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Abstract

This paper describes the systems presented by the SINAI team for two LivingNER tracks on the IberLEF
2022 at SEPLN 2022. These shared tasks focus on the recognition and normalization of human and
non-human species mentions in electronic health records written in Spanish. In order to solve the
proposed problem, our team presents a multi-label named entity recognition system based on fine-tuned
RoBERTa architecture model, which scored 0.9457 micro-average F1-score when officially tested on the
gold-standard corpus. Based on this system’s prediction, our entity normalization system combines
exact matching, TF-IDF fuzzy matching, and Levenshtein distance-based matching with a 0.8629 micro-
averaged F1-score.

Keywords
Clinical entity recognition, Clinical entity linking, Biomedical Natural Language Processing, RoBERTa
language model

1. Introduction

The introduction of Electronic Health Records (EHRs) as the main way of registering patients’
medical history created new opportunities to impulse research and development of biomedical
technologies to bring knowledge and evidence to practice[1]. Structured clinical information
translated to machine-readable format is considered an essential part of Clinical Decision Support
Systems (CDSS), which aim to increase efficiency and quality of healthcare [2]. However, one of
the most important parts of EHRs, free-text clinical narrative is highly expressive but difficult
to handle automatically [3]. This fact makes the extraction of clinically meaningful features
from raw text data an essential step to leverage the knowledge stored in EHRs.

One of the ways of making relevant concepts in free-text clinical narrative machine-readable
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is clinical coding. This term refers to the process of mapping concepts from patients’ EHR to
codes from a relevant controlled vocabulary[4]. At the present, the interpretation of EHRs and
structuring this information is performed manually and can even be an additional responsibility
of physicians. This process is time-consuming and entails errors attributed to the human factor.
For these reasons the development of systems that could perform accurate automated clinical
coding has great potential to save resources spent on manual annotation, improve oversight of
patient care and accelerate evidence-based biomedical research [3].

Biomedical Natural Language processing (Bio-NLP) aims to give a response to the need for
automated extraction of evidence from a retrospective analysis of EHR data by Named Entity
Recognition (NER) and Named Entity Normalization (NEN), which constitute two main phases
of the clinical coding process. Biomedical named entities conform a large and heterogeneous
group of concepts that can include gene, disease, chemicals, and drug names [5]. However, not
all of this entities types received equal attention from the Bio-NLP community: while detection
and normalization of the cited were targeted by several shared tasks [6, 7, 4], organisms and
species mentions have been scarcely featured in Bio-NLP domain. For instance, LINNAEUS
tool [8] combines rule-based and pattern matching approaches for species entity recognition
and normalization in English clinical texts. One of the disadvantages of this system is that the
described approach makes it difficult to adapt for other languages and to keep it updated apace
with taxonomy extensions.

By providing an exhaustively annotated corpus of clinical case reports, LivingNER shared
task [9] at Iberian Languages Evaluation Forum (IberLEF) 2022 brings the community effort to
designing clinical coding systems capable of correctly identifying both human and non-human
species mentions in Spanish clinical narratives and normalizing these mentions by assigning
each one its corresponding code from National Center for Biotechnology Information Taxonomy
(NCBITax) [10]. As of June 2022 NCBITax includes 738,683 species with formal names structured
according to the evolution history [10].

In this paper, we describe the systems presented by the SINAI team to tackle LivingNER-
Species NER and LivingNER-Species Norm tracks.

2. Data

LivingNER Corpus is a collection of 2,000 clinical case reports annotated with quite diversified
species mentions such as humans, animals, plants, and microorganisms [11, 9]. The fact that
the texts come from 20 different medical disciplines, such as cardiology, neurology, oncology,
otolaryngology or dentistry, contributes to the variety of the dataset. The corpus annotations
considered not only scientific names (e.g. Homo sapiens), but also common names of the cited
concept types (e.g. Person).

The entire collection was randomly split by the task’s organizers into training, validation, and
test sets that comprised 1000, 500, and 500 texts respectively. Additionally to the test set, a larger
background set was released to prevent participating teams from manually correcting their
predictions and to generate a Silver Standard. Training texts were annotated with 3,006 unique
entity mentions that were mapped to 887 unique NCBITax identifiers, while the validation
dataset contained 1,704 unique mentions mapped to 559 different NCBITax annotations. Figure 1
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Figure 1: 10 most common entity spans among the dataset. Translation made only to ease the reading
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Figure 2: Entity label frequency comparison.

shows the 10 most common entity spans in training and validation sets. Considering that the
main objective of the LivingNER-Species NER is retrieving both human and non-human species
mentions from EHRs, corpus annotations also specify a label for each entity which can be
‘SPECIES’ or ‘HUMAN’, where entities with this last label are always linked to the same code in
the taxonomy (9606, Homo sapiens). As shown in Figure 2, the dataset is quite balanced in this
regard.

As for the NCBITax identifiers, it is important to note that not all entities were assigned a
single NCBITax code since there can be found composite mentions, used for entities that required
several codes to be described (°2]2759]10239” for ‘patégenos respiratorios’ - eng. respiratory
pathogens), and terminology codes with ‘|H” modifiers which refer to codes that are more general
than the annotated mention (‘2|H’ for ‘baciloscopia’ - eng. bacilloscopy). As can be seen in Table
1, composite mentions and general codes are among the 10 most frequently appearing codes in
both training and validation subsets of the LivingNER corpus.

Another highly relevant characteristic of the LivingNER corpus is the length of the texts.
Tokenization of each one with the RoBERTa byte-level Byte-Pair-Encoding tokenizer [12]
revealed that 595 texts from the training set and 257 from the validation set exceeded the
maximum length of input for the RoBERTa model chosen as the core part of our system, which



Training set ‘ Validation set

Code Description Count ‘ Code Description Count
9606 homo sapiens 7,007 9606 homo sapiens 3,289
12721 hiv 460 12721 hiv 193
2 bacteria 370 10239 viruses 163
10239 viruses 318 2 bacteria 151
2|2759|10239  bacteria | eukaryota | viruses 280 10407 hepatitis b virus 133
4751 fungi 242 4751 fungi 110
2|H bacteria (general) 234 10358 cytomegalovirus 109
10407 hepatitis b virus 232 2|H bacteria (general) 100
160 treponema pallidum 226 2697049 sars-cov2 98
10358 cytomegalovirus 214 2|2759|10239  bacteria | eukaryota | viruses 90
Table 1

10 most frequent NCBITax codes in training and validation datasets.

is set to 512 tokens. This fact brought us to adopt a sentence-level NER approach, thus text pre-
processing consisted in splitting the texts into sentences using the SentenceRecognizer from the
SpaCy processing pipeline [13]. SpaCy’s SentenceRecognizer relies on the es_core_news_sm
pre-trained language model which was employed to identify tokens that constitute the start of
each sentence. Table 2 summarizes basic statistics of the dataset.

Training set ‘ Validation set

Entities Tokens Sentences ‘ Entities Tokens Sentences

max 920 2,744 138 110 2,534 97
min 1 81 3 1 95 3
avg 16.10 728.53 28.34 14.21 671.89 25.69
SD 14.58 457.84 18.34 13.26 434.98 17.22

Table 2
Training and validation corpus statistics.

3. System Description

In this section, we describe the systems developed for the subtasks we participated. Figure 3
provides an overview of the proposed system’s architecture.

3.1. LivingNER-Species NER

LivingNER-Species NER track consisted in providing character offsets of all human and non-
human species mentions given a collection of plain text clinical report documents. As we
mentioned earlier, many texts from both training and validation sets exceeded the maximum
length of input of transformer models we were planning to work with, we opted for developing
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Figure 3: Overview of system architecture.

a sentence-level NER system based on fine-tuning of pre-trained language models. With the
objective of measuring the impact of domain-specific training that has frequently been pointed
at since the release of the first Bio-BERT [14], we carried out three experiments testing RoOBERTa
models pre-trained on general, biomedical, and biomedical-clinical corpora.

For the general-domain model we selected RoBERTa-base-BNE [15]. This model was pre-
trained on more than 200M documents assembled from crawls of all .es domains performed
by the National Library of Spain (Biblioteca Nacional de Esparia or BNE) between 2009 and
2019 that were subsequently subjected to a complex filtering and deduplication process [15]. In
its original paper, the authors provide benchmarks for RoBERTa-base performance on several
downstream tasks such as NER, text classification, question answering, and others, making use
of general domain corpora, such as the Spanish portion of MLDoc [16] or CAPITEL-NER [17].
Unlike this, using this model on clinical text constitute a cross-domain experiment.

Two other models chosen for experimentation have the same RoBERTa architecture and
differ in terms of the pre-training data. The medical model was trained on data gathered from
a variety of sources, such as Medical Crawler [18], SciELO-Spain-Crawler [19], and others.
Language variety used in scientific medical texts, despite being semantically closer to the jargon
used in EHRSs, still differs from it in terms of syntax and vocabulary, a fact that made relevant
introduction of clinical narratives into the pre-training corpus and led to the creation of clinical



model [20].

All three (medical, clinical, and general) models were fine-tuned for the token classification
task by adding a linear classifier layer preceded by a 0.1 dropout layer on top of the original
architecture.

3.2. LivingNER-Species NORM

This task aims to assign each mention found in the first task a code from the NCBI Taxonomy.
In order to tackle this, we developed a sequential system that combines exact and fuzzy string
matching between entities and taxonomy terms.

All mentions in the train set labeled as HUMAN are linked to the Homo sapiens term in the
taxonomy for which code is 9606, therefore, our system first assigns this code to every entity
containing such label as detected in the previous task (step 1 in Figure 3). Then, regarding the
mentions labeled as SPECIES, we first looked for exact string matching between the entities and
both the original taxonomy descriptions and their Spanish translated version (step 2). In the
third step, the system performs another exact string matching, but this time against the entities
present in the sets provided by the organizers (i.e. training and validation). The remaining
entities to be linked are then encoded into numerical vectors with TF-IDF in order to get the
most similar terms by calculating the cosine similarity with every TF-IDF encoded taxonomy
description (step 4). Finally in the fifth step, for the entities that do not have any similar term in
the ontology - the normalized cosine similarity is less than 0.75 -, we repeat this fuzzy string
matching process, but now calculate the Levenshtein distance between entities and taxonomy
descriptions. The entities for which this last normalized distance metric is not greater than 0.9
will be coded as _NOCODE , which is the code for those mentions that are out of the NCBI
taxonomy scope.

4. Experimental Setup

All the transformer models were fine-tuned on a single NVIDIA Ampere A100 GPU by making
use of the Hugging Face’s transformers Python library [21].

To yield better performance out of our systems, we carried out a hyperparameter optimization
powered by the Optuna Framework [22]. It incorporates an efficient implementation of both
searching and trial pruning strategies. During the optimization, Optuna infers concurrence
relations between the searched parameters to switch from independent sampling to concurrence
sampling after a few trials. In addition, a pruning algorithm monitors intermediate training
results and stops unpromising trials at an early stage.

The hyperparameter space for the optimization was defined as follows:

+ Learning rate: float value between 3e — 5 and 5e — 5

« Number of training epochs: integer value between 3 and 10

« Training batch size: 8, 16 and 32

« Weight decay: float value between le — 12 and le — 1

« AdamW optimizer epsilon: float value between le — 10 and 1le — 6
« Warmup steps: integer value between 0 and 1000



Medical model Clinical model General model

Learning rate 3.6e-5 4.8e-5 3.1e-5
Training epochs 10 4 9
Batch size 16 8 32
Weight decay 1.4e-11 3.2e-6 2.4e-11
AdamW epsilon 3.9e-10 1.4e-8 4.4e-100
Warmup steps 622 440 276

Table 3
Hyperparameters selected for each model.

Finally, Table 3 summarizes hyperparameters selected for each model after optimization
trials.

5. Results

Our team submitted a total of three runs corresponding to each of the above-described systems.
In this section, we present the results obtained in LivingNER-Species NER and LivingNER-
Species NORM sub-tracks during the official evaluation. Metrics selected by the organization
committee to measure the performance for both are those commonly used in token classification
tasks, namely micro-averaged precision (P), recall (R), and F1-score (F1).

Table 4 summarises the results obtained by the three NER systems presented on the LivingNER-
Species NER subtrack. Metrics prove that the RoOBERTa model pre-trained on general domain
corpora has a remarkable cross-domain potential as its performance, despite being the lowest
of all our systems is still promising and close to the mean values among all submitted runs. The
general model is also able to most accurately identify the relevant human mentions, as it has
shown the highest recall (0.9803) in the ‘Only HUMAN’ category.

The highest F1-scores were shown by the medical model (0.9457 overall, 0.9198 for ‘Only
SPECIES’ and 0.9805 for ‘Only HUMAN’). Nevertheless, the performance of this pair is very
similar to each other.

LivingNER NER | Only SPECIES Only HUMAN

Model P R F1. | P R F1 P R F1

Clinical model  0.9574  0.905 0.9305 | 0.9421 0.8572 0.8976 | 0.9776  0.9695  0.9735

Medical model 09571 0.9346 0.9457 | 0939 0.9014 0.9198 | 0.9815 0.9794 0.9805
General model  0.8995 09295 0.9142 | 0.8643 0.8918 0.8779 | 0.9502 0.9803  0.965

MEAN 0.8763 0.8077 0.8239 0.8112 0.7579 0.7781 0.9312 0.875 0.8849
SD 0.1542 0.2465 0.2371 0.249 0.2565 0.251 0.1156 0.2388 0.223
Table 4

Official results obtained in the LivingNER-Species NER track.

The results achieved in the second subtask (see Table 5) are highly related to the ones in the
LivingNER-Species NER subtask since the taxonomy codes are linked to the entities detected in



this first track. This explains why the ‘Only HUMAN’ results in both tasks are identical (all
entities with this label are linked to the Homo sapiens code, therefore, the relative accuracy of
our system for this label in the second subtask is 100%). Regarding the ‘Only SPECIES’ metrics,
our best model achieved micro-averaged scores of 0.7905 for precision, 0.7589 for recall, and
0.7744 for F1. Finally, the general scores achieved by our best system are 0.8733, 0.8527, and
0.8629 for precision, recall, and F1 respectively which are all higher than the mean metrics
achieved by all the participants.

LivingNER Norm ‘ Only SPECIES Only HUMAN

Model P R F1 | P R F1 P R F1

clinical-model  0.8738 0.826 0.8492 | 0.7908 0.7196  0.7535 | 09776  0.9695  0.9735

medical-model  0.8733  0.8527 0.8629 | 0.7905 0.7589 0.7744 | 0.9815 0.9794 0.9805
general-model 0.823 0.8504  0.8365 0.731 0.7542  0.7424 | 0.9502 0.9803  0.965

MEAN 0.8488 0.8068 0.8267 0.7598 0.6917 0.7228 0.9588 0.9621 0.9604
SD 0.1577 0.1476 0.1508 0.2893 0.2582 0.2704 0.0193 0.014 0.0151
Table 5

Official results obtained in the LivingNER-Species Norm track.

5.1. Conclusions an future work

This paper covers the participation of the SINAI research group in the LivingNER shared task
at the IberLEF 2022 workshop. In particular, we took part in two subtasks: one consisting of
species mention detection (LivingNER-Species NER) and the other focusing on mapping the
previously detected entities to NCBITax codes (LivingNER-Species NORM).

The approach proposed to tackle the species mention recognition task (first subtask) has in
its basis fine-tuning of transformer models pre-trained on different corpora. To measure the
impact of domain-specific pre-training of large language models we tested three systems with
different cores: one relied on a general-domain model, the second on a medical model, and the
third, on a clinical one. All pre-trained models had the same RoBERTa transformer architecture
and differed in terms of pre-training corpora. All three proposed systems achieved encouraging
results, being the medical model the best performing one with 0.9457 overall micro-average
F1-score.

Despite our initial hypothesis of being the clinical model more suitable for LivingNER Corpus,
it showed very similar but slightly lower performance (0.9305 overall F1-score) compared to
the medical model. The reason for this could be the fact that, in absence of large-scale clinical
corpora, RoBERTa clinical was pre-trained on a concatenation of medical scientific publications
with clinical case reports, and clinical cases accounted for only 14,96% of the total number of
documents in the resulting collection [20]. Another interesting finding of our experimentation
is the remarkable cross-domain potential the general model has shown since when fine-tuned
on clinical texts it achieved 0.9142 overall micro-average F1-score which is higher than the
mean value among all submitted predictions.

Regarding our approach for the second subtask, we developed a sequential system including



exact and fuzzy string matching to find the closest NCBITax codes for the entities found in
the previous subtask. The results obtained suggest the strength of this approach as our system
achieved 0.8629 F1-score, which is almost four percent higher than all participants’ mean score.

As future work, an exhaustive error analysis would help to identify our systems’ weaknesses
and improve their performance. Furthermore, we plan to test the emerging weak-supervision
techniques that leverage so-called ‘weak’ labels obtained by applying different matching tech-
niques or by making predictions with another previously fine-tuned model to enhance the
resulting system performance.
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