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Abstract
This work presents different solutions to the tasks proposed at the LivingNER challenge, as part of the
Iberlef 2022 Conference, with a special focus on the NER task. For that, a general domain large model
was adapted to the biomedical domain, showing that this process improves the posterior fine-tuning on a
majority of tasks. However, although achieving similar results, it is not able to outperform two base size
models specific of the biomedical domain. A careful analysis of the reason for this gap in performance is
carried out, showing that the tokenizers’ vocabulary has a great impact on the aggregation of predictions
both at the word level and the word group level. This highlights the effectiveness of using domain
specific models for tasks very specific to a concrete linguistic domain. Official test results show a very
good performance on the NER task, where all the submissions made are clearly above the average results.
However, results for tasks 2 and 3 are very poor, which indicates that a deeper understanding of the
underlying nature of those tasks is needed.
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1. Introduction

In this work we present different approaches for the different subtasks of the LivingNER
challenge [1], as part of the Iberlef conference. LivingNER aims to improve the existing automatic
systems to detect, classify and analyze the impact of living entities. Some identified areas possibly
impacted by such systems are medicine, biology, ecology/biodiversity, nutrition and agriculture.

The work focuses mainly in the first task, that is the NER task, while less effort was used for
the second and third tasks. For the NER task, exhaustive experiments were carried out with
different Transformer models in Spansh, thus expanding the existing benchmarks of language
models in Spanish, such as those in [2], [3] or [4].

Furthermore, a detailed analysis on the effect of the domain of the corpus each tokenizer is
trained on is done. With this analysis, this work tries to contribute to the existing knowledge
regarding the effect of the domain over language models, specifically in Spanish. Then, different
ways of mixing the predictions of those models are explored.
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In section 2, other similar challenges are explored, and openly available language models in
Spanish relevant to these tasks are reviewed. Then, in section 3, the different tasks of LivingNER
are briefly explained. The whole system for the three tasks is described in section 4.

2. Related Work

2.1. NER for the Health Sector in Spanish

The Biomedical Text Unit at BSC (Barcelona Supercomputing Center) has released several
corpora related to the biomedical/health domain in the previous years. One such example is
Meddocan [5] [6], an anonymization track in which systems have to identify several entities
such as NOMBRE_SUJETO_ASISTENCIA or CALLE. This serves for removing this important
information from clinical reports, so that they could be better anonimized. The project that
obtained the highest results on that challenge for the NER task was [7]. In [7], it is shown that
very promising results in NER tasks can be obtained by using pre-trained Embeddings such as
FastText [8] or FLAIR [9]. Then, BiLSTMs [10] were used to mix those Embeddings. The task is
approached as a token classification task, where for each input token an output label must be
predicted.

Other challenge of similar nature as LivingNER is Meddoprof [11] [12], a task consisting on
classifying and normalizing professions and occupations in medical texts. The best results in
NER were obtained again by the same team as Meddocan [12] [6], NLNDE (Neither-Language-
Nor-Domain-Experts)[7]. In [13], the NLNDE team use the multilingual XLM-R [14] model in
several settings. Some interesting experiments such as domain adaptation of the language model
and language-adaptive pre-training were carried out. Note that this competition took place on
2021 Spring, when not many Spanish language models had been developed, a possible reason
for such language adaptation. Other boosting strategies such as transfer learning and strategic
datasplits were tried out. These methods account, according to [13], for an improvement of 5.3
F1 points compared to the fine-tuned XLM-R model.

2.2. Transformer Models in Spanish

The first language model released in Spanish was BETO [2], a Spanish BERT [15]. Then, in the
context of the MarIA project [3], Spanish RoBERTa [16] and GPT-2 [17] models were released,
both base and large. The most suitable architecture for the nature of LivingNER NLU tasks
is the encoder-only, as full attention is generally better than masked attention in those cases.
For this reason, RoBERTa-base and large from MarIA were selected, named MarIA-base and
MarIA-large along the paper. Additionally, BERTIN model was released this year [18]. It is also
a version of RoBERTa in Spanish, trained with less resources than [3] but with novel techniques.

Additionally, there are two domain-specific models in Spanish. Both of them use the RoBERTa-
base architecture. They are trained using corpora from the biomedical and biomedical-clinical
domains respectively [19], and will be called BioMedical and BioClinical along the paper.

By looking at different models’ comparisons in [4], it was decided that MarIA-large, MarIA-
base, BioMedical and BioClinical would be used for the different subtasks of LivingNER. Addi-
tionally, a domain adaptation for MarIA-large to the biomedical domain is carried out, which is
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explained later.
However, as a matter of comparison, in a first step, BETO [2] and BERTIN [18] were also

trained. When their scores were checked, it was decided to not use them for the next step. This
experiment shows that the model comparisons above are consistent with the LivingNER task 1
results.

3. Challenge Description

In this section the challenge is explained, by defining the different tasks that form it.

3.1. Task 1

In the first task, systems must identify humans and species in clinical texts. Systems are expected
to provide the spans, together with the offsets of the whole entities in those texts. This is a
typical NER task with two entities (plus the null entity, which is the entity assigned to those
tokens not being any other entity).

3.2. Task 2

In task 2 systems have to classify the entities predicted in the first task, according to their NCBI
taxonomy ids (National Center for Biotechnology Information) [20]. There are many different
labels for this task, and patterns are very difficult to find, as there is little information in the
entity name or the text surrounding it that could be related to the concrete class of that entity.

This can be solved as a multiclass classification task. Additional information is provided for
task 2, such as the following tags for the entities: isH, isN, iscomplex. These can easily be used
for training, as they are already included in the provided dataset, but for prediction these have
to be first predicted, as they are not available for the test set.

3.3. Task 3

For task 3, systems have to classify each clinical record according to several dimensions: is food,
is nosocomial, is animal injury, is pet (binary classification in each case). Additionally, when
any of these labels are detected in the document, systems have to search for the supporting
evidence, that is, the codes of the entities being food, nosocomial, etc.

3.4. Corpus Description

For this competition, [1] created a high quality dataset by having experts in microbiology
annotating it, following well defined annotation guidelines, together with a consistency analysis.
Furtherly, clinical cases resembling the content of clinical records from a variety of disciplines
were manually selected [1]. This all enabled the creation of a dataset that eases the task for the
models trained on it, thus it is expected that these are able to easily find patterns, specially in
tasks 1 and 3.

https://www.ncbi.nlm.nih.gov/taxonomy


4. System Description

4.1. Domain Adaptation for MarIA-Large

As stated previously, a domain adaptation strategy was used for MarIA-large [3]. There is
existing evidence, as shown in [13], that adapting the domain of a language model before
fine-tuning it to specific tasks of that domain can provide improvements. In [21], a domain
adaptation strategy for language models is described, together with its promising results. Due
to these works, it was decided to try the same with MarIA-large. Domain adaptation consists
on repeating the pre-training procedure with small adaptations as described in [21] to adjust
the model to texts of a specific domain.

For that, the Spanish Biomedical Crawled Corpus [22] was used, together with the texts
from the train split of the LivingNER corpus [1]. This is a collection of about 3M documents
crawled from more than 3,000 URLS belonging to Spanish biomedical and health domains. The
hyperparameters for training the model were inspired on those by the original RoBERTa-large
model [16], albeit they were adapted for a model that has already been sufficiently pre-trained,
following the methodology described in [21]. For the validation split in the domain adaptation
step, the validation data of the LivingNER corpus [1] was used.

Figure 1: Evolution of the Eval Loss during the Domain Adaptation Training for MarIA-large.



Hyperparameter Values

Learning Rate (1e-5, 7e-5, log)
Num Train Epochs {3, 5, 7, 10, 15, 20}
Train Batch Size {16, 32, 48, 64}

Warmup Steps Ratio (0.01, 0.10, log)
Weight Decay (1e-10, 0.3, log)
Adam Epsilon (1e-10, 1e-6, log)

Number of trials 200
Initial Random Trials 40

Table 1
Hyperparameter space for BETO, BERTIN, MarIA-base, BioMedical and BioClinical models on Task 1.

Figure 1 shows the evolution of the eval loss in the pre-training task, which is a good sign
since the validation split is formed of texts from the LivingNER challenge, therefore the model
is expected to be able to learn more easily the future tasks it is used for. The total improvement
is around 1.2 in terms of loss, related to MarIA-large [3]. This model is called from this point on
BioLarge, and has been made publicly available. The model was trained on a 24 GB NVIDIA
RTX 3090, and took around a week to complete the 14M texts training.

4.2. Models Training

4.2.1. Task 1: NER

For training the models, the Transformers library [23] is used, together with Datasets [24], both
from Huggingface. As several texts were too large to be processed at once due to the models’
maximum sequence length, 512 in all cases, they were processed with overflow. This way, more
than one example was created from each text, with a window of 128 overlapping tokens in each
case. This enabled the models to learn from labels at the end of the documents also. As will be
seen later, this is also crucial for prediction.

For optimizing the models, Optuna [25] was used. The hyperparameter setups are depicted
in tables 1 and 2. All data from the challenge, training and validation, was concatenated and
then a small random split was splitted for validation purposes. Models are evaluated over this
subset every epoch, stopping when they stop improving. Models are evaluated with tools from
the Scikit Learn library [26]. All predicted labels and all correct labels are concatenated into
a single array, thus not taking into account the texts to which each token belong. The metric
used for deciding the best model is F1-score macro [27].

4.2.2. Meta-Ensembling the predictions for Task 1

Generally, when more than one model is used for the same task, the final predictions are more
accurate. For this task, however, no real ensemble was proposed, due to the computing cost of
training such a model. Nevertheless, a strategy was followed that used the predictions of several
models and puts them together. Duplicate start offsets are removed, so that no duplicate entities
are finally submitted. The longest of the overlapped entities (predicted by more than one model

https://huggingface.co/avacaondata/roberta-large-biomedical


Hyperparameter Values

Learning Rate (5e-6, 7e-5, log)
Num Train Epochs {3, 5, 7, 10, 15, 20}
Train Batch Size {16, 32, 48, 64}

Warmup Steps Ratio (0.01, 0.10, log)
Weight Decay (1e-10, 0.3, log)
Adam Epsilon (1e-10, 1e-6, log)

Number of trials 200
Initial Random Trials 40

Table 2
Hyperparameter space for BioLarge and MarIA-large models on Task 2.

but with possible different ends) is chosen as the one to stay. Additionally, a filter was designed
to only leave in entities that were predicted by more than one model, which increases precision
but reduces recall. This filter is optional and takes place before the deduplication step.

4.2.3. Task 2

For task 2, an approach is proposed to augment the information for the models. As the task
consists on predicting the label for each entity, examples were created that were composed
of the past and post full sentences to the sentence in which an entity appears, along with the
current one being processed. The entity text is decorated with two <e> marks.

Additionally, to use all the information contained in the dataset, several binary classification
tasks were developed to assign the isN, isH, iscomplex tags in the LivingNER dataset. For the
binary classification tasks, the same preprocessing as for task 2 is used.

Far less resources were assigned to this task, so only BioLarge and MarIA-large were trained
for it, with a simpler hyperparameters setting, depicted in table 3. Apart from those language
models, and in order to compare the results of such a model against a classical Machine Learning
model, it was decided to use a TFIDF vectorization [28] together with a Linear Support Vector
Machine (SVM) [29]. The balanced weight for the loss function was used following the Scikit-
learn configuration, and the hyperparameter space for this pipeline (vectorizer and model) is
depicted in table 4

4.2.4. Task 3

In task 3, the classification subtasks are at document-level, but it is useful to take the entities
predicted into account, as the labels refer to them. For this reason, each label is highlighted in
the text in the form "label: HUMAN. <e> persona <e>". This way, it is intended to provide the
models with more information useful for classifying the text along the different axes.

Given that an English-translated version of the corpus was available, backtranslation [30]
was carried out, with the use of MarianMT from the University of Helsinki [31].

In this case, again only BioLarge and MarIA-large are used. The hyperparameter space is
the same as for task 2, shown in table 3. The second part of the task, consisting on choosing



Hyperparameter Values

Learning Rate (1e-5, 5e-5, log)
Num Train Epochs {5, 10, 15, 20}
Train Batch Size {16, 32, 48, 64}

Warmup Steps Ratio (0.01, 0.10, log)
Weight Decay (1e-2, 0.1, log)
Adam Epsilon (1e-10, 1e-6, log)

Number of trials 15
Initial Random Trials 8

Table 3
Hyperparameter space for BioLarge and MarIA-large models.

Hyperparameter Values

TFIDF min df {1, 2}
TFIDF max df (0.1, 1.0)

TFIDF analyzer {word, char, char wb}
TFIDF lowercase {True, False}

SVM alpha (10e-3, 10e3)
SVM max iter {100, 500, 1000}

SVM eta0 (10e-6, 10e-1)
SVM power t {0.1, 0.5, 2.0}

Table 4
Hyperparameter space for TFIDF and Linear SVM.

which tags support the evidence for the labels assigned, is done by naively choosing all the
codes detected.

As it is a sequence classification task, the aggregation of predictions is easier. BioLarge and
MarIA-large logits are concatenated and averaged before getting the final predicted labels,
therefore producing more reliable predictions.

5. Experiment and Evaluation Results

5.1. Results in the Validation Set for Task 1

5.1.1. Results in terms of token-to-token

As models are evaluated in terms of their token-to-token f1-macro score, it is interesting to
check how this differs from the official evaluation, that takes into account the full entities, and
the documents to which they belong. This can provide some insights into the inner workings
of the models and tokenizers depending on their domain adaptation.

Table 5 shows the results for each model in the validation set in terms of f1-macro [27],
in the token-to-token task, which does not take into account the full entities that systems
need to predict. The problem with this evaluation, although easier to implement for training



Table 5
F1-Score Results for LivingNER Eval MiniSplit in the Token-to-Token task.

Model F1 Rank

MarIA-large 0.98743 4
MarIA-base 0.98610 5

BETO 0.97824 6
BERTIN 0.92432 7

BioClinical 0.98910 1
BioMedical 0.98892 3
BioLarge 0.98899 2

Table 6
F1-Score Results for LivingNER Eval MiniSplit for the Real Entities task.

Model F1

MarIA-large 0.8769
MarIA-base 0.8827
BioClinical 0.9108
BioMedical 0.9142
BioLarge 0.9037

optimization purposes, is that it is dependent on each model’s tokenizer.

5.1.2. Results in terms of Real Entities for Task 1

For evaluating the best of these models in terms of the real entities predicted, the LivingNER
evaluation library [1] was used. In the prediction phase, we need to predict entities even when
they are more than 512 tokens away from the start of a text. For this reason, we use the same
strategy as in training, explained previously. This has an additional advantage, because for the
same token, several predictions can be obtained, if it is located in the overlapping sequences.

Furthermore, predicted labels are aggregated at the word level, and the final label is chosen
by majority. In this way, if the model has failed to predict one part of the word as an entity but
it has predicted correctly the other parts, it is selected as an entity. Words marked as entities
are then aggregated with neighbored words having the same label, obtaining grouped entities.

Entities are cleaned when they start with an space, as well as with "(" or ",". The same is done
with the end of the entities, replacing "(" by ")".

For this step, only the best performing models in the token-to-token task were used. These
are MarIA, large and base, BioLarge, BioClinical and BioMedical. Table 6 shows their results in
the minidev split used for validating the models’ training.

As can be seen in table 6, domain-specific models clearly outperform general models, as
BioMedical and BioClinical are the two best performing models. The only exception is BioLarge,
with is a previously general, domain-adapted model, and performs only slightly worse than
BioMedical and BioClinical. The difference between domain-adapted and domain-specific
models is greater in the Real Entities task. In fact, table 5 shows that BioLarge outperforms



Table 7
F1-Score Results for LivingNER Eval MiniSplit for Task 2.

Model Task F1

MarIA-large isN 0.6835
BioLarge isN 0.7839

MarIA-large isH 0.5974
BioLarge isH 0.6231

MarIA-large iscomplex 0.5857
BioLarge iscomplex 0.5775

MarIA-large NCBITax 0.0541
BioLarge NCBITax 0.0757

BioMedical on the token-to-token task.
This is arguably due to the domain specifity of the tokenizer. When general domain tokenizers

process biomedical texts, they tend to split entities into many tokens, as these are usually rare
in a general domain corpus. This makes the task harder for them, as they have more subtokens
to predict. Even when they predict a higher percentage of those tokens right, when aggregating
the predictions into real entities they have a handicap against the domain-specific tokenizers,
which is shown by the results in table 6.

5.2. Results in the Validation Set for Task 2

For task 2, several subtasks were needed, as explained previously. Table 7 shows the results in
terms of F1 macro [27] for BioLarge and MarIA-large, using again Scikit-Learn library [26].

Although results are very poor for the NCBITax task, that is the final objective of task 2, a
positive outcome of these results is that the domain adaptation carried out seems to be useful.
As in tables 5 and 6, in 7 BioLarge performs better than MarIA-large on most tasks. Moreover,
in those tasks in which it performs worse, the difference is not very significant.

When evaluated with the LivingNER Evaluation Library [1], BioLarge obtains 0.1555 f1 macro,
which can be improved to 0.1965 if all HUMAN entities are set the code 9606.

5.3. Results in the Validation Set for Task 3

The results for all subtasks of task 3 in the minidev split are shown in table 8. In this case, the
difference between BioLarge and MarIA-large is not so significant, in fact, in general terms
MarIA-large has better metrics, although the differences are very small, since their f1 scores are
very close to 1.

6. Official Test Results

For submitting the final predictions, systems had to evaluate over 13,472 clinical cases, as the
test and background splits were mixed to avoid manual annotation of samples. In this section,



Table 8
F1-Score Results for LivingNER Eval MiniSplit for the Task 3.

Model Task F1

MarIA-large isPet 0.9938
BioLarge isPet 0.9938

MarIA-large isAnimalInjury 0.9938
BioLarge isAnimalInjury 0.9877

MarIA-large isNosocomial 0.9938
BioLarge isNosocomial 0.9877

MarIA-large isFood 0.9938
BioLarge isFood 1.0

Table 9
F1-Score Results for LivingNER Test Set (Official Results).

Run Name Precision Recall F1-Macro

run1-BioLargeBioBaseBioClinicalNoFilter 0.9213 0.8637 0.8916
run2-BioMedicalBase 0.9334 0.8914 0.9119

run3-BioBaseBioClinicalFilter 0.9435 0.8685 0.9045
run4-BioLargeBioBaseBioClinicalFilter 0.9432 0.8373 0.8871

run5-BioBaseBioClinicalNoFilter 0.9228 0.908 0.9153

the official results from the competition are shown.

6.1. Results in the Test Set for Task 1

Table 9 shows the Precision, Recall and F1-Macro on the official test set for the different runs
submitted. Run 1 uses BioLarge, BioMedical and BioClinical models. The filter explained
previously when mixing their predictions was not used for that run; it was used though in run 4,
with the same models. Run 2 is the BioMedical model alone. Run 3 is composed of BioMedical
and BioClinical, with the filter activated, which increases the precision compared to the same
but without filter, which is run 5.

Results in table 9 show the same pattern observed in the minidev split, as domain-specific
models perform better, also when mixed, without using the domain-adapted model. This is
specially significant in terms of recall, which can be explained by the tokenizer issue described
previously, while less significant differences are appreciated in their precision scores.

The mean F1-score for this task was 0.8239, while the standard deviation was 0.2371, showing
a great difference between submissions. The results obtained by this work are clearly above the
mean, showing good performance for all the runs submitted.



Table 10
F1-Score Results for LivingNER Test Set (Official Results).

run name Precision Recall F1

run1-BioLarge 0.512 0.4799 0.4954
run2-svm 0.4545 0.426 0.4398

6.2. Results in the Test Set for Task 2

Due to the amount of texts to predict for submitting, the MarIA-large model could not be used,
as several models have to be used for each task 2 prediction (one for each binary task to get
tags like isH for the entities plus task 2 itself). For this reason, only BioLarge and TFIDF+SVM
where submitted. Table 10 shows the results for those models in terms of precision, recall and
f1-score for this task.

The mean f1-score for this task among all participants was 0.8267 with a standard deviation
of 0.1508, therefore it is clear that the results obtained by both BioLarge and SVM are deceptive,
with very low scores. More work should be put into this task to come closer to the performance
of other models presented at the workshop.

6.3. Results in the Test Set for Task 3

In the case of task 3, it is possible that some conceptual or coding mistake has been made, as all
results in terms of precision, recall and f1 are 0 except for the animal injuries, that is very close
to 0. The mean scores for this task are also close to 0, but the results of this work are not even
there.

7. Conclusions and Future Work

In this work different solutions were presented for the tasks of the LivingNER challenge, with
more focus on the NER task, in which official results show that all the systems presented
perform better than average, around 0.91 vs 0.82. The results for tasks 2 and 3 are below average,
showing that more effort should be put into those tasks to get at least an average performance.

Specifically, clearly understanding the nature of the tasks at hand could help, as it is possible
that some proposed solutions do not perfectly match the nature of the data. A clear conclusion
in this regard is that, specifically when the task is very specific to a domain, it is crucial to
understand the tasks and challenges of that domain, which is left as future work.

Additionally, a new biomedical domain-adapted model was trained and released: BioLarge. It
was trained using MarIA-large model and a biomedical corpus in Spanish. Results in evaluation,
in all tasks and subtasks, show that BioLarge clearly outperforms MarIA-large on almost all
tasks, thus proving the advantages of adapting a model to a domain before fine-tuning. However,
BioClinical and BioMedical outperform BioLarge on the real entities task, with similar results in
the token-to-token task.

This can be partially explained by the domain fit of their tokenizers, which has a crucial
impact in terms of grouping subwords and group of words into entities. The vocabulary of



general domain tokenizers does not include many of the terms specific to a domain, which is
a handicap for general domain models, that must predict more tokens right to have the same
number of complete words correct.

This work provided a complete review of openly available language models in Spanish for
different tasks, increasing the existing knowledge about their general performance. Results in
the NER task exhibit a high correspondence to those of [3] [4]. However, in order to have a
complete assessment, it would be necessary to include in the comparison process the BioMedical
and BioClinical models in tasks 2 and 3.
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