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Abstract
In this paper, we describe the approach and the results of our participation in task 1: LivingNER-Species
NER track (Species mention entity recognition) of the LivingNER shared task. We tackled the task of
automatically detecting species mention in Spanish clinical case reports. We used a dictionary-based
approach using only the materials provided by the task organizers. The training set consisted of 1,500
clinical cases annotated by clinical experts. Our system achieved an F1-score of 0.8965 on a test set of
500 clinical cases.
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1. Introduction

Detection and identification of species or living organisms in documents is critical in public
health surveillance systems that track the emergence of infectious diseases[1, 2]. Most medical
information is provided by healthcare professionals in the form of free text, which has many
advantages such as familiarity, ease of use and freedom to express complex things, but free text
can be very difficult for algorithms to understand[3]. Natural language processing (NLP) devel-
ops methods for managing free-text data and extracting information required by applications
such as public health surveillance systems. A frequent step in a NLP pipeline is the detection
of medical entities (treatment, diagnosis) with named entity recognition (NER) algorithms[4].
LivingNER is the first shared task on NER of species mentions and entity linking providing
an exhaustively annotated large corpus of Spanish clinical case reports[5]. The objective of
shared tasks is to foster the development of NLP tools and the sharing of knowledge. Our main
motivation for participating was to evaluate an existing NER system and to learn from others
on a shared task. In this paper, we describe the approach and the results of our participation in
the task 1 of LivingNER-Species NER track (Species mention entity recognition).
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Table 1
Excerpt of a tab-separated values annotation file provided by the organizers. The column filename
refers to a textual case report file ; mark is an annotation identifier ; label takes two values: SPECIES
or HUMAN ; off0 and off1 are the starting and ending position of the textual span in the document,
respectively

filename mark label off0 off1 span
caso_clinico_radiologia526 T1 SPECIES 18 21 VIH
caso_clinico_radiologia526 T2 HUMAN 0 5 Varón

2. Methods

In the following subsections, we describe the corpora, the IAMsystem algorithm and its config-
uration for this task.

2.1. Corpora

The dataset provided by the organizers was called the LivingNER corpus. The corpus was
manually annotated by clinical experts following annotation guidelines specifically created for
this task. The corpus’ content was quite varied as it included annotations for animals, plants,
and microorganisms and the clinical case reports came from 20 medical disciplines (cardiology,
oncology, radiology…). The gold standard consisted of a collection of 2000 plain text clinical
case reports written in Spanish. The LivingNER corpus was randomly sampled into three
subsets: development, validation and test set composed of 1000, 500 and 500 clinical case reports,
respectively. The test set was released without annotations together with a large collection of
clinical case reports (background set) to avoid manual annotations. The participants had to
annotate a total of 13,467 documents of which only 500 were in the test set and known by the
organizers.

Each clinical case was stored as a single file in UTF8 encoding. For example, the file ”caso_clin-
ico_radiologia526.txt” starts with the following sentence: Varón de 49 años, VIH+, al que se
solicita TC abdominal urgente por sospecha de obstrucción intestinal. The words ”Varón”(male)
and ”VIH”(HIV) refer to a human person and a virus respectively. These terms were manually
annotated by clinical experts and included in the annotation files released by the organizers. The
annotation files included character offsets of entity mentions in TSV (tab-separated values) files
together with their corresponding NCBI Taxonomy code annotations. An excerpt is provided
in Table 1.

The participants’ goal was to generate automatic annotations for the test set documents in a
format similar to that of the validation and development sets (table 1).

2.2. Algorithm

IAMsystem is a biomedical semantic annotation tool developed in 2018 at Bordeaux University
Hospital, France. The algorithm is a dictionary-based system, it is similar to Mgrep [6] and
FlashText [7] algorithms but can handle lexical variations at the token level and single or
multiword abbreviations. It was designed to efficiently annotate medical documents of a clinical



Figure 1: Tree data structure created by the algorithm to store the dictionary. In this example, the
dictionary contains 4 terms: ”virus”, ”virus respiratorios”, ”virus varicela zoster”, ”paciente varon”. A
green node is linked to a dictionary term while a gray node is not. The root node is a special node.

data warehouse with large terminologies such as UMLS (Unified Medical Language System)
containing million of terms [8].

It takes in input a dictionary, typically in a TSV-format, and stores it in a tree data structure
called a trie where each token of the dictionary corresponds to a node. A text to annotate
is tokenized after undergoing the same normalization process as the dictionary: words are
normalized through accents (diacritical marks) and punctuation removal, lowercasing and
stopwords removal (if a stopword list is given). Given a sequence of tokens in a document, the
algorithm attempts to find a path in the tree starting at the root node.
In the following example, the document starts with ”El virus de la varicela-zóster” and the

dictionary is represented in figure 1. If the tokens ”el”, ”de” and ”la” are in the stopword list, they
are ignored by the algorithm. At the ”virus” token, the algorithm moves from the root node to
the ”virus” node, at the ”varicela” token, it moves from the ”virus” node to the ”varicela” node etc.
Node transition is possible if the token of a document matches the token of a next node in the
tree. Token matching is done by string matching algorithms. IAMsystem can be configured with
several string matching methods to take into account typos and lexical variations. By default
only exact match is performed. For example, if IAMsystem is configured with a Levenshtein
distance algorithm or a soundex algorithm, it can match the token ”varicella” in a document to
the node ”varicela” in the tree. IAMsystem can also handle abbreviations: if ”VVZ” stands for
”virus varicela-zóster”, it can follow the path ”root”->”virus”->”varicela”->”zoster” in the tree. If
no transition is possible, the algorithm returns to the root node. The algorithm never looks for
a term in the whole dictionary but for a node transition in the tree. Thus, its computational
complexity depends little on the number of terms in a dictionary, which explains why it is
fast for annotating a document with a large terminology. By default, the algorithm outputs
the longest term detected which corresponds to the longest path in the tree. If the algorithm
reaches the ”zoster” node in this example, the term ”virus varicela zoster” is returned but not
the term ”virus” even though it’s also a term. A formal description of IAMsystem is provided in
appendix A.



Table 2
The 10 most frequent spans with their frequency and cumulative percentage in the annotation files.

span frequency cumulative percentage
paciente 4861 0.209
vih 576 0.234
varón 521 0.257
personales 424 0.275
mujer 397 0.292
pacientes 292 0.305
familiares 270 0.316
madre 259 0.328
cmv 197 0.336
sars-cov-2 197 0.345

IAMsystem has already been evaluated in two shared tasks of the CLEF initiative: automati-
cally assigning ICD-10 codes to French death certificates in 2018[9] and automatically assigning
ICD-10 diagnosis and procedure codes to Spanish electronic health records in 2020[10]. The
algorithm was also described on this occasion. The source code of the algorithm is available at
https://github.com/scossin/IAMsystem.

2.3. Configuration for this task

The development and validation sets were combined into a single set known as the ’training
set’. This training set included 1,500 clinical cases with a total of 23,203 annotations. In the span
column after lowercase, these annotations had 3,418 unique values. Table 2 shows the frequency
of the ten most frequent spans, as well as the cumulative percentage calculated by dividing the
frequency by the total number of annotations. According to the table, approximately 21% of
annotations contained the span ”paciente”.

Our goal was to build a dictionary that maximizes IAMsystem’s F1-score on the training set.
The same strategy was used in 2020 on a task of detecting symptoms and diseases mentioned
in clinical notes[10]. IAMsystem used a temporary dictionary created by selecting all of the
span values in the annotation files to annotate the training set. Recall and precision on the
training set with this temporary dictionary were 0.97 and 0.53, respectively. IAMsystem’s output
file did not match perfectly the annotation files for two reasons. First of all, IAMsystem only
selects the longest detected term; however, a human expert does not always make the same
choice. For example, if the document contains ”VIH 1” and the dictionary contains ”VIH” and
”VIH 1,” the algorithm returns ”VIH 1,” even though the substring ”VIH” can be annotated by
humans. Second, if a human annotates a term in one document, it may not be annotated in
others, whereas the algorithm will annotate it in all. Some terms had to be removed from the
temporary dictionary in order to maximize the F1-score on the training set. By doing so, recall
slightly decreased while precision greatly increased on the training set. To identify the terms to
remove, the output file was compared to the annotation files. The frequency of each span in the
annotation files and in the output file was compared: if the ratio between the two frequencies
were greater than 2 the span was removed from the dictionary. For example, the span ”covid-19”

https://github.com/scossin/IAMsystem


Table 3
Performance of IAMsystem and average results of participants on the LivingNER test set.

System Micro-Precision Micro-Recall Micro-F1 score
IAMsystem 0.9209 0.8733 0.8965

Average 0.876 0.807 0.824

appeared 231 times in the training set, resulting in 231 annotations by IAMsystem in the output
file but it was annotated only a single time by human experts. Removal of this term led to the
removal of one true positive and 230 false positives. A total of 109 spans were removed from the
temporary dictionary resulting in a dictionary containing 3,683 terms that was used to annotate
the test set. Recall and precision on the training set with this custom dictionary were 0.96 and
0.97, respectively. IAMsystem was configured without an approximate string matching method,
so only exact matching method was performed.

3. Results

We submitted one run. It took about 6 seconds to annotate and generate 107,651 annotations
from the 13,467 documents in the test set on a laptop with Intel Core i7-5700HQ @2.70GH
x 8CPUs. Table 3 shows the performance of our system and the mean of all the submitted
predictions.

4. Discussion

In 2018, IAMsystem obtained a F1-score of 0.786 (precision: 0.794, recall: 0.779) on the task
of coding French death certificates with the ICD-10 terminology[9]. French death certificates
consisted of short texts containing numerous typos, lexical variants and abbreviations[11].
IAMsystem was configured differently for this task.
In 2020, the same system obtained a F1-score of 0.69 (precision: 0.82, recall: 0.59) on the

task of detecting symptoms and diseases mentioned in Spanish clinical notes and a F1-score
of 0.52 (precision: 0.69, recall: 0.42) on the task of detecting procedures[10]. The length of the
documents was comparable to this task, but the training set was smaller, with only 1.7% of the
codes present [12]. It’s worth noting that the same strategy to create the dictionary was used in
this task, which makes comparisons easier.

For this task 1, the algorithm obtained an F1 score of 0.8965 (precision: 0.8733 , recall: 0.9209).
These better results can be explained by the absence of longwords dependencies in the livingNER
corpus and frequent terms (table 2) that favor the micro-F1 score.
Our algorithm’s main advantages are its ease of use and speed. It accepts a dictionary as

input and supports a variety of fuzzy matching algorithms (Soundex, Levenshtein...). It is simple
to set up and debug: the algorithm provides an explanation by displaying the start and end
positions of each word sequence detected in a document containing the dictionary term. It does
not require annotations to be trained, unlike machine learning algorithms. It works well when
making an annotation without particular respect for the context.



Its simplicity is also the source of many of its shortcomings. A dictionary-based technique
cannot detect entities that do not exist in the dictionary. The system cannot recognize a term if
its words are not in the correct order or are separated in a document. It is unable to manage
context and interpret the meaning of a word when necessary. We believe that new cutting-edge
NLP algorithms such as BERT will outperform IAMsystem. Nonetheless, it has a role in a data
scientist’s toolkit for quickly establishing a baseline with a simple system.
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A. Formal description

A.1. Semantic annotation

Semantic annotation consists of linking sequences of words in a document to the concepts of
a terminology[13]. A terminology is composed of a set S of terms called a dictionary, a set C
of concepts identified by a unique code and a relation 𝑅 ⊂ 𝑆 × 𝐶 between the terms and the
concepts. A document is a sequence of words (𝑤1, ..., 𝑤𝑛) after a normalisation and tokenisation
step. Semantic annotation consists in identifying a set of pairs ((𝑤𝑖, ..., 𝑤𝑗), 𝑐𝑘) where (𝑤𝑖, ..., 𝑤𝑗)
is a sequence of one or more words in d and 𝑐𝑘 a concept in C. This sequence of words can be
continuous or discontinuous. A sequence of words is continuous if and only if, for any integer
k, i ≤ k ≤ j, w𝑘 belongs to the sequence (𝑤𝑖, ..., 𝑤𝑗).

A.2. IAMsystem

IAMsystem is composed of a deterministic final-state automata (DFA) [14] and fuzzy string
matching algorithms that are responsible of state transitions. The state diagram of the DFA
forms a rooted tree, i.e. a directed acyclic graph with a single root (figure 1).
A DFA is defined by a quintuplet (Q, Σ, 𝛿, q0, F):

• a finite set of states Q
• a finite set of symbols Σ
• a transition function 𝛿 ∶ 𝑄 × Σ → 𝑄
• an initial state q0 ∈ Q
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• a set of final states 𝐹 ⊆ 𝑄.

Let S be the dictionary composed of a set of terms. The tokenization function transforms a
sequence of characters into a sequence of words. By applying this function to each term in the
dictionary S, we obtain a dictionary S’ composed of a set of word sequences. The set of symbols
Σ = {𝑤 𝑟

1} of the automata is the set of unique words of the dictionary S’. The trie associated with
S’ is defined recursively [15]:
𝑡𝑟 𝑖𝑒(𝑆′) = {𝑡𝑟 𝑖𝑒(𝑆′ | 𝑤1), ..., 𝑡𝑟 𝑖𝑒(𝑆′ | 𝑤𝑟)} where 𝑡𝑟 𝑖𝑒(𝑆′ | 𝑤) means the subset of S’ that begins with
the word w. A rooted tree, denoted G, is constructed recursively from this definition.
Let G = (V,A) be a set of nodes V and edges A each composed of two nodes and a word w:
𝐴 ⊂ {(𝑥, 𝑦 , 𝑤) ∈ 𝑉 × 𝑉 × Σ, 𝑥 ≠ 𝑦}. We start by creating the root of G corresponding to 𝑡𝑟 𝑖𝑒(𝑆′)
then, recursively, for each trie x having an element trie y beginning with the word w ∈ Σ, we
add to the graph G a node x, a node y and an edge (x,y,w). The finite set of states of the automata
Q is an alias of the set V of the graph G. Thus, each state q ∈ Q is a node of G and the initial
state 𝑞0 is the root of G.
The transition function 𝛿 ∶ 𝑄 × Σ → 𝑄 is defined by the set of edges A :

𝛿 = {((𝑞1, 𝑤), 𝑞2) | (𝑞1, 𝑞2, 𝑤) ∈ 𝐴}. A transition is possible between states q1 and q2 with word
w if and only if there is an edge (q1,q2,w) ∈ A. Schematically, our automata corresponds to the
graph of figure 1 where each state is a node and each transition is an edge of G.
Let 𝑞𝑛 be a node of the tree G. There is a unique path, a sequence of edges, ((𝑞0, 𝑞𝑖, 𝑤𝑖),(𝑞𝑖,

𝑞𝑗, 𝑤𝑗), ..., (𝑞𝑧, 𝑞𝑛, 𝑤𝑛)) from the root to node 𝑞𝑛. By taking the 3rd element of each triplet of
this sequence, we obtain a sequence of words (𝑤𝑖, 𝑤𝑗, ..., 𝑤𝑛). Let f : Q→ (𝑤1, 𝑤2, ..., 𝑤𝑛) be the
function that maps each state 𝑞𝑛 ∈ 𝑄 to a sequence of words. A state 𝑞𝑛 is a final state if and only
if the sequence of words 𝑓 (𝑞𝑛) belongs to S’, i.e. if this sequence of words is the tokenisation of
a term of the dictionary. 𝐹 ⊂ 𝑄 is the set of final states defined by 𝐹 = {𝑞 | 𝑞 ∈ 𝑄, 𝑓 (𝑞) ∈ 𝑆′}
Let Σ∗ be the infinite set of word sequences that can be formed from the set of symbols Σ.

The function 𝑛𝑒𝑥𝑡 ∶ 𝑄 × Σ∗ → 𝑄 searches a state transition in the automata with a sequence
of words. The function takes as inputs a state of the automata q1 ∈ 𝑄 and a sequence of
words (𝑤1, 𝑤2, ..., 𝑤𝑛) ∈ Σ∗ and returns a state q2 ∈ 𝑄, 𝑞2 ≠ 𝑞1 if there is a transition (a path)
between q1 and q2 via the supplied word sequence. This function next uses the function 𝛿 for
each intermediate transition between two states. If no state transition is possible, the function
returns ∅ ∈ Q.

For each word 𝑤𝑖𝑛𝑝𝑢𝑡 in the document, a set of word sequences is produced by each of the fuzzy
stringmatching functions. Let g be a fuzzy stringmatching function, 𝑔 ∶ 𝑤𝑖𝑛𝑝𝑢𝑡 → {𝑠𝑒𝑞 | 𝑠𝑒𝑞 ∈ Σ∗}.
A function g receives as input a word w𝑖𝑛𝑝𝑢𝑡, which may or may not belong to the set of symbols
Σ, and returns a set of sequences of words where each word belongs to Σ.
For each word (token) in the document, each fuzzy string matching function is called and

their results are grouped into a set 𝑆𝐸𝑄 ⊂ Σ∗ = ⋃𝑛
1 𝑔(𝑤𝑖𝑛𝑝𝑢𝑡). For each seq ∈ SEQ, the function

next is called to search for a state transition. If a transition is found, the automata changes its
state. If the state is a final state then a term in the terminology has been detected and a semantic
annotation is produced. If multiple transitions are possible, IAMsystem duplicates the automata
to explore several paths in the tree and can therefore contain several copies of the automata.
Although each automata is in a unique state, the IAMsystem algorithm can be located in several
different states. If no transition is found, the automata returns to the initial state 𝑞0 and starts



again. If no transition is found in the initial state, the algorithm moves to the next token in the
document.
The IAMsystem algorithm is described in pseudocode below.

Algorithm 1 IAMsytem
Input: a document d,
a final-state automata 𝒜,
functions next and tokenize
fuzzy string matching algorithms 𝑔𝑖

Output: a sequence of annotations (Annots)
Annots = []
doc_tokens := tokenize(d)
states := [𝑞0]
w𝑖𝑛𝑝𝑢𝑡 := first token in doc_tokens
while 𝑤𝑖𝑛𝑝𝑢𝑡 ≠ 𝑒 do

if w𝑖𝑛𝑝𝑢𝑡 is a stopword then
next

end if
SEQ = ⋃𝑛

𝑖=1 𝑔𝑖(𝑤𝑖𝑛𝑝𝑢𝑡)
for seq in SEQ do

new_states := []
for state in states do

new_state := next(state, seq)
add new_state to new_states

end for
end for
if length new_states = 0 then

for state in states do
if state ∈ F then

create an annotation and add it to Annots
end if

end for
if states = [𝑞0] then

w𝑖𝑛𝑝𝑢𝑡 := next token
else

states := [𝑞0]
end if

else
states := new_states
w𝑖𝑛𝑝𝑢𝑡 := next token

end if
end while
return Annots
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