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Abstract
This manuscript describes the low-dimensional stacking model approach used to profile users to solve
gender and profession identification and binary and multiclass ideology prediction tasks. We developed
these models in the scope of the PoliticEs: Spanish Author Profiling for Political Ideology carried out at
IberLEF@SEPLN 2022. Our methodology stacks several low-dimensional representations that can be
used to visualize the dataset and as the input dataset for a classifier. While the results were late in the
challenge, our final evaluations achieved high performances in the training and test partitions. We believe
they are promising approaches on the road to creating transparent and competitive user profiling models.
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1. Introduction

The task of modeling users employing their published messages in a social network is known as
author profiling. The profiling model can be used to determine similarities and compute groups
that help to know better characteristics like social demographic markers (gender, age range, origin,
education level), religion, and political parties, among others, see [1]. With some associated error,
user profiling models can predict these traits for never-seen individuals and groups.

While it is crucial to develop models with low associated errors, it is also desirable that a
profiling model can help understand the knowledge dataset, i.e., human-labeled data, and why a
model makes some decisions. In this sense, explainability is a major goal of a model.

1.1. Related work

Author profiling has been popular because of the nature of social networks and its applications in
forensics (language as evidence), security, and marketing, for instance, to know the demographics
of people that like or dislike their products [2]. In this sense, several competitions have been run
contests for author profiling tasks, such as a series of PAN@CLEF and FIRE [2, 1, 3, 4, 5]. These
forums address different problems such as age, gender, language variety identification, personality
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recognition in several languages and genres, including blogs, reviews, social media, and Twitter,
among others; MEX-A3T (type of occupation and place of residence) [6], IberLEF@SEPLN
2022 (gender, profession, and political ideology) [7], and others.

Various methods have been proposed, typically using features based on content and style like
part-of-Speech, stopwords, punctuation marks frequency, and length of the used words, among
others. For example, Benzel [8] represents an author style as a vector of word sequences and
their frequencies; word frequencies analysis in political speeches identifies terms that evidence an
author’s style [9]. Others use a deeper analysis considering syntactic-based [10], discourse-based
[11], and topic-based [12] features. In text classification tasks, high-dimensional data may raise
issues for the performance of systems. Representing data in low-dimensional spaces can reduce
data complexity while maintaining similar information. In this sense, LSA-based approaches
[13] are applied, finding the best parameters based on character n-gram lengths and local and
global weighting schemes. In [14], documents are represented using stylistic-discriminative and
thematic-descriptive high-level features through dimensionality reduction applying LSA.

1.2. The PoliticES task at IberLEF@SEPLN 2022

The PoliticES training corpus consist of 37,560 tweets in Spanish from 312 authors (∼ 120 mes-
sages per author) [15], where each author is labeled with its profession (journalist or politician),
gender (male or female), binary political ideology (left-right) and multiclass political ideology
(left, moderate-left, moderate-right, right).

The training dataset is highly imbalanced for the profession class; there is 80.3% vs. 19.7%
between politicians and journalists. The proportion is 43.5% vs. 56.5% regarding gender, i.e., a
slight imbalance between female and male categories, and the same applies for binary ideology
with 56.9% vs. 43.1% for left and right, respectively. There are 24.3%, 32.6%, 30%, and 13.1%
between left, moderate left, moderate right, and right regarding multiclass political ideology.

We are asked to create models to predict these labels for a test dataset, i.e., a list of 150 users
(120 messages per user); the label distribution of the test dataset is unknown.

1.3. Overview

Our manuscript is organized as follows. The current section is dedicated to introducing the task
and briefly reviewing the state-of-the-art. Section 2 introduces our approach for representing,
visualizing, and predicting users’ political traits based on their messages written on social media.
The experimental results are presented and discussed in Section 3. The manuscript is summarized
and concluded in Section 4. We also added an appendix section with visualizations of the
subtasks.

2. Our approach

Our approach has three main modules: i) the vector space model, ii) non-linear dimensional
reduction and iii) the supervised learning stages.

Firstly, the vector space is created through preprocessing, tokenizing and weighting terms
to obtain a vector space model based on entropy weighting; this vector space has very high



dimensionality. The next module uses the non-linear method Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP) [16] to produce a low dimensional vector space
(UMAP model). We produce three-dimensional projections to visualize the datasets but also,
due to their low dimension, we use these projections as the input of (non-linear) classifiers (third
module).

The rest of this section details our approach, mainly the training stage.

2.1. Module 1: preprocessing and vectorization

The vector space model is created using a bag of words. On the one hand, we normalize and
apply several preprocessing functions. More detailed, messages were lowercased, blank spaces
were normalized to a single space, and diacritic marks were removed. Token numbers 1-9 were
preserved to capture important information on small numbers, while other numbers were replaced
by 0 (to reduce dimensionality). Secondly, users and URLs were replaced by a special token, i.e.,
_usr and _url, respectively. In particular, we also normalize several kinds of big laughs to one
of the following forms jaja, jiji, jeje, mostly based on how these expressions were written.
Punctuation symbols were kept.

Regarding tokenization, we mix three kinds of tokens: unigrams, bigrams, and character
q-grams of size four. The tokens were preserved in our vocabulary 𝑉 if they appeared at least ten
times in the training dataset. This procedure outputs a vocabulary of 764k unique tokens for the
IberLEF 2022 PoliticEs task.

2.1.1. Weighting tokens

We use a global weighting scheme based on the entropy of the empirical distribution of each term
on the classes [17]. The weighting expression for the token 𝑡 is as follows:

weight(𝑡) = 1− 1

log#classes

∑︁
𝑐∈classes

𝑝𝑡,𝑐 log
1

𝑝𝑡,𝑐
,

where 𝑝𝑡,𝑐 is the probability of token 𝑡 in class 𝑐 estimated based on users as described in §2.1.2.
The empirical distribution is estimated from the train set. Each weight value varies from 0 to 1.
Weights close to zero mean that its entropy is high, i.e., the token has no discrimination power;
weights close to 1 are highly discriminating tokens.

2.1.2. User modeling

We represent each user as its collection of messages; we applied our preprocessing step and
tokenization to these messages to create a large bag of words. This bag of words is weighted to
create a high dimensional vector where each component corresponds to a token entry 𝑡 in the
vocabulary 𝑉 . The component corresponding to 𝑡 is valued as weight(𝑡) or zero, not represented
if the token 𝑡 does not appear in that particular user message. Each user is then represented by a
large sparse vector normalized to have a unitary norm.



2.2. Module 2: Non-linear dimensional reduction

Our initial vector space has a very high dimensionality; this issue imposes problems for classifiers
that work on each component, like decision trees or neural networks. Other methods workings on
kernel functions are limited to linear approaches since the number of components significantly
increases the training cost. Additionally, the large vocabularies also degrade the explainability
obtained by bag-of-words approaches.

Therefore, we created low-dimensional projections with two objects in mind. On the one hand,
if the projection dimension is two or three, we provide a simple way of visualizing a dataset and
its labels. A latent cluster structure can also arise. Modern visualization tools can help discover
the properties of each group with minor effort. On the other hand, the lower-dimensional vector
database can be approached by component-based classifiers, or in general, with non-linear models
due to its lower cost.

As commented above, we use the UMAP non-linear dimensional reduction method, which
receives a graph of all 𝑘 nearest neighbors in a collection and performs the projection trying to
preserve the topology of the input graph. The graph is created on vector databases described in
Module 1, which also uses the cosine between vector angles as a similarity function.

The number of neighbors 𝑘 take values between one and the number of users minus one; few
neighbors indicate that we are interested in the dataset’s local structure and high values on the
global one. We use 𝑘 = 40 to preserve both the local and the global structure partially. We fixed
the UMAP method to create three-dimensional embeddings using spectral layout for embedding
initialization and then optimized with 100 epochs and three negative samples per point (user
vector).

2.3. Module 3: Supervised approach

We computed a UMAP model for each subtask (i.e., gender, profession, binary and multiclass
ideology). Each model produces a three-dimensional embedding of the dataset; we concatenate
each embedding such that a 12-dimensional vector represents each user. Each vector was
standardized before the actual concatenation (normalized to have zero mean and unit variance) to
reduce scaling problems. This 12-dimension vector is our stacked final representation that can be
used as input for any classifier.

Now that our representation is defined, we can observe that the dimension is quite low, and
therefore it is possible to create complex models with moderate time costs. We can also afford to
optimize the model’s hyper-parameters relatively fast. For this objective, we used the Grid Search
model selection with a 𝑘-folds cross-validation (using five stratified folds and three repetitions) to
evaluate the performance of the best model optimizing for the macro F1 score. In particular, we
used the GridSearchCV sklearn’s class for this procedure.

We consider SVM classifiers with linear and non-linear kernels and the GradientBoosting
classifier (decision-tree ensemble with boosting training) as classifiers, available in the sklearn
library [18]. We perform a model selection procedure for tuning each classifier. Note that even
when we use the same 12-dimensional vectors as input, we produce a model for each subtask
(different labels).



2.4. Prediction stage

The prediction stage applies similar steps to training but uses previously learned models. For
instance, it uses the vocabulary previously created to vectorize the test dataset and the already
learned UMAP model to project this testing database instead of learning a new model. For
each task, the classifier is then asked to predict with the 12-dimensional vectors produced in
previous modules (vector standardization should be performed using the median and variance of
the training set).

3. Experimental results

This section presents the experimental results of our approach for the IberLEF 2022 PoliticEs
task. Source code is available at https://github.com/hiramcp/PoliticEs2022.

We perform a Grid Search model selection using five-fold stratified cross-validation, max-
imizing macro-F1 score as objective function (averaged on three repetitions). We consider
Gradient Boosting-GB, RBF SVM, and Linear SVM classifiers. We evaluated two distinct user
embedding representations regarding embeddings: a same-task 3-dimension vector or an all-tasks
stacked embedding of 12-dimensions. Finally, we also compare the effect of using standardized
embeddings.

We ran twelve different experiments for different combinations of classifiers, user embedding
representations, and vector standardization to perform the model evaluation for each subtask as
described in §2.3. The results are shown in Table 1.

Classifier Dim. Standard-
ized

Model sel.
time

F1 Gender F1
Profession

F1 Ideology
Binary

F1 Ideology
Multiclass

Avg.
Macro F1

GB 12-dim. No 4621s 0.987±0.012 0.992±0.012 0.997±0.007 0.957± 0.03 0.9832 (4)
Yes 5711s 0.987±0.012 0.993±0.011 0.997±0.007 0.958± 0.02 0.9837 (2)

3-dim. No 3121s 0.987±0.012 0.993±0.011 0.997±0.007 0.953±0.016 0.9826 (6)
Yes 6429s 0.987±0.012 0.992±0.012 0.997±0.007 0.954±0.016 0.9825 (7)

SVM 12-dim. No 47s 0.99± 0.008 0.992±0.012 0.997±0.007 0.956±0.026 0.9838 (1)
RBF Yes 10s 0.99± 0.008 0.990±0.012 0.997±0.007 0.95± 0.028 0.9817 (8)

3-dim. No 9s 0.988±0.009 0.990±0.012 0.997±0.007 0.957± 0.02 0.9830 (5)
Yes 8s 0.99± 0.008 0.990±0.012 0.997±0.007 0.957± 0.02 0.9835 (3)

SVM 12-dim. No 35s 0.99± 0.008 0.990±0.012 0.997±0.007 0.947±0.031 0.9810 (10)
Linear Yes 32s 0.988±0.011 0.990±0.012 0.997±0.007 0.951±0.028 0.9815 (9)

3-dim. No 31s 0.99± 0.008 0.990±0.012 0.997±0.007 0.938±0.028 0.9787 (12)
Yes 32s 0.99± 0.008 0.990±0.012 0.997±0.007 0.944±0.024 0.9802 (11)

Table 1: Performance for the machine learning models using the cross-validation partitions; the
higher, the better. Scores are presented as their average and standard deviation (using
all folds for these statistics). Best scores per classifier are in bold and ranked inside the
parenthesis.

Please observe how almost configurations perform the same for binary tasks, i.e., gender,
profession, and ideology; the multiclass ideology is more diverse in this sense. When we observe
the macro averaged F1 score, we can also observe that all classifiers achieve scores beyond
0.97 in some configurations and that RBF SVM achieves best performing configurations. We



can also highlight the effect of the 12-dimensional stacked embeddings and the effect of the
standardization on the score. The Linear SVM also achieves high performance; however, it has
a lower performance regarding multiclass ideology, but it remains competitive and fast. We
need to clarify that the linear model has a slower model selection just because we consider
more hyperparameters than the RBF motivated by this speed. However, the Gradient Boosting
classifier performs exceptionally well with a high cost in the model selection stage. Although
training time varies according to the dataset and task domain, we can observe that our stacked
final representation allows us to create complex models with moderate time costs. The initial text
vectorization and the UMAP model require less than ten seconds and are static across evaluations.

Subtask Model Hyperparameters

Gender Gradient Boosting learning rate: 0.01, max depth: 3,
estimators: 1000, subsample: 0.5

Linear SVM C: 1, dual: false, max iter: 5000,
penalty: l1, random state: 0, tol: 2

RBF SVM C: 10, gamma: 0.01

Profession Gradient Boosting learning rate: 0.1, max depth: 3,
estimators: 100, subsample: 0.7

Linear SVM C: 0.1, dual: false, max iter: 5000,
penalty: l1, random state: 0, tol: 2

RBF SVM C: 1, gamma: 0.1

Binary Ideology Gradient Boosting learning rate: 0.001, max depth: 3,
estimators: 1000, subsample: 0.5

Linear SVM C: 0.0005, dual: false, max iter:
5000, penalty: l2, random state: 0,
tol: 2

RBF SVM C: 0.1, gamma: 0.01

Multiclass Ideology Gradient Boosting learning rate: 0.1, max depth: 9,
estimators: 1000, subsample: 0.5

Linear SVM C: 1, dual: false, max iter: 5000,
penalty: l1, random state: 42, tol:
0.4

RBF SVM C: 1000, gamma: 0.001

Table 2: The best hyperparameters for the machine learning models for each subtask.

We chose the parameter combination in each subtask that had the highest macro F1 score
during the cross-validation for the final selection. Thus, the final models were fitted on the entire
training set. The best hyperparameters are summarized in Table 2.

Table 3 lists the summary of final scores for each experiment using the supplied test corpus.
While the results were late in the challenge, our final evaluation achieved high performance
with the test partition. Note that our stacking approach produces the highest performance
configurations using standardization of embeddings. Linear SVM generalizes the better, but



suffers on profession on 3-dim vectors. Note that RBF achieves a better macro-F1 score on
12-dim and standardized vectors. In the rest of this section, we will show some of the internal
functionality of our approach.

Classifier Embedding
Type

Standard-
ized Vector

F1 Gender F1
Profession

F1 Ideology
Binary

F1 Ideology
Multiclass

Avg. Macro
F1

GB 12-dim. No 0.7127 0.6111 0.9515 0.6216 0.7242 (9)
Yes 0.7260 0.8333 0.9515 0.7162 0.8067 (5)

3-dim. No 0.7260 0.8333 0.9515 0.6029 0.7784 (7)
Yes 0.7260 0.8333 0.9515 0.7299 0.8102 (4)

RBF SVM 12-dim. No 0.7214 0.6026 0.9515 0.6259 0.7254 (8)
Yes 0.7463 0.8333 0.9613 0.8306 0.8429 (1)

3-dim. No 0.6992 0.4324 0.6546 0.7566 0.6357 (12)
Yes 0.7552 0.4324 0.9416 0.7605 0.7224 (10)

Linear 12-dim. No 0.7390 0.8333 0.9515 0.6580 0.7954 (6)
SVM Yes 0.7428 0.8391 0.9613 0.7802 0.8308 (2)

3-dim. No 0.7517 0.8333 0.9515 0.7319 0.8171 (3)
Yes 0.7517 0.1923 0.9229 0.6953 0.6406 (11)

Table 3: Final results achieved with the test gold dataset. The higher, the better. Best scores per
classifier are in bold and ranked globally inside the parenthesis.

3.1. Analysis of low-dimensional stacking models

The results in Table 3 show that either the three-dimensional embedding (one model for each
subtask) or the 12-dimensional stacked representation build competitive machine learning models
in a timely fashion (see Table 1 for details).

Gradient boosting is a kind of ensemble of decision trees that access attributes directly instead
of accessing data through a kernel function. An essential feature of GB is that it naturally
measures the attribute importance useful to know the contribution of each attribute in the machine
learning model. The best GB model was built with a three-dimensional standard user vector at
a relatively low computational cost. In Figure 1 we can see that a single dimension is the main
contributor to each predictive model in three of four subtasks.

Linear Support Vector Machine creates a hyperplane that separates data into classes as best as
possible. Figures 1e, 1f, 1g, and 1h expose the coefficients of the linear model (weights); it is
possible to interpret them as an attractor to some side of the hyperplane and low weights as a
reduction of the importance of the attribute. We can observe that weights are higher for those
components related to the subtask being tackled. Also, most attributes have a weight different
from zero, contributing to the entire decision.

An SVM model achieved the best performance with an RBF kernel that uses radial basis
functions to separate data by hyper-spheres quickly. This model was built with a 12-dimension
standardized user vector.

Appendix A illustrates the visualizations of both the projected train and test data, suggesting
that the emerging data groups contribute to building models in a timely manner.
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Figure 1: Feature importance and weights for the 3-dimensional Gradient boosting models and
the 12-dimensional (stacked representation) Linear SVM models.



3.2. Experimental setup

Our experiments were run in a four core Laptop with 32 GB of RAM, more detailed, a Intel Core
i7-1165G7 @ 2.80GHz using the Windows 10 operating system. We compute the vector space
using the TextSearch.jl Julia package,1 which also implements all preprocessing functions,
tokenizers, and the entropy-based weighting scheme. The UMAP projections were computed
with the SimSearchManifoldLearning.jl Julia package.2 The model selection and
classification was performed with the Python scikit-learn package [18].

4. Conclusions

This paper proposes Low-dimensional Stacking Model to tackle the Political Ideology Profiling
challenge at IberLEF@SEPLN 2022. Our approach was designed to create both transparent and
competitive user profiling models.

Due to confusion about deadlines, most of our results were not registered on the final leader-
board. The average Macro F1 score reported was 0.7242 and ranked in the fifteenth position.
While the results were late in the challenge, our final evaluations achieved high performances in
the test partition, using the same evaluation system, with an average Macro F1 score of 0.8429
that could be ranked the fifth place on the competition’s scoring chart.

Additionally, our approach achieves a competitive trade-off between performance, explainabil-
ity, and speed thanks to the low dimensional representation. We used this characteristic to apply
the model selection procedure to improve our predictions and learn how models use the available
features. Practitioners can use these characteristics to understand more about the studied problem.
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A. Visualization of the training and test partitions for all
subtasks

Figure 2 illustrates the low dimensional projections created with the UMAP algorithm using the
preprocessing, tokenization, and weighting schemes presented in the manuscript as input. On the
left column, we can observe the projections of training datasets. Here we can observe a nearly
perfect separation of the datasets, which can also be observed in our Table 1. Note that multiclass
ideology is a bit more complex, but it is easy to separate; here, we can observe how related classes
share boundaries and how moderate ideologies touch finely. In the right column, we observe
the actual projection of the testing set; here, we can observe some of the difficulties our models
found to separate classes. We can observe multiclass ideology. Note that we found more crossing
examples, where we can observe why both linear and non-linear models work relatively well,
and found several issues with generalizations. Something similar is illustrated for gender and
profession projections where examples cross boundaries.
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(a) Gender training dataset
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(b) Gender test dataset
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(c) Profession training dataset

−2 0 2 4 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
profession

journalist
politician

X

Y

(d) Profession test dataset
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(e) Ideology training dataset
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(f) Ideology test dataset
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(g) Multiclass ideology training dataset
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(h) Multiclass ideology test dataset

Figure 2: Two dimensional UMAP projection of our high dimensional user representation
colorized by label.
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