
Querying Data Exchange Settings Beyond Positive
Queries
Marco Calautti1, Sergio Greco2, Cristian Molinaro2 and Irina Trubitsyna2

1Department of Information Engineering and Computer Science, University of Trento, Italy
2Department of Computer Science, Modeling, Electronics and Systems Engineering, University of Calabria, Italy

Abstract
Data exchange, the problem of transferring data from a source schema to a target schema, has been studied
for several years. The semantics of answering positive queries over the target schema has been defined
in early works, but little attention has been paid to more general queries. A few semantics proposals for
more general queries exist but they either do not properly extend the standard semantics under positive
queries, giving rise to counterintuitive answers, or they make query answering undecidable even for the
most important data exchange settings, e.g., with weakly-acyclic dependencies.

The goal of this paper is to provide a new semantics for data exchange that is able to deal with general
queries. At the same time, we want our semantics to coincide with the classical one when focusing on
positive queries, and to not trade-off too much in terms of complexity of query answering. We show that
query answering is undecidable in general under the new semantics, but it is coNP-complete when the
dependencies are weakly-acyclic. Moreover, in the latter case, we show that our semantics allow for
the construction of a representative target instance, similar in spirit to a universal solution, that can be
exploited for computing approximate answers, instead of exact ones.
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1. Introduction

Data exchange is the problem of transferring data from a source schema to a target schema,
where the transfer process is usually described via so-called schema mappings: a set of logical
assertions specifying how the data should be moved and restructured. Furthermore, the target
schema may have its own constraints to be satisfied. Schema mappings and target constraints
are usually encoded via standard database dependencies: tuple-generating dependencies (TGDs)
and equality-generating dependencies (EGDs). Thus, given an instance 𝐼 over the source schema
S, the goal is to materialize an instance 𝐽 over the target schema T, called solution, in such a
way that 𝐼 and 𝐽 together satisfy the dependencies.

Since multiple solutions might exist, a precise semantics for answering queries is needed. By
now, the certain answers semantics is the most accepted one. The certain answers to a query
is the set of all tuples that are answers to the query in every solution of the data exchange
setting [1]. Although it has been formally shown that for positive queries (e.g., conjunctive
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queries) the notion of solution of [1] is the right one to use, for more general queries such
solutions become inappropriate, as they easily lead to counterintuitive results.

Example 1. Consider a data exchange setting denoted by 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, where S is the
source schema, storing orders about products in a binary relation Ord, where the first argument
is the id of the order, and the second one specifies whether the order has been paid. Moreover, T
is the target schema having unary relations AllOrd and Paid, storing all orders and paid orders,
respectively. The schema mapping is described by the source-to-target TGDs Σ𝑠𝑡:

𝜌1 = ∀𝑥, 𝑦 Ord(𝑥, 𝑦) → AllOrd(𝑥), 𝜌2 = ∀𝑥 Ord(𝑥, yes) → Paid(𝑥).

In this example, we assume that the set of target dependencies Σ𝑡 is empty. The above schema
mapping states that all orders in the source schema must be copied to the AllOrd relation, and all
the paid orders must be copied to the Paid relation. Assume the source instance is as follows:

𝐼 = {Ord(1, yes),Ord(2, no)},

and assume we want to pose the query 𝑄 over the target schema asking for all the unpaid orders.
This can be written as the following FO query:

𝑄(𝑥) = AllOrd(𝑥) ∧ ¬Paid(𝑥).

One would expect the answer to be {2}, since the schema mapping above is simply copying
𝐼 to the target schema, and hence 𝐽 = {AllOrd(1),AllOrd(2),Paid(1)} should be the only
candidate solution. However, under the classical notion of solution of [1], also the instance 𝐽 ′ =
{AllOrd(1),AllOrd(2),Paid(1),Paid(2)} is a solution (since 𝐼 ∪ 𝐽 ′ satisfies the TGDs), and every
order in 𝐽 ′ is paid. Hence, the certain answers to 𝑄, which are computed as the intersection of the
answers over all solutions, are empty. □

The issue above arises because the classical notion of solution is too permissive, in that it
allows the existence of facts in a solution that have no support from the source (e.g., Paid(2) in
the solution 𝐽 ′ of Example 1 above).

Some efforts exist in the literature that provide alternative notions of solutions for which
certain answers to general queries become more meaningful. Prime examples are the works
of [2] and [3]. In both approaches, the certain answers in the example above are {2}. However,
also the works above have their own drawbacks. In [2], so-called CWA-solutions are introduced,
which are a subset of the classical solutions with some restrictions. However, these restrictions
are so severe that certain answers over such solutions fail to capture certain answers over
classical solutions, when focusing on positive queries. Moreover, even when focusing on more
general queries, answers can still be counterintuitive, as shown in the following example.

Example 2. Consider the data exchange setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, where S stores employees
of a company in the unary relation Emp. For some employees, the city they live in is known,
and it is stored in the binary relation KnownC. The target schema T contains the binary relation
EmpC, storing employees and the cities they live in, and the binary relation SameC, storing pairs
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of employees living in the same city. The sets Σ𝑠𝑡 = {𝜌1, 𝜌2} and Σ𝑡 = {𝜌3, 𝜂} are as follows (for
simplicity, we omit the universal quantifiers):

𝜌1 = Emp(𝑥) → ∃𝑧 EmpC(𝑥, 𝑧), 𝜌3 = EmpC(𝑥, 𝑦),EmpC(𝑥′, 𝑦) → SameC(𝑥, 𝑥′),
𝜌2 = KnownC(𝑥, 𝑦) → EmpC(𝑥, 𝑦), 𝜂 = EmpC(𝑥, 𝑦),EmpC(𝑥, 𝑧) → 𝑦 = 𝑧.

The above setting copies employees from the source to the target. The TGD 𝜌1 states that every
copied employee 𝑥 must have some city 𝑧 associated, whereas 𝜌2 states that when the city 𝑦 of
an employee 𝑥 is known, this should be copied as well. Moreover, the target schema requires that
employees living in the same city should be stored in relation SameC (𝜌3), and each employee must
live in only one city (𝜂). Assume the source instance is

𝐼 = {Emp(john),Emp(mary),KnownC(john,miami)},

and assume our query𝑄 asks for all pairs of employees living in different cities. This can be written
as:

𝑄(𝑥, 𝑥′) = ∃𝑦∃𝑦′ EmpC(𝑥, 𝑦) ∧ EmpC(𝑥′, 𝑦′) ∧ ¬SameC(𝑥, 𝑥′).

One would expect that the set of certain answers to 𝑄 is empty, since it is not certain that john and
mary live in different cities. However, no CWA-solution admits mary and john to live in the same
city, and thus (john,mary) is a certain answer under the CWA-solution-based semantics. □

The approach of [3], where the notion of GCWA*-solution is presented, seems to be the
most promising one. For positive queries, certain answers w.r.t. GCWA*-solutions coincide
with certain answers w.r.t. classical solutions. Moreover, GCWA*-solutions solve some other
limitations of CWA-solutions, like the one discussed in Example 2. However, the practical
applicability of this semantics is somehow limited, since the (rather involved) construction
of GCWA*-solutions easily makes certain query answering undecidable, even for very simple
settings with only two source-to-target TGDs, and no target dependencies.

Other semantics have been proposed in [4], but they are only defined for data exchange
settings without target dependencies. Hence, one needs to assume that the target schema has
no dependencies at all.

As a final remark, in a data exchange setting, it is usually assumed that the source is not
always available, and thus the materialization of a single solution, over which certain answers
can be computed, is a crucial requirement. This is especially true when using weakly-acyclic
dependencies, which form the standard language for data exchange [1]. However, none of the
semantics above allow for the materialization of such a special solution, for weakly-acyclic
settings.

In this paper, we propose a new notion of data exchange solution, dubbed supported solution,
which allows us to deal with general queries, but at the same time is suitable for practical
applications. That is, we show that certain answers under supported solutions naturally gener-
alize certain answers under classical solutions, when focusing on positive queries. Moreover,
such solutions do not make any assumption on how values associated to existential variables
compare to other values, hence solving issues like the ones of Example 2.

As expected, there is a price to pay to get meaningful answers over general queries: we show
that certain answering is undecidable for general settings, but becomes coNP-complete when
we focus on weakly-acyclic dependencies.
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Morever, we also show that for weakly-acyclic settings, we can construct a target instance in
polynomial time, which is similar in spirit to a universal solution of [1], that can be exploited for
computing exact answers, for positive queries, and approximate answers, for general FO queries,
in polynomial time. The latter is achieved by adapting existing approximation algorithms
originally defined for querying incomplete databases.

2. Preliminaries

Basics. We consider pairwise disjoint countably infinite sets Const, Var, Null of constants,
variables, and labeled nulls. Nulls are denoted by the symbol ⊥, possibly subscripted. A term
is a constant, a variable, or a null. We additionally assume the existence of countably infinite
set Rel of relations, disjoint from the previous ones. A relation 𝑅 has an arity, denoted 𝑎𝑟(𝑅),
which is a non-negative integer. We also use𝑅/𝑛 to say that𝑅 is a relation of arity 𝑛. A schema
is a set of relations. A position is an expression of the form 𝑅[𝑖], where 𝑅 is a relation and
𝑖 ∈ {1, . . . , 𝑎𝑟(𝑅)}.

An atom 𝛼 (over a schema S) is of the form 𝑅(t), where 𝑅 is an 𝑛-ary relation (of S) and t
is a tuple of terms of length 𝑛. We use t[𝑖] to denote the 𝑖-th term in t, for 𝑖 ∈ {1, . . . , 𝑛}. An
atom without variables is a fact. An instance 𝐼 (over a schema S) is a finite set of facts (over S).
A database 𝐷 is an instance without nulls. For a set of atoms 𝐴, dom(𝐴) is the set of all terms
in 𝐴, whereas var(𝐴) is the set dom(𝐴) ∩ Var. A homomorphism from a set of atoms 𝐴 to a set
of atoms 𝐵 is a function ℎ : dom(𝐴) → dom(𝐵) that is the identity on Const, and such that
for each atom 𝑅(t) = 𝑅(𝑡1, . . . , 𝑡𝑛) ∈ 𝐴, 𝑅(ℎ(t)) = 𝑅(ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) ∈ 𝐵.

Dependencies. A tuple-generating dependency (TGD) 𝜌 (over a schema S) is a first-order
formula of the form ∀x,y𝜙(x,y) → ∃z𝜓(y, z), where x,y, z are disjoint tuples of variables,
and 𝜙 and 𝜓 are conjunctions of atoms (over S) without nulls, and over the variables in x,y and
y, z respectively. The body of 𝜌, denoted body(𝜌), is 𝜙(x,y), whereas the head of 𝜌, denoted
head(𝜌), is 𝜓(y, z). We use exvar(𝜌) to denote the tuple z and fr(𝜌) to denote the tuple y,
also called the frontier of 𝜌. An equality-generating dependency (EGD) 𝜂 (over a schema S)
is a first-order formula of the form ∀x𝜙(x) → 𝑥 = 𝑦, where x is a tuple of variables, 𝜙 a
conjunction of atoms (over S) without nulls, and over x, and 𝑥, 𝑦 ∈ x. The body of 𝜂, denoted
body(𝜂), is 𝜙(x), and the head of 𝜂, denoted head(𝜂), is the equality 𝑥 = 𝑦. For clarity, we will
omit the universal quantifiers in front of dependencies and replace the conjunction symbol ∧
with a comma. Moreover, with a slight abuse of notation, we sometimes treat a conjunction
of atoms as the set of its atoms. Consider an instance 𝐼 . We say that 𝐼 satisfies a TGD 𝜌 if
for every homomorphism ℎ from body(𝜌) to 𝐼 , there is an extension ℎ′ of ℎ such that ℎ′ is a
homomorphism from head(𝜌) to 𝐼 . We say that 𝐼 satisfies an EGD 𝜂 = 𝜙(x) → 𝑥 = 𝑦, if for
every homomorphism ℎ from body(𝜂) to 𝐼 , ℎ(𝑥) = ℎ(𝑦). 𝐼 satisfies a set of TGDs and EGDs Σ
if 𝐼 satisfies every TGD and EGD in Σ.

Queries. A query 𝑄(x), with free variables x, is a first-order (FO) formula 𝜙(x) with free
variables x. The arity of 𝑄(x), denoted 𝑎𝑟(𝑄), is the number |x|. The output of 𝑄(x) over an
instance 𝐼 , denoted 𝑄(𝐼), is the set {t ∈ dom(𝐼)|x| | 𝐼 |= 𝜙(t)}, where |= is FO entailment.1 A

1We assume active domain semantics, i.e., quantifiers range over the terms in the given instance.
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query is Boolean if it has arity 0, in which case its output over an instance is either the empty
set or the empty tuple ⟨⟩. A conjunctive query (CQ) is a query of the form 𝑄(x) = ∃y𝜙(x,y),
where 𝜙(x,y) is a conjunction of atoms over x and y. A union of conjunctive queries (UCQ) is a
query of the form 𝑄(x) =

⋁︀𝑛
𝑖=1𝑄𝑖(x), where each 𝑄𝑖(x) is a CQ. We also refer to UCQs as

positive queries.
Data Exchange Settings. A data exchange setting (or simply setting) is a tuple of the form 𝒮 =
⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, where S,T are disjoint schemas, called source and target schema, respectively;
Σ𝑠𝑡 is a finite set of TGDs, called the source-to-target TGDs of 𝒮 , such that for each TGD 𝜌 ∈ Σ𝑠𝑡,
body(𝜌) is over S and head(𝜌) is over T; Σ𝑡 is a finite set of TGDs and EGDs over T, called the
target dependencies of 𝒮 . We say 𝒮 is TGD-only if Σ𝑡 contains only TGDs.

A source (resp., target) instance of 𝒮 is an instance 𝐼 over S (resp., T). We assume that source
instances are databases, i.e., they do not contain nulls. Given a source instance 𝐼 of 𝒮 , a solution
of 𝐼 w.r.t. 𝒮 is a target instance 𝐽 of 𝒮 such that 𝐼 ∪ 𝐽 satisfies Σ𝑠𝑡 and 𝐽 satisfies Σ𝑡 [1]. We
use sol(𝐼,𝒮) to denote the set of all solutions of 𝐼 w.r.t. 𝒮 .

Given a data exchange setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, a source instance 𝐼 of 𝒮 and a query 𝑄
over T, the certain answers to 𝑄 over 𝐼 w.r.t. 𝒮 is the set cert𝒮(𝐼,𝑄) =

⋂︀
𝐽∈sol(𝐼,𝒮)𝑄(𝐽).

To distinguish between the notion of solution (resp., certain answers) above and the one
defined in Section 3, we will refer to the former as classical.

A universal solution of 𝐼 w.r.t. 𝒮 is a solution 𝐽 ∈ sol(𝐼,𝒮) such that, for every 𝐽 ′ ∈ sol(𝐼,𝒮),
there is a homomorphism from 𝐽 to 𝐽 ′ [1]. Letting 𝑄(𝐽)↓ = 𝑄(𝐽) ∩ Const|x|, for any instance
𝐽 and query 𝑄(x), the following is well-known:

Theorem 1 ([1]). Consider a data exchange setting 𝒮 , a source instance 𝐼 of 𝒮 and a positive
query 𝑄. If 𝐽 is a universal solution of 𝐼 w.r.t. 𝒮 , then cert𝒮(𝐼,𝑄) = 𝑄(𝐽)↓.

3. Semantics for General Queries

The goal of this section is to introduce a new notion of solution for data exchange that we call
supported. As already discussed, the main issue we want to solve w.r.t. classical solutions is that
such solutions are too permissive, i.e., they allow for the presence of facts that are not a certain
consequence of the source instance and the dependencies. Consider again Example 1. The
(classical) solution 𝐽 ′ in Example 1 is not supported, since from the source instance 𝐼 and the
dependencies, we cannot conclude that the fact Paid(2) should occur in the target. On the other
hand, the solution 𝐽 = {AllOrd(1),AllOrd(2),Paid(1)} is supported: it contains precisely the
facts supported by 𝐼 and the dependencies, and no more than that. Similarly, considering Exam-
ple 2, the instance 𝐽 = {EmpC(john,miami), EmpC(mary, chicago), SameC(john,mary)} is a
solution, but it is not supported, since from the source and the dependencies we cannot certainly
conclude that john and mary live in the same city. We now formalize the above intuitions.

Consider a TGD 𝜌 and a mapping ℎ from the variables of 𝜌 to Const. We say that a TGD 𝜌′ is
a ground version of 𝜌 (via ℎ) if 𝜌′ = ℎ(body(𝜌)) → ℎ(head(𝜌)).

Definition 1 (ex-choice). An ex-choice is a function 𝛾, that given as input a TGD 𝜌 = 𝜙(x,y) →
∃z𝜓(y, z) and a tuple t ∈ Const|y|, returns a set 𝛾(𝜌, t) of pairs of the form (𝑧, 𝑐), one for each
existential variable 𝑧 ∈ exvar(𝜌), where 𝑐 is a constant of Const.
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Note that if 𝜌 does not contain existential variables, 𝛾(𝜌, t) is the empty set.
Intuitively, given a TGD, an ex-choice specifies a valuation for the existential variables of the

TGD which depends on a given valuation of its frontier variables.

We now define when a ground version of a TGD indeed assigns existential variables according
to an ex-choice.

Definition 2 (Coherence). Consider a TGD 𝜌 = 𝜙(x,y) → ∃z𝜓(y, z), an ex-choice 𝛾 and a
ground version 𝜌′ of 𝜌 via some mapping ℎ. We say that 𝜌′ is coherent with 𝛾 if for each existential
variable 𝑧 ∈ exvar(𝜌), (𝑧, ℎ(𝑧)) ∈ 𝛾(𝜌, ℎ(y)).

For a set Σ of TGDs and EGDs, and an ex-choice 𝛾, Σ𝛾 denotes the set of dependencies
obtained from Σ, where each TGD 𝜌 in Σ is replaced with all ground versions of 𝜌 that are
coherent with 𝛾. Note that the set Σ𝛾 can be infinite. We are now ready to present our notion
of solution.

Definition 3 (Supported Solution). Consider a setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a source instance
𝐼 of 𝒮 . A target instance 𝐽 of 𝒮 is a supported solution of 𝐼 w.r.t. 𝒮 if there exists an ex-choice 𝛾
such that 𝐼 ∪ 𝐽 satisfies Σ𝛾

𝑠𝑡 and 𝐽 satisfies Σ𝛾
𝑡 , and there is no other target instance 𝐽 ′ ⊊ 𝐽 of 𝒮

such that 𝐼 ∪ 𝐽 ′ satisfies Σ𝛾
𝑠𝑡 and 𝐽 ′ satisfies Σ𝛾

𝑡 . □

Note that a supported solution contains no nulls. We use ssol(𝐼,𝒮) to denote the set of all
supported solutions of 𝐼 w.r.t. 𝒮 .

Example 3. Consider the data exchange setting 𝒮 and the source instance 𝐼 of Example 2. The
target instance 𝐽 = {EmpC(john,miami),EmpC(mary, chicago)} is a supported solution of 𝐼
w.r.t. 𝒮 . Indeed, consider the ex-choice 𝛾 such that 𝛾(𝜌1, john) = {(𝑧,miami)}, and 𝛾(𝜌1,mary) =
{(𝑧, chicago)}. Then, Σ𝛾

𝑠𝑡 is

{KnownC(𝛼, 𝛽) → EmpC(𝛼, 𝛽) | 𝛼, 𝛽 ∈ Const}∪
{Emp(𝛼) → EmpC(𝛼, 𝛽) | 𝛼 ∈ Const ∧ (𝑧, 𝛽) ∈ 𝛾(𝜌1, 𝛼)},

whereas Σ𝛾
𝑡 is the set containing the EGD 𝜂 of Example 2, and the set of TGDs

{EmpC(𝛼, 𝛽),EmpC(𝛼′, 𝛽) → SameC(𝛼, 𝛼′) | 𝛼, 𝛼′, 𝛽 ∈ Const}.

Clearly, 𝐼 ∪𝐽 satisfies Σ𝛾
𝑠𝑡, and 𝐽 satisfies Σ𝛾

𝑡 , and any other strict subset 𝐽 ′ of 𝐽 is such that 𝐼 ∪𝐽 ′

does not satisfy Σ𝛾
𝑠𝑡. Another supported solution is {EmpC(john,miami), EmpC(mary,miami),

SameC(john,mary)}. □

With the notion of supported solution in place, it is now straightforward to define the
supported certain answers.

Definition 4 (Supported Certain Answers). Consider a data exchange setting 𝒮 , a source instance
𝐼 of 𝒮 and a query 𝑄 over T. The supported certain answers to 𝑄 over 𝐼 w.r.t. 𝒮 is the set of
tuples scert𝒮(𝐼,𝑄) =

⋂︀
𝐽∈ssol(𝐼,𝒮)𝑄(𝐽).
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Example 4. Consider the data exchange setting 𝒮 , the source instance 𝐼 , and the query 𝑄 of
Example 1. It is not difficult to see that the only supported solution of 𝐼 w.r.t. 𝒮 is the instance
𝐽 = {AllOrd(1),AllOrd(2),Paid(1)}. Thus, the supported certain answers to 𝑄 over 𝐼 w.r.t. 𝒮
are scert𝒮(𝐼,𝑄) = 𝑄(𝐽) = {2}. Consider now the data exchange setting 𝒮 , the source instance 𝐼 ,
and the query 𝑄 of Example 2. Then, one can verify that scert𝒮(𝐼,𝑄) = ∅. □

We now start establishing some important results regarding supported solutions and sup-
ported certain answers. The following theorem states that supported solutions are a refined
subset of the classical ones, but whether a supported solution exists is still tightly related to the
existence of a classical one.

Theorem 2. Consider a data exchange setting 𝒮 . For every source instance 𝐼 of 𝒮 , its holds that
(1) ssol(𝐼,𝒮) ⊆ sol(𝐼,𝒮), and (2) ssol(𝐼,𝒮) = ∅ iff sol(𝐼,𝒮) = ∅.

Regarding certain answers, we show that supported solutions indeed enjoy an important
property: supported certain answers and classical certain answers coincide, when focusing on
positive queries. Note that this does not necessarily follow from Theorem 2.

Theorem 3. Consider a setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a positive query 𝑄 over T. For every
source instance 𝐼 of 𝒮 , scert𝒮(𝐼,𝑄) = cert𝒮(𝐼,𝑄).

From the above, we conclude that for positive queries, certain query answering can be
performed as done in the classical setting, and thus all important results from that setting, like
query answering via universal solutions, carry over.

Corollary 1. Consider a setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a positive query 𝑄 over T. If 𝐽 is a
(classical) universal solution of 𝐼 w.r.t. 𝒮 , then scert𝒮(𝐼,𝑄) = 𝑄(𝐽)↓.

Proof. It follows from Theorem 1 and Theorem 3. □

We now move to the complexity analysis of the two most important data exchange tasks:
deciding whether a supported solution exists, and computing the supported certain answers to
a query.

4. Complexity

In data exchange, it is usually assumed that a setting 𝒮 does not change over time, and a given
query 𝑄 is much smaller than a given source instance. Thus, for understanding the complexity
of a data exchange problem, it is customary to assume that 𝒮 and 𝑄 are fixed, and only 𝐼 is
considered in the complexity analysis, i.e., we consider the data complexity of the problem.
Hence, the problems we are going to discuss will always be parametrized via a setting 𝒮 , and
a query 𝑄 (for query answering tasks). The first problem we consider is deciding whether a
supported solution exists; 𝒮 is a fixed data exchange setting.

PROBLEM : EXISTS-SSOL(𝒮)
INPUT : A source instance 𝐼 of 𝒮 .
QUESTION : Is ssol(𝐼,𝒮) ̸= ∅?
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The above problem is very important in data exchange, as one of the main goals is to actually
construct a target instance that can be exploited for query answering purposes. Hence, knowing
in advance whether at least a supported solution exists is of paramount importance.

Thanks to Item 2 of Theorem 2, all the complexity results for checking the existence of a
classical solution can be directly transfered to our problem.

Theorem 4. There exists a data exchange setting 𝒮 such that EXISTS-SSOL(𝒮) is undecidable.

Proof. It follows from Theorem 2 and from the fact that there exists a data exchange setting 𝒮
such that checking whether a classical solution exists is undecidable [5]. □

Despite the negative result above, we also inherit positive results from the literature, when
focusing on some of the most important data exchange scenarios, known as weakly-acyclic.
Such settings only allow target TGDs to belong to the language of weakly-acyclic TGDs, which
have been first introduced in the seminal paper [1], and is now well-established as the main
language for data exchange purposes.

We start by introducing the notion of weak-acyclicity. We recall that for a schema S, pos(S)
denotes the set of all positions 𝑅[𝑖], where 𝑅/𝑛 ∈ S and 𝑖 ∈ {1, . . . , 𝑛}, and for a TGD
𝜌 = 𝜙(x,y) → ∃z𝜓(y, z), fr(𝜌) denotes the tuple y.

Definition 5 (Dependency Graph [1]). Consider a setΣ of TGDs over a schema S. The dependency
graph of Σ is a directed graph dg(Σ) = (𝑁,𝐸), where 𝑁 = pos(S) and 𝐸 contains only the
following edges. For each 𝜌 ∈ Σ, for each 𝑥 ∈ fr(𝜌), and for each position 𝜋 in body(𝜌) where 𝑥
occurs:

• there is a normal edge (𝜋, 𝜋′) ∈ 𝐸, for each position 𝜋′ in head(𝜌) where 𝑥 occurs, and
• there is a special edge (𝜋, 𝜋′) ∈ 𝐸, for each position 𝜋′ in head(𝜌) where an existentially

quantified variable 𝑧 ∈ exvar(𝜌) occurs. □

Definition 6. A set of TGDs Σ is weakly-acyclic if no cycle in dg(Σ) contains a special edge. A
data exchange setting ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ is weakly-acyclic if the set of TGDs in Σ𝑡 is weakly-acyclic.□

Example 5. The settings of Examples 1 and 2 are weakly-acyclic, whereas the data exchange
setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, where S = {𝑆/2}, T = {𝑇/2}, Σ𝑠𝑡 = {𝑆(𝑥, 𝑦) → 𝑇 (𝑥, 𝑦)}, and
Σ𝑡 = {𝑇 (𝑥, 𝑦) → ∃𝑧 𝑇 (𝑦, 𝑧)} is not, since (𝑇 [2], 𝑇 [2]) is a special edge in dg(Σ𝑡). □

The following result follows.

Theorem 5. For every weakly-acyclic data exchange setting 𝒮 , EXISTS-SSOL(𝒮) is in PTIME.

Proof. It follows from Theorem 2 and [1, Corollary 3.10]. □

We now move to the second crucial task: computing supported certain answers. Since this
problem outputs a set, it is standard to focus on its decision version. For a fixed data exchange
setting 𝒮 and a fixed query 𝑄, we consider the following decision problem:

PROBLEM : SCERT(𝒮, 𝑄)

INPUT : A source instance 𝐼 of 𝒮 and a tuple t ∈ Const𝑎𝑟(𝑄).
QUESTION : Is t ∈ scert𝒮(𝐼,𝑄)?
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One can easily show that the above problem is logspace equivalent to the one of computing
the supported certain answers.

We start by studying the problem in its full generality, and show that there is a price to pay
for query answering with general queries.

Theorem 6. There exists a data exchange setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, with Σ𝑡 having only TGDs,
and a query 𝑄 over T, such that SCERT(𝒮, 𝑄) is undecidable.

Although the complexity result above tells us that computing supported certain answers might
be infeasible in some settings, we can show that for weakly-acyclic settings, the complexity is
more manageable.

Theorem 7. For every weakly-acyclic setting 𝒮 and every query𝑄, SCERT(𝒮, 𝑄) is in coNP, and
there exists a weakly-acyclic setting 𝒮 that is TGD-only and a query 𝑄 such that SCERT(𝒮, 𝑄) is
coNP-hard.

We point out that the above result is in contrast with all the data exchange semantics discussed
in the introduction, for which computing certain answers is undecidable, even for weakly-acyclic
settings [2, 3].

We conclude this section by recalling that for positive queries, supported certain answers
coincide with the classical ones (Theorem 3), and computing (classical) certain answers for
weakly-acyclic settings, under positive queries, is tractable [1]. Hence, the result below follows.

Corollary 2. For every weakly-acyclic setting 𝒮 and every positive query 𝑄, SCERT(𝒮, 𝑄) is in
PTIME.

5. Query Answering via Materialization

As already discussed in the introduction, it is crucial in data exchange, whenever it is possible,
to materialize a target instance starting from the source instance and the schema mapping, in
such a way that supported certain query answers can be computed by considering the target
instance alone. The goal of this section is thus to study the problem of materializing such an
instance, when focusing on our notion of supported solutions.

It would be very useful if such a special target instance could be computed in polynomial-time,
already for weakly-acyclic settings. However, due to Theorem 7, this would imply PTIME =
coNP. Hence, we need something different.

We introduce a special instance that enjoys the following properties: the answers over this
instance are an approximation (i.e., a subset) of the supported certain answers, for general
queries, but they coincide with supported certain answers, for positive queries. We also show
that we can compute such an instance in polynomial time for weakly-acyclic settings.

Our approach relies on conditional instances [6], which we introduce in the following.

Conditional instances. A valuation 𝜈 is a mapping from Const ∪ Null to Const that is the
identity on Const. A condition 𝜑 is an expression that can be built using the standard logical
connectives ∧, ∨, ¬, ⇒, and expressions of the form 𝑡 = 𝑢, where 𝑡, 𝑢 ∈ Const ∪ Null. We will
also use 𝑡 ̸= 𝑢 as a shorthand for ¬(𝑡 = 𝑢). We write 𝜈 |= 𝜑 to state that 𝜈 satisfies 𝜑, and
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𝜑 |= 𝜓 if all valuations satisfying 𝜑 satisfy the condition 𝜓. A conditional fact is a pair ⟨𝛼, 𝜑⟩,
where 𝛼 is a fact and 𝜑 is a condition. A conditional instance ℐ is a finite set of conditional facts.
We also denote ℐ[1] = {𝛼 | ⟨𝛼, 𝜑⟩ ∈ ℐ}. A possible world of a conditional instance ℐ is an
instance 𝐼 such that there exists a valuation 𝜈 with 𝐼 = {𝜈(𝛼) | ⟨𝛼, 𝜑⟩ ∈ ℐ and 𝜈 |= 𝜑}. We
use pw(ℐ) to denote the set of all possible worlds of ℐ .

Definition 7. Consider a conditional instance ℐ and a query 𝑄. The conditional certain answers
of 𝑄 over ℐ is the set con-cert(ℐ, 𝑄) =

⋂︀
𝐽∈pw(ℐ)𝑄(𝐽). □

We are now ready to introduce our main tool.

Definition 8 (Approximate Conditional Solution). Consider a data exchange setting 𝒮 and a
source instance 𝐼 of 𝒮 . A conditional instance 𝒥 is an approximate conditional solution of 𝐼 w.r.t.
𝒮 , if for every query 𝑄:

1. ssol(𝐼,𝒮) ⊆ pw(𝒥 ), and thus con-cert(𝒥 , 𝑄) ⊆ scert𝒮(𝐼,𝑄), and
2. if 𝑄 is positive, con-cert(𝒥 , 𝑄) = scert𝒮(𝐼,𝑄). □

That is, an approximate conditional solution is a conditional instance that allows to compute
approximate answers for general queries, and exact answers for positive queries.

It is easy to observe that there are settings 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and source instances 𝐼 for
which an approximate conditional solution might not exist, even if 𝒮 is weakly-acyclic. This is
due to the presence of EGDs in Σ𝑡.

However, for weakly-acyclic settings without EGDs, an approximate conditional solution
always exists, and we present a polynomial-time algorithm that is able to construct one. We
plan to deal with general weakly-acyclic settings with EGDs in a future work.

The algorithm is a variation of the well-known chase algorithm, which iteratively introduces
new facts, starting from a source instance, whenever a TGD is not satisfied, i.e., it triggers the
TGD (e.g., see [7]). This variation also allows for a conditional triggering of TGDs, where new
atoms are introduced, under the condition that some terms in the body coincide.

Normal TGDs. To simplify the discussion, we consider an extension of TGDs that allow
for equality predicates in the body. We will use these TGDs to rewrite standard TGDs in the
following normal form. A normal form TGD 𝜌 is an expression of the form 𝜙(x,y)∧ 𝜂(x,y) →
∃z𝜓(y, z), where 𝜙 and 𝜓 are conjunctions of atoms, 𝜙 uses only variables and each variable
in 𝜙 occurs once in 𝜙. The formula 𝜂 is a conjunction of equalities of the form 𝑥 = 𝑡, where 𝑥
is a variable in x or y, and 𝑡 is either a variable in x or y, or a constant. The above equalities
denote which variables should be considered to be the same and which positions should contain
a constant. A (set of) standard TGDs Σ can be converted in normal form in the obvious way.
We denote norm(Σ) as the (set of) TGDs in normal form obtained from Σ.

In the following, fix a conditional instance ℐ , a TGD 𝜌 with norm(𝜌) = 𝜙(x,y) ∧ 𝜂(x,y) →
∃z𝜓(y, z), and a homomorphism ℎ from 𝜙(x,y) to ℐ[1]. We use ℎ(𝜂(x,y)) to denote the
condition obtained from 𝜂(x,y) by replacing each variable 𝑥 therein with ℎ(𝑥). Letting
ℎ(𝜙(x,y)) = {𝛼1, . . . , 𝛼𝑛}, we use Φℐ

𝜌,ℎ to denote the set of all conditions of the form
ℎ(𝜂(x,y)) ∧ 𝜑1 ∧ · · · ∧ 𝜑𝑛, such that ⟨𝛼𝑖, 𝜑𝑖⟩ ∈ ℐ , for each 𝑖 ∈ {1, . . . , 𝑛}.
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Example 6. Consider the TGD 𝜌3 of Example 2. The normal form TGD norm(𝜌3) is
EmpC(𝑥, 𝑦),EmpC(𝑥′, 𝑦′), 𝑦 = 𝑦′ → SameC(𝑥, 𝑥′). Consider now the conditional in-
stance ℐ = {⟨EmpC(john,miami),⊥1 = 𝑎⟩, ⟨EmpC(mary,⊥2), true⟩}, where 𝑎 is a con-
stant. Then, the mapping ℎ = {𝑥/john, 𝑦/miami, 𝑥′/mary, 𝑦′/⊥2} is a homomorphism from
{EmpC(𝑥, 𝑦),EmpC(𝑥′, 𝑦′)} to ℐ[1]. Moreover, Φℐ

𝜌3,ℎ
= {⊥2 = miami ∧ ⊥1 = 𝑎}. □

We are now ready to define the notion of conditional chase step. In what follows, for a
conditional instance ℐ , a TGD 𝜌 with norm(𝜌) = 𝜙(x,y) ∧ 𝜂(x,y) → ∃z𝜓(y, z) and a
homomorphism ℎ from𝜙(x,y) to ℐ[1], we use result(ℐ, 𝜌, ℎ) to denote the set of atoms obtained
from head(norm(𝜌)), where each frontier variable 𝑥 in fr(norm(𝜌)) is replaced with ℎ(𝑥), and
each existential variable 𝑧 in exvar(norm(𝜌)) is replaced with a fresh null not occurring in ℐ .

Definition 9 (Conditional Chase Step). Consider a conditional instance ℐ , a TGD 𝜌, and let
norm(𝜌) = 𝜙(x,y)∧𝜂(x,y) → ∃z𝜓(y, z). A conditional chase step of ℐ w.r.t. 𝜌 is an expression

of the form ℐ 𝜌,ℎ,𝜑−→ 𝒥 , where (i) ℎ is a homomorphism from 𝜙(x,y) to ℐ[1], (ii) 𝜑 ∈ Φℐ
𝜌,ℎ is such

that 𝜑 ̸|= false, and (iii) 𝒥 = ℐ ∪ {⟨𝛼, 𝜑⟩ | 𝛼 ∈ result(ℐ, 𝜌, ℎ)}. □

Example 7. Consider the conditional instance ℐ , the homomorphism ℎ and the TGD 𝜌3 of

Example 6. Then, ℐ 𝜌3,ℎ,𝜑−→ 𝒥 is a conditional chase step, where 𝜑 is the condition ⊥2 = miami ∧
⊥1 = 𝑎, and 𝒥 = ℐ ∪ {⟨SameC(john,mary), 𝜑⟩}. □

With the notion of conditional chase step at hand, we can define conditional chase sequences,
which are sequences of conditional chase steps. For this we need one additional notion. A
conditional tuple is a pair ⟨t, 𝜑⟩, where t is a tuple of constants and nulls, and 𝜑 a condition.
For two conditional tuples ⟨t, 𝜑⟩, ⟨u, 𝜓⟩, with |t| = |u| = 𝑛, we write ⟨t, 𝜑⟩ ⊑ ⟨u, 𝜓⟩ if 𝜑 |= 𝜓
and 𝜑 |= t = u, where t = u is a shortand for the condition

⋀︀𝑛
𝑖=1 t[𝑖] = u[𝑖]. We write

⟨t, 𝜑⟩ ̸⊑ ⟨u, 𝜓⟩, if ⟨t, 𝜑⟩ ⊑ ⟨u, 𝜓⟩ does not hold.
Intuitively, ⟨t, 𝜑⟩, ⟨u, 𝜓⟩ should be understood to be two tuples, each of them belonging to a

set of “worlds”, described by the valuations that satisfy their conditions. Moreover, ⟨t, 𝜑⟩ ⊑
⟨u, 𝜓⟩ means that every world in which t occurs, is also a world in which u occurs (𝜑 |= 𝜓),
and in each such world, t and u are the same tuples.

Definition 10 (Conditional Chase Sequence). Consider a TGD-only data exchange setting 𝒮 =
⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a source instance 𝐼 of 𝒮 . A conditional chase sequence of 𝐼 w.r.t. 𝒮 is a

(possibly infinite) sequence of conditional instances (𝒥𝑖)𝑖≥0, where for each 𝑖 ≥ 0, 𝒥𝑖
𝜌𝑖,ℎ𝑖,𝜑𝑖−→ 𝒥𝑖+1,

and (i) 𝒥0 = {⟨𝛼, true⟩ | 𝛼 ∈ 𝐼}, (ii) 𝜌𝑖 ∈ Σ𝑠𝑡 ∪ Σ𝑡, for 𝑖 ≥ 0, and (iii) for every 𝑗 < 𝑖, if
𝜌 = 𝜌𝑖 = 𝜌𝑗 , then ⟨ℎ𝑖(fr(𝜌)), 𝜑𝑖⟩ ̸⊑ ⟨ℎ𝑗(fr(𝜌)), 𝜑𝑗⟩. □

Intuitively, condition (iii) of the definition above is required to prevent the chase sequence to
apply superfluous steps. An example follows.

Example 8. Consider the data exchange setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, with S = {𝐴/1, 𝐵/1},
T = {𝑅/2, 𝑆/1, 𝑇/1}, where the sets Σ𝑠𝑡 = {𝜌1, 𝜌2} and Σ𝑡 = {𝜌3} are such that 𝜌1 =
𝐴(𝑥) → ∃𝑧 𝑅(𝑥, 𝑧), 𝜌2 = 𝐵(𝑥) → 𝑆(𝑥), and 𝜌3 = 𝑅(𝑥, 𝑦), 𝑆(𝑦) → 𝑇 (𝑥). Given 𝐼 =
{𝐴(𝑎), 𝐵(𝑏1), 𝐵(𝑏2)}, the following is a conditional chase sequence of 𝐼 w.r.t. 𝒮 :

𝒥0 = {⟨𝐴(𝑎), true⟩, ⟨𝐵(𝑏1), true⟩, ⟨𝐵(𝑏2), true⟩}, 𝒥1 = 𝒥0 ∪ {⟨𝑅(𝑎,⊥), true⟩},
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𝒥2 = 𝒥1 ∪ {⟨𝑆(𝑏1), true⟩}, 𝒥3 = 𝒥2 ∪ {⟨𝑆(𝑏2), true⟩},
𝒥4 = 𝒥3 ∪ {⟨𝑇 (𝑎),⊥ = 𝑏1⟩}, 𝒥5 = 𝒥4 ∪ {⟨𝑇 (𝑎),⊥ = 𝑏2⟩}.□

For a TGD-only setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a source instance 𝐼 of 𝒮 , a finite conditional
chase sequence (𝒥𝑖)0≤𝑖≤𝑛 of 𝐼 w.r.t. 𝒮 is maximal if there is no conditional instance 𝒥𝑛+1,
such that (𝒥𝑖)0≤𝑖≤𝑛+1 is a conditional chase sequence of 𝐼 w.r.t. 𝒮 . We call 𝒥𝑛 the result of the
maximal sequence.

Example 9. Consider the conditional chase sequence 𝒥0, . . . ,𝒥5 of Example 8. The sequence is

maximal, since any conditional chase step of the form 𝒥5
𝜌,ℎ,𝜑−→ 𝒥 , for some conditional instance 𝒥 ,

cannot satisfy condition (iii) of Definition 10. The sequence 𝒥0, . . . ,𝒥4 is not maximal because
although a conditional atom of the form ⟨𝑇 (𝑎), 𝜑⟩ is already present in𝒥4, an additional conditional
atom of the same form needs to be introduced in 𝒥5. This is needed to allow the fact 𝑇 (𝑎) to be
present for two different reasons (either because ⊥ = 𝑏1 or ⊥ = 𝑏2), and both reasons should occur
in the result of the sequence. □

We are now ready to present the main result of this section. In what follows, given a schema
S and a conditional instance ℐ , ℐ|S denotes the restriction of ℐ to its conditional facts with
relations in S.

Theorem 8. Consider a TGD-only setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a source instance 𝐼 of 𝒮 . If
𝒥 is the result of a maximal conditional chase sequence of 𝐼 w.r.t. 𝒮 , then 𝒥|T is an approximate
conditional solution of 𝐼 w.r.t. 𝒮 .

We can further show that for TGD-only weakly-acyclic settings, a maximal conditional chase
sequence always exists, and its length is polynomial. Moreover, its result can be computed in
polynomial time.

Theorem 9. Consider a data exchange setting 𝒮 that is TGD-only and weakly-acyclic, and a
source instance 𝐼 of 𝒮 . Every conditional chase sequence 𝑠 = (𝒥𝑖)0≤𝑖≤𝑛 of 𝐼 w.r.t. 𝒮 is such that 𝑛
is a polynomial of |𝐼|, and the result 𝒥𝑛 of 𝑠 can be computed in polynomial time w.r.t. |𝐼|.

Querying Approximate Conditional Solutions. What now remains to show is how we
can compute the conditional certain answers over an approximate conditional solution, e.g.,
obtained via the conditional chase. It is known that the problem of computing the conditional
certain answers of a query 𝑄 is coNP-hard in general, even when we assume all the conditions
in the given conditional instance are true [6]. Hence, given a data exchange setting 𝒮 and a
source instance 𝐼 of 𝒮 , if an approximate conditional instance 𝒥 of 𝐼 w.r.t. 𝒮 can be computed
in polynomial time w.r.t. |𝐼|, one cannot always compute con-cert(𝒥 , 𝑄), in polynomial time.
Hence, we require an additional step of approximation.

To this end, we exploit an existing algorithm presented in [8] to compute approximate certain
answers over incomplete databases. Here we only recall the main properties of the algorithm.
For more details, we refer the reder to [8].

For a query 𝑄, the function �̇�𝑡 from conditional instances to sets of tuples is defined in [8],
and it is such that the following holds.
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Theorem 10 ([8]). Given a conditional instance 𝒥 over some schema S and a query𝑄 over S, then
1) �̇�𝑡(𝒥 ) ⊆ con-cert(𝒥 , 𝑄); 2) if 𝑄 is positive, �̇�𝑡(𝒥 ) = con-cert(𝒥 , 𝑄); 3) if every condition
in 𝒥 is a conjunction of equalities, then �̇�𝑡(𝒥 ) is computable in polynomial time w.r.t. |𝒥 |.

From the result above, Theorem 9, and Definition 10, we obtain the following crucial result.

Corollary 3. Consider a TGD-only weakly-acyclic setting 𝒮 . For every source instance 𝐼 of 𝒮 , an
approximate conditional solution 𝒥 of 𝐼 w.r.t. 𝒮 can be constructed in polynomial time, and for
every query 𝑄, �̇�𝑡 is such that 1) �̇�𝑡(𝒥 ) ⊆ con-cert(𝒥 , 𝑄) ⊆ scert𝒮(𝐼,𝑄); 2) if 𝑄 is positive,
�̇�𝑡(𝒥 ) = con-cert(𝒥 , 𝑄) = scert𝒮(𝐼,𝑄); 3) �̇�𝑡(𝒥 ) is computable in polynomial time w.r.t. |𝒥 |.

6. Connections with Other Work and Next Steps

Conditional instances and, more in general, incomplete databases, have already been employed
in the context of data exchange. However, in most of previous work, incomplete databases are
used to encode source and target instances with incomplete information. In [9], the authors
extend the standard data exchange framework by allowing source and target instances to be
incomplete databases, encoded via some representation system, such as conditional instances.
There, the main goal is to study the semantics of data exchange under the assumption that the
source and target instances can be incomplete. In contrast, in our work, we focus on the classical
data exchange setting, where source and target instances are standard (complete) databases.
Here we employ incomplete databases, in particular conditional instances, only as a tool to
compute the (approximate) certain answers of a query over our set of supported solutions,
which are standard databases as well.

In Section 5 we have seen how a conditional extension of the chase procedure can be employed
to compute in polynomial time, for weakly-acyclic settings, an approximate conditional solution.
The idea of extending the chase procedure with conditional TGD applications is not new and has
been explored in previous work. In particular, the work of [10] introduces a conditional version
of the chase procedure which is similar to ours. The main difference is that the conditional chase
of [10] is much simpler, since it is an extension of the simplest variant of the chase algorithm,
called oblivious chase, while ours can be seen as an extension of the more refined semi-oblivious
(a.k.a. skolem) chase (see., e.g., [11, 12, 13, 14, 15] for more details). For this reason, it is not
difficult to show that when considering weakly-acyclic settings, the conditional chase of [10] is
not guaranteed to terminate, while termination for weakly-acyclic settings is a crucial property
for our purposes, since we need to be able to construct a finite conditional instance in this case.

The problem of dealing with non-monotonic queries has been investigated beyond data
exchange, as for example for Ontology-Mediated Query Answering (OMQA). In this setting,
we are given an instance (database) 𝐷, an ontology Σ encoded in some logical formalism (e.g.,
via TGDs), and a query 𝑄(x), and the goal is to compute all the certain answers of 𝑄(x) w.r.t.
𝐷 and Σ, i.e., the tuples that are answers to 𝑄 in every model of the logical theory 𝐷 ∪ Σ. A
relevant work in this scenario is the one in [16], where the authors define the query language
EQL-Lite(𝒬), parametrized with a standard (positive) query language 𝒬 (e.g., UCQs), and
supports a limited form of negation. In particular, an expression 𝜓 in EQL-Lite(𝒬) is of the form
𝜓 := K 𝜌 | 𝜓1 ∧ 𝜓2 | ¬𝜓1 | ∃𝑥𝜓1, where 𝜌 ∈ 𝒬, and 𝜓1, 𝜓2 are EQL-Lite(𝒬) expressions.
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Here, the epistemic operator K is applied to expressions 𝜌 ∈ 𝒬 and returns the certain
answers of 𝜌 w.r.t. the input database𝐷 and the ontology Σ. The main instantiation of EQL-Lite
that the authors study is EQL-Lite(UCQ), i.e., where 𝒬 coincides with the set of all UCQs.

From the above definition, we observe that negation is applied only to (a combination of)
the certain answers of positive queries. This gives a semantics to negation that fundamentally
differs from ours, as illustrated in the following example.

Consider the data exchange setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, where S stores employees of a
company in the unary relation Emp. The target schema T contains a unary relation Emp′ storing
employees, the ternary relation Addr assigning to each employee her work and home address,
and the unary relation WorkFromHome, storing employees working from home. Assume
we have Σ𝑠𝑡 = {𝜌1 = Emp(𝑥) → Emp′(𝑥), 𝜌2 = Emp(𝑥) → ∃𝑧 ∃𝑤Addr(𝑥, 𝑧, 𝑤)} and
Σ𝑡 = {𝜌3 = Addr(𝑥, 𝑦, 𝑦) → WorkFromHome(𝑥)}.

The above setting copies employees from the source to the target via the TGD 𝜌1, while
the TGD 𝜌2 states that each employee must have a work and home address, denoted via the
existential variables 𝑧 and 𝑤, respectively. Finally, the TGD 𝜌3 states that if the work and home
address of an employee coincide, then this employee works from home.

Assume the source instance is 𝐼 = {Emp(john)}, and let 𝑄 be the query asking for all
employees who do not work from home, i.e., 𝑄(𝑥) = Emp′(𝑥) ∧ ¬WorkFromHome(𝑥).

According to [16], the query 𝑄 corresponds to the EQL-Lite(UCQ) expression 𝑄′(𝑥) =
KEmp′(𝑥) ∧ ¬KWorkFromHome(𝑥). Letting 𝐷 = 𝐼 , and Σ = Σ𝑠𝑡 ∪ Σ𝑡, roughly, the above
means that an empolyee is an answer to the query𝑄′ if she is present in all models of𝐷∪Σ and
such that there is at least one model in which the employee does not work from home. Under
this interpretation, the answer to 𝑄′ is john. However, under our semantics, the answer to 𝑄 is
empty. Hence, the fundamental difference is that negation, under EQL-Lite, is interpreted as
negating classical certain answering, and thus an expression ¬K𝜓 is “satisfied” when at least
one model/solution does not entail 𝜓, while in our case, we consider the given query as a whole,
and require it to be satisfied in every valid solution.

We conclude by discussing avenues for further research. First, we would like to extend the
conditional chase to weakly-acyclic settings with EGDs, and identify relevant data exchange
settings for which computing the supported certain answers is tractable. Moreover, we plan to
experimentally evaluate the current approximation approaches both in terms of quality and of
running time via a dedicated benchmark, as did e.g., in the context of approximate consistent
query answering [17]. Since explaining query answering has recently drawn considerably atten-
tion under existential rule languages (e.g., see [18, 19, 20, 21, 22]), and knowledge representation
in general (e.g., in the context of argumentation [23]) an interesting direction for future work is
to address such issue in our setting. Also, it would be interesting to account for user preferences
when answering queries, as recently done in [24].
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