal L is uniformly false in an interpretation J , if all L′ ∈Gr(L) are false in J .
Then, L is said to be I-false if it is uniformly false in I and I-true if it is true in I. A
clause is I-all-true if all its literals are I-true and I-all-false if all its literals are I-false.
I-false literals are preferred for selection to differentiate I[Γ] from I. An I-true literal is
selected only in an I-all-true clause.

A clause is a conflict clause if all its literals are uniformly false in I[Γ]. SGGS ensures
that every I-all-true clause C[L] in Γ is either a conflict clause or the justification of its
selected literal L, meaning that all literals of C[L] except L are uniformly false in I[Γ], so
that L must be true in I[Γ] to satisfy C[L]. To this end, SGGS assigns I-true literals to
clauses. Given trail Γ = A1 B C1[L1], . . . , An B Cn[Ln], an I-true literal M ∈ Cj [Lj ] is
assigned to Ck[Lk] if k<j and the selection of Lk makes M uniformly false in I[Γ] (all
literals in Gr(Aj BM) appear negated in pcgi(Ak B Lk,Γ) and hence in Ip(Γ)). SGGS
requires that a non-selected I-true literal is assigned, while a selected I-true literal is
assigned if possible. If all the literals of an I-all-true clause C[L] in Γ are assigned, C[L]
is a conflict clause, and L is assigned to the largest index (or to the rightmost clause)
among all literals in C[L]. If all the literals of C[L] except L are assigned, C[L] is the
justification of L, and C[L] is in the disjoint prefix of Γ. The disjoint prefix of Γ, denoted
dp(Γ), is the longest prefix such that pcgi(Aj B Cj [Lj ],Γ) = Gr(Aj B Cj [Lj ]) for all
Aj B Cj [Lj ] in dp(Γ). Thus, all selected literals in dp(Γ) are disjoint.

An SGGS-derivation is a series of trails Γ0 ` Γ1 ` . . .Γj ` . . ., where Γ0 = ε, and
∀j, j > 0, an SGGS-inference generates Γj from Γj−1 and S. If ⊥ 6∈ Γ and I[Γ] 6|= S,
SGGS has two ways to make progress. If Γ = dp(Γ), the trail is in order, but since
I[Γ] 6|= S it means that I[Γ] 6|= C ′ for a C ′ ∈ Gr(C) and C ∈ S. Then, SGGS applies
SGGS-extension to generate from C and Γ a clause ABE, such that E is an instance of
C and C ′∈Gr(AB E). If Γ 6= dp(Γ), the trail needs repair: either there are intersections
between selected literals to be removed by SGGS-splitting, or there is a conflict. The
SGGS-extension rules specialize the SGGS-extension scheme ([3, Def. 12]) that we
instantiate for I = I+ or I = I−:

Definition 1. Given input set S and trail Γ, if there is a clause C∈S such that for
all its I-true literals L1, . . . , Ln (n≥0) there are clauses B1 BD1[M1], . . . , Bn BDn[Mn]



in dp(Γ), such that literals M1, . . . ,Mn are I-false, and ∀j, 16j6n, Ljα=¬Mjα with
simultaneous most general unifier (mgu) α, SGGS-extension adds to Γ the extension
clause AB E = (

∧n
j=1Bjα)B Cα, assigning L1α, . . . , Lnα to D1, . . . , Dn, respectively.

Clause C is the main premise and B1 BD1[M1], . . . , Bn BDn[Mn] are the side premises.
An SGGS-extension is conflicting, if A B E is a conflict clause, and non-conflicting
otherwise, that is, if AB E has pcgi’s and therefore extends I[Γ]. If AB E is I-all-true
then it is a conflict clause. A derivation starts with a non-conflicting SGGS-extension
where C is I-all-false, so that α is empty, n = 0, and E = C. All such steps can be done
as one and we assume they are.

Example 1. Consider the following set S of definite clauses with I− as initial interpre-
tation:

P(f(a, x)) (i) P(g(b, x)) (ii)

¬P(f(y, a)) ∨ P(g(y, a)) (iii) ¬P(g(z, b)) ∨ P(f(z, b)) (iv).

I− satisfies clauses (iii) and (iv) because they have negative literals, but not the positive
clauses (i) and (ii). SGGS extends the trail with (i) and (ii), so that I[Γ1] satisfies them.
Thus, I[Γ1] satisfies neither the instance of (iii) with {y ← a} nor the instance of (iv)
with {z ← b}. SGGS extends the trail with these instances and halts, as I[Γ3] satisfies S:

Γ0 : ε ` Γ1 : [P(f(a, x))], [P(g(b, x))]

` Γ2 : [P(f(a, x))], [P(g(b, x))], ¬P(f(a, a)) ∨ [P(g(a, a))]

` Γ3 : [P(f(a, x))], [P(g(b, x))], ¬P(f(a, a)) ∨ [P(g(a, a))], ¬P(g(b, b)) ∨ [P(f(b, b))].

Hyperresolution generates P(g(a, a)) and P(f(b, b)), and then halts. In the case of definite
clauses the two methods appear close, as one selects positive literals on the trail and the
other generates positive unit clauses. However, SGGS generates explicitly a model on the
trail.

SGGS-deletion removes all disposable clauses, where An B Cn[Ln] is disposable if
Ip(Γ|n−1) |= AnBCn[Ln]. SGGS-splitting aims at isolating intersections between selected
literals, and it is the rule that introduces constraints. A partition of A B C[L] is a
set {Ai B Ci[Li]}ni=1 such that Gr(A B C) =

⋃n
i=1{Gr(Ai B Ci)}, the Li’s are chosen

consistently with L, and the Ai B Li’s are pairwise disjoint (cf. [3, Sect. 3.2]). Given
trail clauses A B C[L] and B BD[M ], a splitting of C by D, denoted split(C,D), is a
partition of AB C[L] such that at(Gr(Aj B Lj)) for some j is the intersection of AB L
and B BM , and all other Ai B Li’s are disjoint from B BM . SGGS-splitting replaces
A B C[L] with split(C,D). Clause A B C[L] is the split clause, and Aj B Cj [Lj ] is the
representative of B BD[M ] in the splitting. Splitting by similar literals (s-splitting) and
splitting by dissimilar literals (d-splitting) apply when AB C[L] occurs at a higher index
than B BD[M ], with similar and dissimilar referring to whether L and M have the same
or opposite sign. After an s-splitting, D’s representative in split(C,D) is disposable (cf.



[3, Lem. 3]) and hence removed by SGGS-deletion. After a d-splitting, the intersection
between L and M is removed by SGGS-resolution.

If a clause AB C[L] added by SGGS-extension is in conflict with I[Γ] and L is I-false,
SGGS-resolution explains the conflict by resolving ABC[L] with the justification in dp(Γ)
whose selected literal makes L uniformly false in I[Γ].

Definition 2 (SGGS-Resolution). If Γ contains clauses BBD[M ] and ABC[L] such
that B BD[M ] is I-all-true, is in dp(Γ), and occurs at a smaller index than AB C[L],
L is I-false, L = ¬Mϑ for some substitution ϑ, and A |= Bϑ, then SGGS-resolution
generates the SGGS-resolvent ABR, where R is (C \ {L}) ∪ (D \ {M})ϑ, replaces C by
ABR, deletes all clauses with literals assigned to C, and assigns every I-true literal Pϑ
in R to the same clause that P in C or D was assigned to (cf. [3, Def. 26]).

In conflict explanation the resolvent is still a conflict clause. As SGGS-extension ensures
that all I-false literals of a conflict clause can be resolved away (cf. [3, Def. 19]), conflict
explanation generates either ⊥ or an I-all-true conflict clause H B E[P ]. Conflict solving
moves H B E[P ] to the left of the clause A B C[L] in dp(Γ) to which P is assigned
(SGGS-move): the effect is to flip P from being uniformly false to being an implied literal.
Then E resolves with C, so that the simplest conflict explanation and solving sequence
has the form resolve∗ move resolve. Prior to the move, if the pcgi’s of L contain more
than the complements of the cgi’s of P (i.e., ¬Gr(H BP ) ⊂ pcgi(ABL,Γ)), left splitting
replaces ABC[L] by split(C,E) with P assigned to the representative of E in split(C,E).
Left splitting enables SGGS-move, which places E to the left of its representative in
split(C,E). Thus, the sequence has the form resolve∗ l-split? move resolve, where ? means
at most once. If E contains another literal Q that is assigned to clause C and unifies
with P with mgu ϑ, E cannot move because Q would have nowhere to be assigned.
Then SGGS-factoring replaces E by split(E,Eϑ), where the SGGS-factor Eϑ is its own
representative and literal assignments are inherited. As SGGS-factoring may repeat, the
full form of the sequence is resolve∗ factor∗ l-split? move resolve.

Fairness of an SGGS-derivation involves several properties: an inference is applied
whenever ⊥6∈ Γ and I[Γ] 6|= S; no trivial splitting (e.g., splitting a ground clause) occurs;
SGGS-deletion and other clause removals are applied eagerly; conflicts are solved before
more SGGS-extensions; and inferences applying to shorter prefixes of the trail are not
forever neglected in favor of others applying to longer prefixes (cf. [3, Defs. 32, 37, and
49]). The limit of a fair derivation Γ0 ` Γ1 ` . . .Γj ` Γj+1 ` . . . is the longest trail
Γ∞ such that ∀i, i 6 |Γ∞|, there exists an ni such that ∀j, j > ni, if |Γj | ≥ i then
Γj |i is equivalent to Γ∞|i (cf. [3, Def. 50]). In words, all prefixes of the trail stabilize
eventually, and dp(Γ∞) = Γ∞. Both derivation and Γ∞ may be infinite, but Γ∞ is Γk if
the derivation halts at stage k. SGGS is refutationally complete and model complete in
the limit: for all inputs S, initial interpretations I, and fair derivations, if S is satisfiable,
I[Γ∞] |= S, and if S is unsatisfiable, ⊥∈Γk for some k (cf. [3, Thms. 9 and 11]).



3. On the Behavior of SGGS on Horn Clauses

Let S be a set of definite clauses and A its Herbrand base. The powerset P(A) of
A is the set of all Herbrand interpretations viewed as sets of atoms. It is a complete
lattice ordered by the subset relation ⊆, with intersection

⋂
as the greatest lower bound

(glb) operator, union
⋃

as the least upper bound (lub) operator, ∅ as bottom, and A
as top element. A set of definite clauses admits a least Herbrand model, defined as the
intersection of all Herbrand models of S, or, equivalently, as the fixpoint of the functional
TS : P(A)→ P(A) defined as follows. For all J ∈ P(A) and L ∈ A, if there exist a clause
P ∨ ¬Q1 ∨ . . . ∨ ¬Qm (m > 0) in S and a ground substitution σ, such that L = Pσ and
{Q1σ . . . Qmσ} ⊆ J , then L ∈ TS(J) and vice versa. As TS is continuous (cf. [10, Prop.
6.3]) its least fixpoint lfp(TS) is given by the lub of the nondecreasing ⊆-chain {T k

S (∅)}k>0
so that lfp(TS) =

⋃
k>0 T

k
S (∅) (cf. [10, Thm. 6.5]).

The initial interpretation I− corresponds to the bottom ∅ of lattice P(A). SGGS with
I− reasons forward or bottom-up. The derivation starts with an SGGS-extension that puts
on the trail all the positive unit clauses in S. If this addition of positive literals to Ip(Γ)
falsifies all the negative literals in instances of mixed clauses, SGGS-extensions with mixed
clauses follow. Since I−-false (i.e., positive) literals are preferred for selection, and every
clause has exactly one, all selected literals are positive, with no choice of selected literal.
All extensions are non-conflicting extensions that add pcgi’s to Ip(Γ), which contains
only positive literals and grows monotonically: ∀j, j > 0, Ip(Γj) ⊆ Ip(Γj+1). Since all
selected literals are positive, the only splitting inferences are s-splitting steps, followed by
deletions of representatives that remove intersections between selected literals, without
affecting Ip(Γ) and its monotonic growth. Since I = I−, for an atom L ∈ A, I[Γ∞] |= L
if and only if L ∈ Ip(Γ∞). In other words, I[Γ∞] seen as a set of atoms is Ip(Γ∞). The
next theorem shows that Ip(Γ∞) = lfp(TS).

Theorem 1. Given an input set S of definite clauses, with Herbrand base A and func-
tional TS : P(A)→ P(A), for all fair SGGS-derivations with I− as initial interpretation
and limit Γ∞, it is Ip(Γ∞) = lfp(TS).

Proof: lfp(TS) ⊆ Ip(Γ∞): since SGGS is model complete in the limit, I[Γ∞] |= S, that is,
Ip(Γ∞) |= S, writing Herbrand models as sets of atoms. Thus, lfp(TS) ⊆ Ip(Γ∞), because
lfp(TS) is the least Herbrand model.
Ip(Γ∞) ⊆ lfp(TS): if L ∈ Ip(Γ∞), it means that L ∈ pcgi(Ai B Li,Γ∞) for some clause
Ai BCi[Li] at index i in Γ∞. This clause is placed at index i of the trail at some stage of
the derivation. Since it is still there in Γ∞, there exists a stage k such that for all stages
j, j > k, clause Ai B Ci[Li] is at index i in Γj and L ∈ Ip(Γj). The proof is by induction
on the smallest such k.
Base case: k = 1 and L ∈ Ip(Γ1). Trail Γ1 is the result of the first SGGS-extension that
adds all the I−-all-false input clauses. Since S is a set of definite clauses, the I−-all-false
input clauses are the positive unit clauses of S. Thus, L ∈ Ip(Γ1) means that L = Pσ for
a ground substitution σ and a positive unit clause P ∈ S with [P ] in Γ1. By definition of
TS , L ∈ TS(∅) and L ∈ lfp(TS).



Induction hypothesis: for all k (k > 1), for all n 6 k, if n is the smallest stage of the
SGGS-derivation such that for all j, j > n, L ∈ Ip(Γj), then L ∈ lfp(TS).
Inductive case: take an L ∈ A for which k+1 is the smallest stage of the SGGS-derivation
such that for all j, j > k + 1, L ∈ Ip(Γj). This means that L 6∈ Ip(Γk). Thus, the step
Γk ` Γk+1 must be a non-conflicting SGGS-extension with main premise C = P ∨ ¬Q1 ∨
. . . ∨ ¬Qm in S (m>0), mgu α, and extension clause Cα = [Pα] ∨ ¬Q1α ∨ . . . ∨ ¬Qmα,
such that L ∈ pcgi(Pα,Γk+1). Therefore, there exist a ground substitution σ′ such that
L = Pασ′ and hence a substitution σ such that Cσ is ground and L = Pσ. Furthermore,
∀i, 16 i6m, Qiσ ∈ Ip(Γk), because otherwise I[Γk] |= ¬Qiσ (as I− |= ¬Qiσ), and hence
[Pσ]∨¬Q1σ ∨ . . .∨¬Qmσ would not be in pcgi([Pα]∨¬Q1α∨ . . .∨¬Qmα,Γk+1) and L
would not be in pcgi(Pα,Γk+1). Then, for all i, 1 6 i 6 m, let hi be the smallest stage such
that ∀j, j > hi, Qiσ ∈ Ip(Γj). Since Qiσ ∈ Ip(Γk), we have hi 6 k for all i, 1 6 i 6 m.
Thus, by induction hypothesis, for all i, 1 6 i 6 m, Qiσ ∈ lfp(TS). Since lfp(TS) |= S,
we have lfp(TS) |= P ∨ ¬Q1 ∨ . . . ∨ ¬Qm and hence lfp(TS) |= Pσ ∨ ¬Q1σ ∨ . . . ∨ ¬Qmσ.
Therefore, L = Pσ ∈ lfp(TS). �

For instance, in Example 1, lfp(TS) is Ip(Γ3). We describe next the behavior of SGGS
when also negative clauses enter the picture, first with I− and then with I+.

Let S be a set of Horn clauses and SD ⊂ S the subset of the definite clauses. Unless a
model of S is found, the consequence of adding positive ground literals to Ip(Γ) towards
building lfp(TSD

) is that some instance of a negative clause in S becomes an I−-all-true
conflict clause, that a conflicting SGGS-extension adds to the trail. Let C be the first
conflict clause of this kind and Γk the first trail where C appears. The fact that C is in
conflict with I[Γk] means that C is in conflict with Ip(Γk). By Theorem 1, this means that
C is in conflict with a subset of lfp(TSD

) and hence with lfp(TSD
) itself. Since lfp(TSD

)
is the intersection of all the Herbrand models of SD, it follows that C is in conflict with
all of them. Therefore, the appearance of C on the trail reveals that S is unsatisfiable.
By contrast, a set of first-order clauses does not admit a least Herbrand model, and the
appearance of a negative conflict clause on a trail Γk in an SGGS-derivation with I−

simply means that I[Γk] 6|= S, so that SGGS solves the conflict and searches for another
model.

Furthermore, because all the literals in C are assigned, it is possible to predict the
number of SGGS-resolutions needed to go from C to ⊥. This number turns out to be
equal to the cardinality |dΓ(C)| of the dependence set dΓ(C) of C in Γ. This set is defined
inductively as follows: if an I-true literal in C is assigned to clause D then D ∈ dΓ(C); if
D ∈ dΓ(C) and an I-true literal in D is assigned to clause D′ then D′ ∈ dΓ(C); nothing
else is in dΓ(C).

Lemma 1. Given an input set S of Horn clauses and I− as initial interpretation, for
all fair SGGS-derivations, if an SGGS-extension adds to a trail Γ an I−-all-true conflict
clause C, the derivation is a refutation, and the number of SGGS-resolution steps after
the stage of Γ is |dΓ(C)|.

Proof: The proof is by induction on the cardinality |dΓ(C)|.
Base case: |dΓ(C)| = 0 and hence dΓ(C) = ∅. Since C is an I−-all-true conflict clause, all



its literals must be assigned. Thus, dΓ(C) = ∅ implies that C is ⊥ and both claims are
fulfilled.
Induction hypothesis: if |dΓ(C)| = k for k> 0 then both claims hold.
Inductive case: let |dΓ(C)| = k + 1, literal L be selected in C, and D[M ] be the clause
which L is assigned to.
If SGGS-factoring applies to C[L] (one or more times), let Cf [Lf ] and Γ1 be the final SGGS-
factor and trail, or Cf [Lf ] = C[L] and Γ1 = Γ otherwise. Either way, dΓ1(Cf ) = dΓ(C),
because SGGS-factoring unifies two literals of C that are both assigned to D and SGGS-
factors inherit assignments, so that Lf is still assigned to D in Γ1. Also, dΓ1(D) = dΓ(D)
trivially holds.
If left-splitting applies to Cf [Lf ] and D, let D′[M ′] and Γ2 be the representative of Cf in
split(D,Cf ) and the resulting trail, or D′[M ′] = D[M ] and Γ2 = Γ1 otherwise. Either way,
Lf is assigned to D′ in Γ2 and dΓ2(D′) = dΓ1(D) = dΓ(D), because the I−-true literals in
D′ inherit their assignments from those in D. Thus, dΓ2(Cf ) = dΓ1(Cf ) \ {D} ∪ {D′} =
dΓ(C) \ {D} ∪ {D′} as the only change is that Lf is assigned to D in Γ1 and to D′ in Γ2

(†).
SGGS-move places Cf [Lf ] to the left of D′[M ′] and then SGGS-resolution applies to
Cf [Lf ] and D′[M ′] generating the SGGS-resolvent R = (Cf \ {Lf}) ∪ (D′ \ {M ′})ϑ that
replaces D′ in the resulting trail Γ3. Every I−-true literal Pϑ in R is assigned to the same
clause that P in Cf or in D′ was assigned to (?). Since Cf is negative and D′ is Horn, R
is negative, it is another I−-all-true conflict clause, and all its literals are assigned.
We show that dΓ3(R) = dΓ(C) \ {D}. For every clause E ∈ dΓ3(R) due to a literal in
(Cf \ {Lf})ϑ, it is E ∈ dΓ2(Cf ) by (?), and E ∈ dΓ1(Cf ) by (†), and E ∈ dΓ(C) because
dΓ1(Cf ) = dΓ(C). For every clause E ∈ dΓ3(R) due to a literal in (D′ \ {M ′})ϑ, it is
E ∈ dΓ2(D′) by (?), and E ∈ dΓ(D) as dΓ2(D′) = dΓ1(D) = dΓ(D), and hence E ∈ dΓ(C)
because the selected literal L of C is assigned to D in Γ. Up to here we have shown that
dΓ3(R) ⊆ dΓ(C). Next, D ∈ dΓ(C), but D 6∈ dΓ3(R), because Lf was resolved away, and
R replaced D′ which either replaced D or is D itself. Thus, dΓ3(R) ⊂ dΓ(C). Furthermore,
it is exactly dΓ3(R) = dΓ(C) \ {D}, because by inspection of the above inferences nothing
else has changed. Since |dΓ(C)| = k + 1, we have |dΓ3(R)| = k. By induction hypothesis
the first claim holds, and the number of SGGS-resolutions after the stage of Γ3 is k, so
that the number of SGGS-resolutions after the stage of Γ is k + 1 = |dΓ(C)|. �

The initial interpretation I+ is the top A of lattice P(A). Given a set S of definite
clauses, SGGS with I+ does not do anything as I+ |= S. If S is a set of Horn clauses, where
the negative clauses are the goal clauses, I+ is goal-sensitive (it satisfies the assumptions,
not the goal clauses), and hence SGGS with I+ is goal-sensitive (all generated clauses are
connected to goal clauses) [3]. Indeed, SGGS with I+ reasons backward or top-down. The
derivation starts with an SGGS-extension that puts on the trail all the negative clauses in
S, each with a literal selected. If the addition of negative ground literals to Ip(Γ) falsifies
the positive literal in instances of a mixed clause in S, a non-conflicting SGGS-extension
with mixed extension clause applies: a negative literal is selected in the extension clause
and more negative ground literals are added to Ip(Γ). Unless a model of S is found, the
consequence of adding negative ground literals to Ip(Γ) is that some instance of a positive



unit clause in S becomes an I+-all-true conflict clause, that a conflicting SGGS-extension
adds to the trail.

Example 2. Given S = {¬Q(a, x), ¬R(x, y) ∨ ¬R(y, x) ∨ Q(x, y), R(b, a), R(a, b)}, the
SGGS-derivation with I+ starts as follows:

Γ0 : ε ` Γ1 : [¬Q(a, x)] extend

` Γ3 : [¬Q(a, x)], [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y) extend

and continues extending with I+-all-true conflict clause R(a, b) and solving the conflict:

` Γ4 : [¬Q(a, x)], [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y), [R(a, b)] extend

` Γ5 : [¬Q(a, x)], [¬R(a, b)] ∨ ¬R(b, a) ∨ Q(a, b),

top(y) 6= bB [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y), [R(a, b)] l-split
` Γ6 : [¬Q(a, x)], [R(a, b)], [¬R(a, b)] ∨ ¬R(b, a) ∨ Q(a, b),

top(y) 6= bB [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y) move

` Γ7 : [¬Q(a, x)], [R(a, b)], [¬R(b, a)] ∨ Q(a, b),

top(y) 6= bB [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y) resolve

Then the derivation proceeds extending with I+-all-true conflict clause R(b, a) whose
conflict-solving phase finds a refutation:

` Γ8 : [¬Q(a, x)], [R(a, b)], [¬R(b, a)] ∨ Q(a, b),

top(y) 6= bB [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y), [R(b, a)] extend

` Γ9 : [¬Q(a, x)], [R(a, b)], [R(b, a)], [¬R(b, a)] ∨ Q(a, b),

top(y) 6= bB [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y) move

` Γ10 : [¬Q(a, x)], [R(a, b)], [R(b, a)], [Q(a, b)],

top(y) 6= bB [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y) resolve

` Γ11 : [¬Q(a, b)], top(x) 6= bB [¬Q(a, x)], [R(a, b)], [R(b, a)],

[Q(a, b)], top(y) 6= bB [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y) l-split
` Γ12 : [Q(a, b)], [¬Q(a, b)], top(x) 6= bB [¬Q(a, x)], [R(a, b)],

[R(b, a)], top(y) 6= bB [¬R(a, y)] ∨ ¬R(y, a) ∨ Q(a, y) move

` Γ13 : [Q(a, b)], ⊥, . . . resolve

If the second literal is selected in the second clause of Γ2, the derivation is very similar,
extending first with R(b, a) and then with R(a, b).

4. On the Termination of SGGS and Hyperresolution

Both SGGS and hyperresolution halt on the clause set of Example 1. We show that this
is a general result: given a Horn set, SGGS with I− halts if and only if hyperresolution



with subsumption, henceforth HR+S , halts. A derivation by HR+S has the form S0 `
S1 ` . . . Sj ` Sj+1 ` . . ., where S0=S; for all j, j > 0, Sj+1 is obtained from Sj by either
a hyperresolution or a subsumption step; and the limit S∞ is the set

⋃
i>0

⋂
j>i Sj of the

persistent clauses. In the Horn case, all hyperresolvents are unit clauses identified with
their single literal. The next lemma establishes a correspondence between clauses in the
respective limits of the two derivations.

Lemma 2. Given a satisfiable set S of Horn clauses, for all fair derivations by SGGS
with I− and HR+S , respectively, (i) for all clauses AB C[L] in Γ∞, there exists a unit
clause Q ∈ S∞ such that Gr(AB L) ⊆ Gr(Q), and (ii) for all unit clauses Q ∈ S∞ there
exist clauses {Bj BDj [Mj ]}nj=1 in Γ∞ such that Gr(Q) ⊆

⋃n
j=1Gr(Bj BMj).

Proof: As S is satisfiable and both methods are sound, neither derivation is a refutation.
As described in Sect. 3 and by Lemma 1, the only inferences in the SGGS-derivation are
non-conflicting SGGS-extensions, that add non-negative clauses where the single positive
literal is selected, s-splitting, or SGGS-deletion steps.
Proof of Claim (i): by induction on the smallest stage k (k > 1) such that AB C[L] is in
Γk.
Base case: k = 1 and C[L] is an I−-all-false (i.e., positive, hence unit) input clause
L ∈ S added by the first SGGS-extension. If L is not subsumed in the HR+S -derivation,
Q = L ∈ S∞. Otherwise, there exists a Q ∈ S∞ that subsumes L, that is, L = Qσ for
some substitution σ, so that Gr(L) ⊆ Gr(Q) holds.
Induction hypothesis: for all j, 06 j6 k, for all clauses A B C[L] for which j is the
smallest stage such that AB C[L] is in Γj , the claim holds.
Inductive case: let A B C[L] be a clause for which k + 1 is the smallest stage such
that A B C[L] is in Γk+1. This means that A B C[L] is placed on the trail by step
Γk ` Γk+1. If Γk ` Γk+1 is an s-splitting step, A B C[L] is a clause in a partition of a
split clause B BD[M ] in Γk. By definition of partition, Gr(AB C[L]) ⊆ Gr(B BD[M ])
and hence Gr(A B L) ⊆ Gr(B BM). By induction hypothesis, there exists a Q ∈ S∞
such that Gr(BBM) ⊆ Gr(Q). Thus, Gr(ABL) ⊆ Gr(BBM) ⊆ Gr(Q) and the claim
holds. Otherwise, Γk ` Γk+1 is an SGGS-extension. Let C ∈ S be the main premise,
B1 BD1[M1], . . . , Bn BDn[Mn] in dp(Γk) the side premises, and (

∧n
i=1Biα)BC[L]α the

extension clause, where L is the only positive literal in C, and α is the simultaneous
mgu of all the I−-true (i.e., negative) literals ¬L1, . . . ,¬Ln of C with M1, . . . ,Mn (i.e.,
Liα = Miα for all i, 16 i6n). By induction hypothesis, for all i, 1 6 i 6 n, there exists
a Qi ∈ S∞ such that Gr(Bi BMi) ⊆ Gr(Qi). This implies that for all i, 1 6 i 6 n,
there exists a substitution σi (which can be a variable renaming or even empty) such that
Mi = Qiσi. The fact that the Mi’s are instances of the Qi’s, together with the fact that
the Mi’s do not share variables (∀i ∀j, 16 i 6= j6n, Var(Mi) ∩ Var(Mj) = ∅), because
they come from distinct clauses, and the existence of the above simultaneous mgu α,
imply the existence of a simultaneous mgu τ such that ∀i, 16 i6n, Liτ = Qiτ . For all i,
16 i6n, let ri be the stage such that Qi ∈

⋂
j>ri

Sj and let r = max{ri : 16 i6n}, so
that Q1, . . . , Qn ∈ Sr. Therefore, hyperresolution applies to nucleus C ∈S and satellites
Q1, . . . , Qn ∈ Sr, generating the unit hyperresolvent Lτ . Since τ is a unifier of more



general literals, there exists a substitution σ such that Lα = Lτσ. If Lτ is persistent,
Q = Lτ ∈ S∞, and from Lα = Lτσ we get Gr((

∧n
j=1Bjα) B Lα) ⊆ Gr(Lα) ⊆ Gr(Q).

If Lτ is subsumed, there exist a Q ∈ S∞ and a substitution δ, such that Lτ = Qδ. Thus,
it is Gr((

∧n
j=1Bjα)B Lα) ⊆ Gr(Lα) ⊆ Gr(Lτ) ⊆ Gr(Q).

Proof of Claim (ii): by induction on the smallest stage k (k > 0) such that Q ∈ Sk.
Base case: k=0 and Q∈S0 =S is a positive unit input clause. Thus, the first SGGS-
extension that adds to the trail all I−-all-false clauses (i.e., all positive unit input clauses)
places [Q] on trail Γ1 at some index i. If [Q] is subject to neither SGGS-deletion nor
s-splitting, [Q] is in Γ∞ and the claim holds. Since SGGS-move never applies, no clause is
inserted to the left of [Q] (i.e., at an index smaller than i) at any subsequent stage j (j > 1)
of the SGGS-derivation. Thus, the only clauses that can s-split [Q] or make it disposable
are other positive unit input clauses that the first SGGS-extension places on the left of [Q].
By fairness, SGGS-deletion is applied before any other inference, and removes all disposable
clauses in Γ1 in one step. If a bunch of positive unit input clauses [Q1], . . . , [Qn] on the
left of [Q] in Γ1 make it disposable, we have Gr(Q) ⊆

⋃n
j=1 pcgi(Qj ,Γ1) ⊆

⋃n
j=1Gr(Qj).

If [Q′] on the left of [Q] splits [Q] into a partition {Bj B [Mj ]}nj=1, the representative
of [Q′] is subsequently deleted by SGGS-deletion. Without loss of generality, let the
representative of [Q′] be Bn B [Mn]. Then {[Q′]} ∪ {Bj B [Mj ]}n−1j=1 is a partition of [Q],
that is, Gr(Q) = Gr(Q′) ∪

⋃n−1
j=1 Gr(Bj BMj). Since the model-fixing phase between the

first and the second SGGS-extension is finite, even if some of these clauses were subject
in turn to s-splitting, the reasoning repeats and the process cannot go on forever, so that
the claim is satisfied by clauses in Γ∞.
Induction hypothesis: for all j, 06 j6 k, for all unit clauses Q for which j is the smallest
stage such that Q ∈ Sj , the claim holds.
Inductive case: let Q be a unit clause for which k + 1 is the smallest stage such that
Q ∈ Sk+1. This means that Q is a unit hyperresolvent generated by the step Sk ` Sk+1.
Let C = (P ∨ ¬L1 ∨ . . . ∨ ¬Lm) ∈ S ⊆ Sk (m > 0) be the nucleus, Q1, . . . , Qm ∈ Sk the
positive unit satellites, and τ the simultaneous mgu for this hyperresolution inference
(i.e., ∀i, 16 i6m, Liτ = Qiτ), so that Q = Pτ . By induction hypothesis, for all i,
16 i6m, there exist sets of clauses {Bhi

BDhi
[Mhi

]}ni
hi=1 all in Γ∞ = dp(Γ∞), such that

Gr(Qi) ⊆
⋃ni

hi=1Gr(Bhi
BMhi

). Let r be the smallest stage of the SGGS-derivation where
all these clauses are in dp(Γr). By Lemma 3, at most Πm

i=1ni SGGS-extensions, applying
at stages equal to or greater than r, generate extension clauses {Aj B C[P ]αj}hj=1, with
h 6 Πm

i=1ni, such that Gr(Q) = Gr(Pτ) ⊆
⋃h

j=1Gr(Aj B Pαj). By the Lifting Theorem
for SGGS [3, Thm. 4], extension clauses are not disposable in the trail to which they
are added. Since SGGS-move never applies, it cannot be that these clauses are made
disposable by clauses that move to their left at subsequent stages. Thus, the clauses in
{Aj B ([Pαj ] ∨ ¬L1αj ∨ . . . ∨ ¬Lmαj)}hj=1 are in Γ∞, unless some of them is subject to
s-splitting during the finite model-fixing phases that follow each SGGS-extension. As
already shown in the base case, if this happens, each split clause get replaced by clauses
in Γ∞ with the same ground instances, so that the claim holds. �

The lemma invoked in the above proof is stated and proved below.



Lemma 3. Given a set S of Horn clauses, assume that hyperresolution generates from
nucleus C = (P ∨¬L1 ∨ . . .∨¬Lm) ∈ S and satellites Q1, . . . , Qm the unit hyperresolvent
Q = Pτ , where τ is the simultaneous mgu such that ∀i, 16 i6m, Liτ = Qiτ . Suppose
that for every satellite Qi, SGGS with I− has in dp(Γ) a set of clauses {Bhi

BDhi
[Mhi

]}ni
hi=1

with positive selected literals, such that Gr(Qi) ⊆
⋃ni

hi=1Gr(Bhi
BMhi

). Then at most
Πm

i=1ni SGGS-extensions with main premise C apply and generate extension clauses
{Aj B C[P ]αj}hj=1 (h 6 Πm

i=1ni), such that Gr(Q) = Gr(Pτ) ⊆
⋃h

j=1Gr(Aj B Pαj).

Proof: We show that Gr(Pτ) ⊆
⋃h

j=1Gr(Aj B Pαj). Let L ∈ Gr(Pτ), that is, L = Pτσ
for some ground instance Cτσ of C. By the first part of the hypothesis, for all i, 16 i6m,
Liτ = Qiτ , and hence Liτσ = Qiτσ, so that Qiτσ is a ground instance of Qi. By the
second part of the hypothesis, for all i, 16 i6m, there exists an hi (16hi6ni) such that
Qiτσ ∈ Gr(Bhi

BMhi
). Take as the side premises the Bhi

BMhi
, 1 6 i 6 m, such that

Qiτσ ∈ Gr(Bhi
BMhi

). Their positive selected literals Mh1 , . . . ,Mhm are simultaneously
unifiable with the atoms L1, . . . , Lm, as witnessed by the unifier τσ. Let α be their most
general unifier, and δ the substitution such that τσ = αδ. Then, SGGS-extension applies
with main premise C, side premises Bhi

BMhi
, 1 6 i 6 m, and simultaneous mgu α,

producing extension clause (
∧m

i=1Bhi
α)B C[P ]α, such that L ∈ Gr((

∧m
i=1Bhi

α)B Pα),
because L = Pτσ = Pαδ. Since an SGGS-extension with main premise C needs m
side premises whose positive selected literals unify simultaneously with L1, . . . , Lm, and
for each Li, 16 i6m, there are ni candidates, there are clearly at most Πm

i=1ni such
extensions. �

The main theorem follows.

Theorem 2. Given a set of Horn clauses SGGS with I− halts if and only if HR+S halts.

Proof: Since both SGGS and HR+S are refutationally complete, it suffices to prove the
claim for a satisfiable input set S of Horn clauses. Let SD ⊆ S be the subset of the
definite clauses.
(⇒) By way of contradiction, assume that SGGS with I− halts and HR+S does not.
SGGS halts at a stage k (k > 0) with finite limit Γk = B1BD1[M1], . . . , BmBDm[Mm] and
Ip(Γk) =

⋃m
j=1 pcgi(Bj BMj ,Γk) =

⋃m
j=1Gr(Bj BMj), as Γk = dp(Γk). By Theorem 1,

Ip(Γk) = lfp(TSD
). The HR+S -derivation is infinite with infinite limit S∞ containing

infinitely many persistent positive unit clauses L0, L1, L2, . . .. Also HR+S generates
lfp(TSD

), represented by
⋃

i>0Gr(Li). Thus,
⋃m

j=1Gr(Bj BMj) =
⋃

i>0Gr(Li). By
Claim (i) in Lemma 2, ∀j, 16 j6m, there exists a Qj ∈ S∞ such that Gr(Bj BMj) ⊆
Gr(Qj). Therefore,

⋃
i>0Gr(Li) =

⋃m
j=1Gr(Bj BMj) ⊆

⋃m
j=1Gr(Qj). Since the Qj ’s

are finitely many, this means that all but finitely many clauses in S∞ can be subsumed,
contradicting the assumption that S∞ (the limit of a fair derivation) is infinite.
(⇐) By way of contradiction, assume that HR+S halts whereas SGGS with I−

does not. HR+S halts at some stage k (k> 0) with finite limit Sk. The set
{L1, . . . , Lm} of the positive unit clauses in Sk represents lfp(TSD

), in the sense that⋃m
i=1Gr(Li) = lfp(TSD

). SGGS with I− produces an infinite derivation with infinite limit
Γ∞ = B1BD1[M1], . . . , Bj BDj [Mj ], Bj+1BDj+1[Mj+1], . . ., where ∀j, j > 0, Mi ∈ D+

i



and Ip(Γ∞) =
⋃

j>1 pcgi(Bj BMj ,Γ∞) =
⋃

j>1Gr(Bj BMj) as Γ∞ = dp(Γ∞). By The-
orem 1, Ip(Γ∞) = lfp(TSD

). Thus,
⋃

j>1Gr(Bj BMj) =
⋃m

i=1Gr(Li). By Claim (ii)
in Lemma 2, for all i, 16 i6m, there exist clauses {Bhi

B Dhi
[Mhi

]}ni
hi=1 in Γ∞ such

that Gr(Li) ⊆
⋃ni

hi=1Gr(Bhi
BMhi

). Therefore,
⋃

j>1Gr(Bj BMj) =
⋃m

i=1Gr(Li) ⊆⋃m
i=1

⋃ni
hi=1Gr(Bhi

BMhi
). Since the Li’s are finitely many, and each of them is covered

by finitely many clauses in Γ∞, this means that all but finitely many clauses in Γ∞ are
disposable, contradicting the assumption that Γ∞ (the limit of a fair derivation) is infinite.
�

Example 3. Given the following set S of definite clauses

P(x, f(x)) (i) ¬P(x, f(y)) ∨ Q(f(y), x) (ii)

¬Q(f(x), y) ∨ R(x) (iii) ¬R(f(x)) ∨ T(x) (iv)

¬R(x) ∨ Q(a, a) (v)

SGGS with I− halts after five extensions:

Γ0 : ε ` Γ1 : [P(x, f(x))]

` Γ2 : [P(x, f(x))], ¬P(x, f(x)) ∨ [Q(f(x), x)]

` Γ3 : [P(x, f(x))], ¬P(x, f(x)) ∨ [Q(f(x), x)], ¬Q(f(x), x) ∨ [R(x)]

` Γ4 : [P(x, f(x))], ¬P(x, f(x)) ∨ [Q(f(x), x)], ¬Q(f(x), x) ∨ [R(x)],

¬R(f(x)) ∨ [T(x)]

` Γ5 : [P(x, f(x))], ¬P(x, f(x)) ∨ [Q(f(x), x)], ¬Q(f(x), x) ∨ [R(x)],

¬R(f(x)) ∨ [T(x)], ¬R(x) ∨ [Q(a, a)]

as I[Γ5] |= S. Hyperresolution halts after generating the selected literals in Γ5 as unit
clauses.

Thanks to its model-based character and model representation via selected literals,
SGGS can learn from a Horn subproblem of a non-Horn first-order problem a literal
selection strategy that is useful for termination on the non-Horn problem.

Definition 3. A clause set SH is a Horn subproblem of a clause set S if for every C ∈S
the set SH contains a maximal subclause C ′⊆C that is Horn, and SH contains no other
clauses.

Let SH be a Horn subproblem of a non-Horn first-order problem S. Note that if
J |= SH then J |= S for a Herbrand interpretation J . A Horn subproblem SH defines
a literal selection strategy, that can be used when SGGS with I− is applied to S, as
follows. Whenever SGGS-extension adds an instance Cα of a clause C ∈S, such that
Cα has multiple positive literals that can be selected,1 the strategy picks the positive

1The SGGS-extension is non-conflicting and Cα has more than one positive literal with pcgi’s, or Cα is
a non-I−-all-true conflict clause where any positive literal can be selected.



literal Lα such that L appears in the maximal Horn subclause C ′⊆C in SH . While S
may have more than one Horn subproblem SH , the strategy is uniquely defined once an
SH is chosen. The next example portrays a situation where SGGS with I− halts with the
literal selection based on SH and diverges otherwise.

Example 4. Let S = {(i) P(x, a), (ii) ¬P(x, y) ∨ R(y) ∨ P(x, f(y)), (iii) ¬R(f(x)) ∨
¬P(x, f(x))} and SH = {(i), (ii′) ¬P(x, y)∨R(y), (iii)}. Given SH , SGGS with I− halts
in two steps:

ε ` [P(x, a)] ` [P(x, a)], ¬P(x, a) ∨ [R(a)].

If the literal selection strategy defined by SH is adopted, SGGS with I− halts also on S:

ε ` [P(x, a)] ` [P(x, a)], ¬P(x, a) ∨ [R(a)] ∨ P(x, f(a)).

In both derivations Ip(Γ2) is {P(fk(a), a) : k > 0} ∪ {R(a)} and I[Γ2] satisfies both SH

and S. On the other hand, if the last literal in (ii)’s instances is systematically selected,
SGGS diverges:

ε ` [P(x, a)] ` [P(x, a)], ¬P(x, a) ∨ R(a) ∨ [P(x, f(a))]

` [P(x, a)], ¬P(x, a) ∨ R(a) ∨ [P(x, f(a))], ¬P(x, f(a)) ∨ R(f(a)) ∨ [P(x, f2(a))]

` . . . .

Hyperresolution also halts on SH , but if given S it generates an infinite series of
hyperresolvents where both depth and number of literals increase: R(a) ∨ P(x, f(a)),
R(a) ∨ R(f(a)) ∨ P(x, f2(a)), R(a) ∨ R(f(a)) ∨ R(f2(a)) ∨ P(x, f3(a)), . . . . Furthermore, in
this example, the nontermination of hyperresolution cannot be cured by an ordering � on
literals and the restriction to resolve only upon maximal literals in satellites. Indeed, the
first satellite (i) is a unit clause, and in the generated hyperresolvents no ground literal
can dominate the non-ground literal. For example, R(a) 6� P(x, f(a)) as R(a) and x are
incomparable.

The following theorem generalizes the observation that termination of SGGS on a
satisfiable Horn subproblem corresponds to termination on the original non-Horn problem.

Theorem 3. Given a set S of clauses and I− as initial interpretation, if S has a satisfiable
Horn subproblem SH for which there exists a fair, finite SGGS-derivation, then there
exists a fair finite SGGS-derivation for S that selects the same literals and hence builds
the same model.

Proof: Let Θ and Θ′ denote SGGS-derivations with initial interpretation I− and input
S and SH respectively. We assume that Θ′ is fair and finite: Γ′0 ` Γ′1 ` · · · ` Γ′k.
We show by induction on the length k of Θ′ that there exists a fair, finite derivation
Θ: Γ0 ` Γ1 ` · · · ` Γk of the same length, such that for all stages j (06 j6 k) and
indices h (16h6 |Γj |) if Γ′j has at index h clause Ah B C ′h[Lh] then Γj has at index
h a clause Ah B Ch[Lh] with the same selected constrained literal. Since the induced



partial interpretation is determined by the selected literals, it follows that for all stages j
(06 j6 k) it holds that Ip(Γj) = Ip(Γ′j) and hence I[Γj ] = I[Γ′j ].
Base case: k = 0: Γ′0 is empty and so is Γ0.
Induction hypothesis: the claim holds for length k.
Inductive case: let the length of Θ′ be k+1. As described in Sect. 3 and by Lemma 1, since
SH is a satisfiable Horn set, no conflicts can occur in Θ′, so that Γ′k ` Γ′k+1 can only be a
non-conflicting extension or an s-splitting or an SGGS-deletion step. If Γ′k ` Γ′k+1 is a non-
conflicting extension with main premise C ′ ∈ SH and side premises D′1[M1], . . . , D

′
n[Mn]

in dp(Γ′k), it adds extension clause C ′[L]α, where α is the simultaneous mgu of all the
I−-true (i.e., negative) literals ¬L1, . . . ,¬Ln of C ′ with M1, . . . ,Mn. Since SH is a
Horn subproblem of S, there must be a clause C ∈ S such that C ′ ⊆ C. Furthermore,
(C ′)− = C− because C ′ is a maximal Horn subclause. By induction hypothesis, there
exist clauses D1[M1], . . . Dn[Mn] in dp(Γk) with the same selected literals. Therefore,
Θ can be extended with a non-conflicting extension Γk ` Γk+1 with the same mgu
and extension clause C[L]α. If Γ′k ` Γ′k+1 is an s-splitting step, it replaces a clause
Ah B C ′h[Lh] by split(C ′h, C

′
r) for some Ar B C ′r[Lr] (r < h), where split(C ′h, C

′
r) is a

partition {Bi BD′i[Mi]}ni=1 such that Gr(Ah B C ′h) =
⋃n

i=1{Gr(Bi BD′i)}. By induction
hypothesis, Γk has constrained clauses Ah BCh[Lh] and Ar BCr[Lr] at positions h and r
respectively. Since the partition in SGGS-splitting is determined by the selected literals,
Θ can be extended with an s-splitting step that replaces Ah B Ch[Lh] by split(Ch, Cr),
where split(Ch, Cr) is a respective partition {Bi BDi[Mi]}ni=1 such that Gr(Ah B Ch) =⋃n

i=1{Gr(Bi B Di)}. If Γ′k ` Γ′k+1 deletes Ah B C ′h[Lh], it means that this clause is
disposable, that is, Ip(Γ′k|h−1) |= Ah B C ′h[Lh]. By induction hypothesis, Γk has a clause
Ah B Ch[Lh] at index h and Ip(Γk|h−1) = Ip(Γ′k|h−1). Thus, Ah B Ch[Lh] is disposable
in Γk and Θ can be extended with a deletion step that removes it. Since Θ is made of
inferences mirroring those in Θ′ and Θ′ is fair, also Θ is fair. �

Suppose that S is a first-order problem that is not in an SGGS-decidable fragment [13].
If S is unsatisfiable, SGGS halts by refutational completeness. Otherwise, one can look
for a Horn subproblem SH of S such that SGGS terminates on SH , and apply SGGS to
S with the literal selection dictated by SH . If SH is satisfiable, SGGS halts with a model
of both S and SH . If SH is unsatisfiable, S may still be satisfiable, SGGS may halt or
not, but the literal selection induced by SH is not the cause of non-termination: if it does
not lead to a model, conflicts arise, via conflict solving SGGS selects other literals, and
searches elsewhere.

5. On the Length of SGGS-Derivations

Let S be a set of clauses and A its Herbrand base. A finite subset B ⊆ A is a finite basis.
An SGGS-derivation is in B, if all cgi’s of all clauses on the trail during the derivation
are made of atoms in B. A fair SGGS-derivation in a finite basis is finite [13, Thm. 1].
An SGGS-derivation is ground, if all clauses on the trail during the derivation are ground.
The following example shows that a ground derivation may arise also if the input is not
ground.



Example 5. Let Sn be the following parametric set of Horn clauses (n > 0):
{(i) P(fn(a)), (ii) ¬P(f(x)) ∨ P(x), (iii) ¬P(x) ∨ ¬P(f(x)) ∨ . . . ∨ ¬P(fn(x))}. These
sets belong to an SGGS-decidable class named restrained where SGGS-derivations are
ground and in a finite basis [13]. The finite basis for Sn is Bn = {P(fk(a)) : 06k6n}.
The length of the SGGS-derivation with I− is linear in n:

Γ0 : ε ` Γ1 : [P(fn(a))] extend (i)

` Γ2 : [P(fn(a))], ¬P(fn(a)) ∨ [P(fn−1(a))] extend (ii)

` Γ3 : [P(fn(a))], ¬P(fn(a)) ∨ [P(fn−1(a))],

¬P(fn−1(a)) ∨ [P(fn−2(a))] extend (ii)

` . . .
` Γn+1 : . . . , ¬P(f(a)) ∨ [P(a)] extend (ii)

` Γn+2 : . . . , [¬P(a)] ∨ . . . ∨ ¬P(fn(a)) extend (iii)

` Γn+3 : . . . , [¬P(a)] ∨ . . . ∨ ¬P(fn(a)),¬P(f(a)) ∨ [P(a)] move

` Γn+4 : . . . , [¬P(f(a))] ∨ . . . ∨ ¬P(fn(a)) resolve

` . . .
` Γ3n+4 : ⊥, . . . resolve

where the derivation length is 3n+4 = n+4+2n as it takes 2 steps (move and resolve)
to eliminate each of the n literals in the last clause in Γn+4. Hyperresolution generates
P(fn−1(a)), . . . ,P(a) and then ⊥. Unrestricted resolution does not stay in B (e.g., resolving
(i) upon ¬P(fn−1(x)) in (iii) gets a clause including ¬P(fn+1(a))), and may generate
exponentially many clauses in the worst case (e.g., the 2n+1 subclauses of the instance of
(iii) where x← a).

Theorem 4. Given a set S of Horn clauses, for all fair SGGS-derivations with I− as
initial interpretation, if the derivation is ground and in a finite basis B, its length is linear
in |B|.

Proof: By [13, Lem. 1], for all stages j (j > 0) of a fair derivation in a finite basis
B, |Γj | 6 |B|+1 and |Γj | 6 |B| if dp(Γj) = Γj . Let Θ denote a fair ground derivation
in B. Since Θ is ground, dp(Γj) = Γj holds at all stages, because ground literals have
no intersection. Also, Θ is finite by [13, Thm. 1]. Recall the behavior of SGGS with
I− from Sect. 3. Since Θ is ground, no SGGS-splitting (and hence no SGGS-deletion)
applies, and the model-constructing phase of Θ is made only of SGGS-extensions. If
S is satisfiable, no conflict ever arises, Θ itself is made only of SGGS-extensions, and
|Γj | 6 |B| at its final stage j means that the number of SGGS-extensions and hence |Θ|
is in O(|B|). If S is unsatisfiable, a conflict with an I−-all-true conflict clause must arise.
Let Γi ` Γi+1 be the conflicting extension that adds to the trail such a conflict clause.
By Lemma 1, Θ is a refutation, and the number of SGGS-resolutions after stage i+ 1 is
equal to the cardinality of the dependence set of the conflict clause, which is bounded
by |Γi|, hence by |B|. Since Θ is ground, SGGS-factoring and left splitting do not apply



problem # Koala (I−) Koala (I+) E 2.4 Vampire 4.4 iProver 3.5
class sets SAT UNS SAT UNS SAT UNS SAT UNS SAT UNS
Horn 1,220 131 581 66 467 43 889 79 969 106 970

Table 1
Results of Koala, E, Vampire, and iProver on Horn problems within 300 sec of wall-clock time.

all SAT UNS EPR Stratified Restrained Sort-restrained
average 148 260 123 227 191 21 175
median 37 120 31 121 58 7 40

Table 2
Average and median length of the derivations by Koala on Horn problems.

during the conflict-solving phase. As there is at most one application of SGGS-move for
every resolution step, the length of the conflict-solving phase is in O(|B|). Since the length
of both model-constructing and conflict-solving phases is in O(|B|), the claim follows. �

As a corollary, if S is ground, no inference introduces new atoms, and B is given by the
set of the ground atoms occurring in S. While also hyperresolution behaves linearly, given
a set of ground Horn clauses, other resolution-based strategies (e.g., positive or negative
resolution, ordered resolution) can still generate an exponential number of clauses [15,
Ch. 1].

6. Experiments

We focus on Horn problems as Horn logic is the subject of this paper. We wrote a script
that considers all 5,000 problems without equality in TPTP 7.4.0, transforms problems
into clausal form if needed and detects Horn problems. This resulted in 1,220 Horn
problems that we submitted to the SGGS prototype prover Koala,2 with I− or I+ as
initial interpretation, E, Vampire, and iProver. All experiments were run single-threaded
on a 12-core Intel i7-5930K 3.50GHz machine with 32GB of main memory.

Table 1 reports how many problems were found satisfiable (SAT) or unsatisfiable (UNS)
by each tool. Since Koala with I− succeeded on 712 of the 1,220 Horn sets (58% success
rate), whereas Koala with I+ succeeded on 633 of them (51% success rate), the results
suggest that I− is more effective than I+ on Horn problems. In comparison with the other
provers, Koala is ahead on the satisfiable instances but remains behind on the unsatisfiable
ones. Indeed, SGGS works by building models, whereas resolution-based strategies are
notoriously very good at discovering the unsatisfiability of Horn sets.

Table 2 displays data about the length of the derivations by Koala on Horn problems,
distinguishing between satisfiable and unsatisfiable instances, and among four classes that
are SGGS-decidable because they admit finite bases [13].

2Koala is available at https://github.com/bytekid/koala, the experimental data at http://cl-informatik.
uibk.ac.at/users/swinkler/koala/horn.html or http://profs.sci.univr.it/~bonacina/sggs.html.

https://github.com/bytekid/koala
http://cl-informatik.uibk.ac.at/users/swinkler/koala/horn.html
http://cl-informatik.uibk.ac.at/users/swinkler/koala/horn.html
http://profs.sci.univr.it/~bonacina/sggs.html


7. Discussion

We studied what happens when SGGS with sign-based semantic guidance is applied to
Horn clauses. If the input is Horn, SGGS reasons forward (a.k.a. bottom-up) or backward
(a.k.a. top-down), depending on whether the guiding interpretation is all-negative (I−) or
all-positive (I+). SGGS with I− generates the least fixpoint model of a set of definite
clauses, and if the input is unsatisfiable, the first conflict with negative conflict clause
announces a refutation: while hyperresolution may get ⊥ in one step, SGGS may get it
with a multi-step conflict explanation and solving phase, because SGGS builds a model
and has to fix it when a conflict arises.

SGGS with I− and hyperresolution with subsumption have the same termination
behavior on Horn (note that SGGS-deletion and subsumption are not equivalent, because
SGGS-deletion depends on the order of appearance of clauses on the trail, e.g. [3, Ex. 2
and Lem. 1]). Furthermore, SGGS can learn from a Horn subproblem of a non-Horn
problem a literal selection strategy useful for termination on the non-Horn problem. The
model-based character of SGGS pays off on satisfiable inputs, as seen in the experiments
comparing the Koala prototype with mature theorem provers such as Vampire [16], E [17],
and iProver [18].

Horn problems are not the playground that SGGS was designed for, and hence it is
plausible that they do not exercise all its features, such as its conflict-driven nature and its
similarity to CDCL. This is not surprising, because the approaches to generalize features
of DPLL-CDCL from propositional to first-order logic (e.g., first-order splitting [19], the
model evolution calculus [20], SGGS [3]) were designed having non-Horn problems in
mind, as resolution-based strategies are efficient on Horn problems. Thus, the results
of this paper show that SGGS behaves well also in a realm that was not its motivating
target.

A main direction for future work is to endow SGGS with equality reasoning by building
the equality axioms in both inference system and model representation. The model-based
and conflict-driven style of SGGS also makes it an attractive candidate for integration
in frameworks for satisfiability modulo theories such as CDSAT [21, 22]. The Koala
prototype may be developed in many ways, including preprocessing the input w.r.t. unit
resolution, unit-resulting resolution, and subsumption, and devising caching techniques
to avoid recomputations.
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