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Abstract
DatalogMTL is a recently introduced extension of Datalog with operators from metric temporal logic
(MTL). It allows for performing complex temporal reasoning tasks over the rational timeline, which
makes it suitable for many practical applications. Although the main reasoning tasks in DatalogMTL are
decidable, they have high computational complexity, and so, developing practically efficient reasoning
techniques is challenging. Consequently, a number of approaches have been recently established; some of
them have already been implemented and tested experimentally, but no comparison of these techniques
has been provided yet. To fill this gap, we present an overview of reasoning techniques in DatalogMTL,
sketch relations between them, and discuss their properties. Moreover, we present our ongoing research
in this area and possible future directions thereof.
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1. Introduction

DatalogMTL [1] is a recently introduced extension of Datalog with operators from metric tem-
poral logic (MTL) [2] interpreted over the rational timeline; for example an atomx[0,60]𝐴(𝑥, 𝑦)
states that 𝐴(𝑥, 𝑦) did hold at some time point in the past at least 0 and at most 60 seconds
ago, whereas ⊟[0,60]𝐴(𝑥, 𝑦) states that 𝐴(𝑥, 𝑦) did hold continuously in the above-mentioned
interval. Such operators allow us to express complex temporal properties, like a turbine’s active
power trip, which is defined in Siemens remote diagnostic centre as an event when ‘the active
power was above 1.5MW for a period of at least 10 seconds, maximum 3 seconds after which
there was a period of at least one minute where the active power was below 0.15MW’ [1].
Indeed, we can express this concept with the rule

Active(𝑥)← Turbine(𝑥) ∧ ⊟[0,60)Below0.15(𝑥) ∧x[60,63] ⊟[0,10] Above1.5(𝑥).

Datalog 2.0 2022: 4th International Workshop on the Resurgence of Datalog in Academia and Industry, September 05,
2022, Genova - Nervi, Italy
*Corresponding author.
†
These authors contributed equally.
$ przemyslaw.walega@cs.ox.ac.uk (P. A. Wałęga); michal.zawidzki@cs.ox.ac.uk (M. Zawidzki);
bernardo.cuenca.grau@cs.ox.ac.uk (B. Cuenca Grau)
� https://sites.google.com/site/pawalega (P. A. Wałęga); https://www.cs.ox.ac.uk/people/bernardo.cuencagrau/
(B. Cuenca Grau)
� 0000-0003-2922-0472 (P. A. Wałęga); 0000-0002-2394-6056 (M. Zawidzki); 0000-0003-2909-5923 (B. Cuenca Grau)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

127

mailto:przemyslaw.walega@cs.ox.ac.uk
mailto:michal.zawidzki@cs.ox.ac.uk
mailto:bernardo.cuenca.grau@cs.ox.ac.uk
https://sites.google.com/site/pawalega
https://www.cs.ox.ac.uk/people/bernardo.cuencagrau/
https://orcid.org/0000-0003-2922-0472
https://orcid.org/0000-0002-2394-6056
https://orcid.org/0000-0003-2909-5923
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Przemysław Andrzej Wałęga et al. CEUR Workshop Proceedings 127–138

Due to its high expressive power, DatalogMTL has found a number of potential applications,
including stream reasoning [3], temporal ontology-based data access [4], and verification of
banking agreements [5]. Consistency checking and fact entailment in DatalogMTL, however,
are of high computational complexity (ExpSpace for combined [4], and PSpace for data com-
plexity [6]), which makes the development of scalable implementations challenging. Despite
these difficulties, there is currently growing interest in the development of practical reasoning
algorithms for DatalogMTL, and new systems are becoming available.

In this paper, we provide a comprehensive overview of the different reasoning techniques
available for DatalogMTL and discuss future research directions. In particular, we observe that
reasoning techniques for DatalogMTL can be divided into two main groups:

1. Approaches based on materialisation (a.k.a. forward chaining), which derive and store in
memory all facts that are entailed by a program and dataset. This is obtained by means of
successive rounds of rule applications until a fixpoint is reached; the resulting set of facts
is called the materialisation. In these approaches, fact entailment and query answering
are performed directly over the materialisation. The main obstacle, however, is that the
materialisation process in DatalogMTL is not guaranteed to terminate.

2. Approaches based on discretisation of the rational timeline, that is, on partitioning the
dense timeline into a discrete sequence of intervals, within which all the time points
satisfy the same relational atoms. Since this sequence of intervals is discrete, it allows
us for exploiting techniques used for reasoning in temporal logics interpreted over the
discrete timeline (e.g., linear temporal logic LTL). The problem of such approaches is that
their implementations are usually inefficient in practice.

In the remainder of this paper, we will discuss in detail these approaches. We start by
recapitulating the syntax, semantics, and main reasoning tasks for DatalogMTL in Section 2. In
Section 3, we describe materialisation-based reasoning techniques, which exploit the fixpoint
characterisation of the DatalogMTL semantics; in particular, we discuss the naïve approach to
materialisation which does not guarantee termination, introduce finitely materialisable programs
for which materialisation always terminates, and discuss algorithms based on sliding windows
which are particularly useful in the stream reasoning setting. Next, in Section 4, we describe
reasoning based on the discretisation of time; we show how the timeline can be discretised and
how discretisation can be used to devise a translation to LTL or to provide Büchi automata and
arithmetic progressions capturing the meaning of a DatalogMTL program. Finally, we present
our ongoing research and outline its possible future directions in Section 5.

2. DatalogMTL

In this section, we introduce DatalogMTL; we will focus on the standard setting given by
‘continuous semantics’ and interpretations over the rational timeline. It is, however, worth
mentioning that DatalogMTL was also studied under an alternative ‘pointwise’ semantics [7]
and interpreted over the integer timeline [8].
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2.1. Syntax

Syntactically, DatalogMTL is an extension of Datalog with the MTL operators x, |, ⊟, ⊞, 𝒮 ,
and 𝒰 , which are indexed with rational intervals 𝜚 containing only non-negative numbers.
We distinguish two types of atoms. Relational atoms are standard Datalog atoms of the form
𝑃 (s), with an arbitrary arity predicate 𝑃 and a tuple s of terms (variables or constants). Metric
atoms extend relational atoms by allowing MTL operators, and are generated by the following
grammar:

𝑀 ::= ⊤ | ⊥ | 𝑃 (s) | x𝜚𝑀 | |𝜚𝑀 | ⊟𝜚𝑀 | ⊞𝜚𝑀 |𝑀𝒮𝜚𝑀 |𝑀𝒰𝜚𝑀.

Then, DatalogMTL rules are of the form

𝑀 ′ ←𝑀1 ∧ · · · ∧𝑀𝑛, for 𝑛 ≥ 1,

where each body atom𝑀𝑖 is a metric atom, and the head atom𝑀 ′ is a metric atom not mentioning
any of the ‘non-deterministic’ operatorsx, |, 𝒮 , and 𝒰 . As usual, a program Π is a finite set
of safe rules, but the definition of safety in DatalogMTL is slightly more elaborated than in
Datalog. In particular, we do not only require that each variable in a rule’s head occurs in this
rule’s body, but also that this occurrence in the body is not in a left operand of 𝒮 or 𝒰 . This
additional requirement discards, for example, a rule of the form 𝐵(𝑥)← 𝐴(𝑥)𝒮[0,0]⊤, which is
equivalent to 𝐵(𝑥)← ⊤ (see the semantics of DatalogMTL operators from the next subsection),
and so, should not be treated as safe.

A DatalogMTL dataset 𝒟 is a finite set of facts of the form 𝑀@𝜚, where 𝑀 is a ground (i.e.,
with no variables) relational atom and 𝜚 is an interval in which 𝑀 holds true.

2.2. Semantics

A DatalogMTL interpretation I can be seen as a set containing one standard Herbrand inter-
pretation for each rational time point. More precisely, I specifies, for each ground relational
atom 𝑀 and each time point 𝑡 ∈ Q, whether 𝑀 holds at 𝑡, in which case we write I, 𝑡 |= 𝑀 .
Satisfaction of relational atoms determines satisfaction of (more complex) metric atoms, as
presented below.

I, 𝑡 |= ⊤ for each 𝑡,

I, 𝑡 |= ⊥ for no 𝑡,

I, 𝑡 |= x𝜚𝑀 iff I, 𝑡′ |= 𝑀 for some 𝑡′ with 𝑡− 𝑡′ ∈ 𝜚,

I, 𝑡 |= |𝜚𝑀 iff I, 𝑡′ |= 𝑀 for some 𝑡′ with 𝑡′ − 𝑡 ∈ 𝜚,

I, 𝑡 |= ⊟𝜚𝑀 iff I, 𝑡′ |= 𝑀 for all 𝑡′ with 𝑡− 𝑡′ ∈ 𝜚,

I, 𝑡 |= ⊞𝜚𝑀 iff I, 𝑡′ |= 𝑀 for all 𝑡′ with 𝑡′ − 𝑡 ∈ 𝜚,

I, 𝑡 |= 𝑀1𝒮𝜚𝑀2 iff I, 𝑡′ |= 𝑀2 for some 𝑡′ with 𝑡− 𝑡′ ∈ 𝜚 and

I, 𝑡′′ |= 𝑀1 for all 𝑡′′ ∈ (𝑡′, 𝑡),

I, 𝑡 |= 𝑀1𝒰𝜚𝑀2 iff I, 𝑡′ |= 𝑀2 for some 𝑡′ with 𝑡′ − 𝑡 ∈ 𝜚 and

I, 𝑡′′ |= 𝑀1 for all 𝑡′′ ∈ (𝑡, 𝑡′).
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A fact 𝑀@𝜚 is satisfied if 𝑀 is satisfied at all time points 𝑡 ∈ 𝜚, whereas a rule 𝑟 is satisfied
if, for each of its ground instances 𝑟′ and for each time point 𝑡, if all the body atoms of 𝑟′ are
satisfied at 𝑡, then so is the head of 𝑟′. As usual, a model of a dataset 𝒟 or of a program Π is an
interpretation which satisfies all facts in𝒟 or all rules in Π, respectively. Program Π and dataset
𝒟 are consistent if they have a model (note that if none of the rules mentions ⊥ in the head,
then an inconsistency cannot occur—in the absence of negation in the language of DatalogMTL,
⊥ is the only means for expressing a contradiction), and they entail a fact 𝑀@𝜚 if each model
of both Π and 𝒟 is a model of 𝑀@𝜚.

2.3. Complexity of Reasoning

The main reasoning tasks considered in DatalogMTL are fact entailment and consistency checking.
These problems polynomially reduce to the complements of each other [1], so we identify
them with reasoning in DatalogMTL. As usual, we distinguish between combined and data
complexity, where in the latter case the input consists of a dataset only, while programs are
considered fixed. Reasoning in DatalogMTL is decidable but of high complexity; in particular, it
is ExpSpace-complete for combined complexity [1] and PSpace-complete for data complexity [6].
A number of lower-complexity fragments of DatalogMTL have been introduced, for example
finitely-materialisable programs with ExpTime-complete combined complexity of reasoning [9],
linear and core fragments with NL- and TC0-complete data complexity [10], and the non-
recursive fragment with AC0 data complexity [1]. DatalogMTL has also been extended with
non-monotonic negation, which does not increase the complexity for stratifiable programs
[11], but leads to undecidability if a program is not stratifiable, unless it is interpreted over
the integer timeline [12]. In contrast, in negation-free DatalogMTL reasoning over the integer
timeline is as hard as over the rational timeline [8].

3. Approaches Based on Materialisation

We observe that there is a group of reasoning techniques for DatalogMTL whose main com-
ponent is the materialisation process. This process mimics the fixpoint characterisation of
DatalogMTL semantics, as we describe in the first part of this section.

3.1. Fixpoint Characterisation and Basic Materialisation

The fixpoint characterisation is based on the observation that each pair of a consistent program
Π and a dataset𝒟 admits a unique least model, which we refer to as their canonical interpretation
CΠ,𝒟. As in Datalog, we can construct this interpretation by applying rules of Π to 𝒟 in a
forward-chaining manner until a fixpoint is reached. However, unlike in Datalog, the fixpoint
in DatalogMTL may only be reachable after infinitely many materialisation steps; for example,
given a fact 𝑃@0, the rule ⊞1𝑃 ← 𝑃 propagates 𝑃 to all positive integers, which requires 𝜔
materialisation steps.

Formally, we define the immediate consequence operator 𝑇Π for a program Π as the operator
mapping each interpretation I to the least interpretation containing I and satisfying the
following property for each ground instance 𝑟 of a rule in Π: whenever I satisfies each body
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Procedure 1: Materialisation-based reasoning
Input: A program Π and a dataset 𝒟
Output: A dataset

1 𝒟new := 𝒟; // initialise 𝒟new

2 repeat
3 𝒟old := 𝒟new; // copy 𝒟new before applying rules
4 𝒟new := the least dataset representation of 𝑇Π(I𝒟new);
5 until 𝒟old = 𝒟new;
6 return 𝒟new;

atom of 𝑟 at a time point 𝑡, then 𝑇Π(I) satisfies the head of 𝑟 at 𝑡. Subsequent applications of 𝑇Π

to the (least) model I𝒟 of 𝒟 define the following sequence of interpretations, for all ordinals 𝛼:

𝑇 0
Π(I𝒟) = I𝒟,

𝑇𝛼
Π(I𝒟) = 𝑇Π

(︀
𝑇𝛼−1
Π (I𝒟)

)︀
, for 𝛼 a successor ordinal,

𝑇𝛼
Π(I𝒟) =

⋃︁
𝛽<𝛼

𝑇 𝛽
Π(I𝒟), for 𝛼 a limit ordinal.

If Π and 𝒟 are consistent, then the canonical interpretation is obtained after at most 𝜔1 (i.e.,
the first uncountable ordinal) applications of the immediate consequence operator; that is,
CΠ,𝒟 = 𝑇𝜔1

Π (I𝒟) [4].
The fixpoint characterisation suggests a naïve materialisation-based reasoning approach

presented in Procedure 1; given a program Π and a dataset 𝒟, the procedure applies the
immediate consequence operator 𝑇Π until no new facts can be derived, that is, a fixpoint is
reached.

We have recently implemented this approach in the metric temporal reasoner MeTeoR, and
provided an efficient way of computing 𝑇Π(I𝒟new), which allowed us to handle datasets with
hundreds of millions of facts [13]. The naïve materialisation procedure was also implemented
by rewriting a program into a set of standard SQL queries (with views) [1], which was exploited
in the Ontop ontology-based data access reasoning system to answer temporal queries [14].

The advantage of rewriting DatalogMTL programs into SQL is that constructed queries can
be evaluated with standard systems such as PostgreSQL or Apache Spark. The downside of
this approach, however, is that relying on SQL systems limits the possibility of controlling and
optimising computations which are specific to DatalogMTL materialisation. Such materialisation
requires, for example, computing numerous temporal joins, and the experimental evaluation [13]
shows that a handcrafted implementation in MeTeoR of such computations (obtained by first
sorting the sets of intervals involved in a join and then linearly scanning these sets to compute
the relevant intersections) significantly outperforms the approach based on SQL rewritings (the
latter is not optimised for intersecting time intervals).

Clearly, materialisation is a sound reasoning technique, but the procedure is not always
terminating, as reaching the fixpoint may require an infinite number of materialisation steps.
However, if a fixpoint is reached, then a representation of the full canonical interpretation can
be kept in memory, which can be used for an efficient verification of entailment of any fact.
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Algorithm 2: Checking finite materialisability for a single dataset
Input: A bounded program Π and a bounded dataset 𝒟
Output: A Boolean value

1 𝒟new := 𝒟;
2 repeat
3 𝒟old := 𝒟new;
4 𝒟new := the least dataset representation of 𝑇Π(I𝒟new);
5 if there is 𝑀@𝜚 ∈ 𝒟new with 𝜚 ̸⊆ 𝜚Π,𝒟 then Return false;
6 until 𝒟old = 𝒟new;
7 return true;

3.2. Finite Materialisability

Recent experiments suggest that, when materialisation terminates, it is a very scalable technique
for DatalogMTL which is well suited for reasoning with large temporal datasets. Therefore, a
natural question arises—for which reasoning instances does naïve materialisation terminate?

This question has recently been studied by introducing the notion of finitely materialisable
programs. In particular, we can consider a data-dependent and a data-independent variant of
this notion as follows. We say that a program Π is finitely materialisable for a dataset 𝒟 if,
when applied to 𝒟, the immediate consequence operator 𝑇Π reaches a fixpoint in finitely many
steps. The data-independent notion considers finite materialisability of Π for all datasets.

The problem of checking whether a program is finitely materialisable, as well as the complexity
of reasoning in finitely materialisable programs have recently been studied for programs and
datasets in which all intervals are bounded (i.e., do not mention infinities as endpoints) [9]. In
this setting, it has been shown how to compute, for a program Π which is finitely materialisable
for a dataset 𝒟, an interval 𝜚Π,𝒟 in which are located all the facts entailed by Π and 𝒟. Thus,
checking finite materialisability boils down to performing materialisation until a fixpoint is
reached or some fact is entailed outside 𝜚Π,𝒟 , as depicted in Algorithm 2 (c.f. Procedure 1).

On the other hand, checking if a program Π is finitely materialisable for all datasets reduces
to checking if Π is finitely materialisable for a specific critical dataset 𝒟Π consisting of facts
𝑃 (s)@[0, depth(Π)], for all predicates 𝑃 occurring in Π, all tuples s of constants in Π (and one
additional fresh constant), and depth(Π) a sufficiently large number depending on the intervals
occurring in Π [9]. It turns out that checking data-dependent finite materialisability is PSpace-
complete for data and ExpSpace-complete for combined complexity, whereas checking data-
independent finite materialisability is ExpTime-complete. Furthermore, sufficient conditions
for finite materialisability have been established, which allow for a limited form of temporal
recursion and can be checked efficiently. In particular, MTL-acyclicity of a program requires that
a generalisation of the program’s dependency graph, where edges are labelled with intervals
occurring in the rules, does not contain cycles of certain types, and can be checked in NL [9].

Testing finite materialisability is a useful static analysis task, which can be performed offline.
If the program is finitely materialisable, then a scalable materialisation-based algorithm with
termination guarantees can be used. Reasoning with finitely materialisable programs is also
sufficiently easier from the theoretical point of view, as it is ExpTime-complete for combined
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complexity, in contrast to ExpSpace-completeness for full DatalogMTL.

3.3. Sliding Windows

Another reasoning approach in DatalogMTL consists in materialising all the facts within a
bounded fragment of the timeline—called a window—and then sliding the window by some
distance towards the future. The algorithm ‘forgets’ all the facts outside the current window
and repeats the process, by materialising all the facts in the current window, and then, sliding it
further towards the future. The main advantage of this approach is that it keeps in memory only
facts describing a fixed fragment of the timeline. Hence, the approach is particularly useful in
the stream reasoning setting, where reasoning is performed based on a continuously increasing
and potentially infinite stream of input facts, in contrast to a static dataset considered in the
standard setting [3].

Like the other materialisation-based techniques for reasoning in DatalogMTL, using sliding
windows constitutes a sound approach. Notice, however that, in general, materialisation based
only on the information kept within a bounded window may lead to the incompleteness of
reasoning. Nevertheless, completeness can be retained for forward-propagating programs, where
rules can propagate information only towards the future, and which are a natural choice in the
stream reasoning setting [3]. Moreover, it is worth noting that even though a sliding window
is of a bounded length, it can contain an unbounded number of facts since DatalogMTL is
interpreted over the rational timeline. One way to bound the memory usage is to disallow
punctual intervals (i.e., containing a single time point) in a program which, in turn, allows for
keeping in memory a succinct bounded-size representation of facts in a window [3].

4. Approaches Based on Discretisation of Time

4.1. Time Discretisation

Although the timeline in DatalogMTL is dense, it can be divided into regularly distributed
intervals which are uniform in the sense that all time points belonging to the same interval
satisfy exactly the same relational atoms. This observation was first exploited to partition the
rational timeline, for a program Π and dataset 𝒟, into punctual intervals [𝑖 · 𝑑, 𝑖 · 𝑑] and open
intervals ((𝑖− 1) · 𝑑, 𝑖 · 𝑑), for each 𝑖 ∈ Z, where 𝑑 is the greatest common divisor (gcd) of the
numbers occurring as interval endpoints in Π and 𝒟 [1]. Later, an alternative partitioning of
the timeline was proposed [6], where punctual intervals of the form [𝑖 ·𝑑, 𝑖 ·𝑑] are replaced with
punctual intervals [𝑡+ 𝑖 · 𝑑′, 𝑡+ 𝑖 · 𝑑′], for all rational numbers 𝑡 in 𝒟, 𝑖 ∈ Z, and 𝑑′ the gcd of
numbers occurring in Π; in turn, open intervals of the form ((𝑖 − 1) · 𝑑, 𝑖 · 𝑑) were replaced
with open intervals located between the new punctual intervals. Below we present exemplary
partitionings of the timeline into intervals stemming from both discretisation methods, for
the case where the only rational numbers occurring in 𝒟 are 1

2 and 2
3 and the gcd of Π is 1

(therefore, 𝑑 = 1
6 and 𝑑′ = 1).
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0 1 2 311
2

12
3

21
2

22
3

1
2

2
3

1 2 311
6

11
3

11
2

12
3

15
6

21
6

21
3

21
2

22
3

25
60 1

6
1
3

1
2

2
3

5
6

The main advantage of the second partitioning is that gcd is computed independently of 𝒟,
which was used in devising reasoning techniques with a better computational behaviour for
data complexity [6].

4.2. Translation to LTL

Discretisartion of time was exploited by Brandt et al. [1] to reduce reasoning in DatalogMTL to
reasoning in linear temporal logic (LTL). The reduction consists in transforming a program Π
and a dataset 𝒟 into an LTL formula 𝜙Π,𝒟 such that Π and 𝒟 are consistent if and only if 𝜙Π,𝒟
is LTL-satisfiable (over the integer timeline).

In its basic variant, LTL is a propositional modal logic interpreted over the ordered set of
natural numbers, whose language involves boolean connectives and temporal operators○𝑃

for at the previous time point , □𝑃 for always in the past,○𝐹 for at the next time point, and □𝐹

for always in the future. An LTL formula 𝜙 is satisfiable if there exists an LTL model in which 𝜙
is satisfied at 0.

Since, in contrast to DatalogMTL, the language of LTL is propositional, the first step in
the translation is to ground Π with all constants occurring in Π or 𝒟. Then, every relational
atom 𝑃 (c) occurring in the grounding of Π with constants from Π and 𝒟 is translated into a
propositional symbol 𝑃 c. Moreover, since LTL does not allow for metric operators, the binary-
encoded MTL operators occurring in Π need to be rewritten to basic LTL operators. Note that
both the grounding of the initial program Π and then expanding the binary-encoded numbers
involved in an MTL operator into sequences of LTL operators lead to an exponential blow-up.
For example, assume that Π mentions an atom ⊟[0,60)𝐴(𝑥). Moreover, let Π and 𝒟 mention
100 constants 𝑐1, . . . , 𝑐100 and assume that after a discretisation of the timeline the interval
[0, 60) contains 600 intervals. Then ⊟[0,60)𝐴(𝑥) is translated to an LTL-formula containing 100
conjuncts (one conjunct for each 𝑐𝑖 ∈ {𝑐1, . . . , 𝑐100}), each of the form

𝐴(𝑐𝑖) ∧○𝑃𝐴(𝑐𝑖) ∧○𝑃 ○𝑃 𝐴(𝑐𝑖) ∧ · · · ∧○𝑃 · · ·○𝑃⏟  ⏞  
599

𝐴(𝑐𝑖).

Consequently, 𝜙Π,𝒟 is exponentially large. Since satisfiability checking in LTL is PSpace-
complete, this approach provides an ExpSpace reasoning procedure for DatalogMTL, which is
worst-case optimal. Although it allows for using optimised off-the-shelf reasoning systems for
LTL, it turns out that due to the exponential grounding of a program and the encoding of MTL
operators, the approach is inefficient in practice [15]. Indeed, a recent implementation of the
translation-based approach has been outperformed by the MeTeoR system by a considerable
margin in a series of performed tests.
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4.3. Automata-Based Techniques

Another method of reasoning in DatalogMTL was obtained by directly applying to DatalogMTL
techniques known for LTL, instead of translating the former to the latter. In particular, one of
the main approaches to checking satisfiability of an LTL-formula 𝜙 consists in constructing a
generalised non-deterministic Büchi automaton whose states are sets of formulas relevant for 𝜙,
alphabet consists of sets of propositions, whereas transition relation and accepting conditions
ensure that words accepted by the automaton are exactly models of 𝜙 [16].

To adapt this technique to the needs of DatalogMTL, the automaton was modified as fol-
lows [10]. Each state of the automaton now represents formulas (ground metric atoms) which
hold not in a single time point but in all time points belonging to a fragment of the timeline called
a window (c.f. the sliding windows technique from Section 3.3). Note that since the timeline can
be discretised in DatalogMTL, each window can be finitely represented as a sequence consisting
of sets of metric atoms which hold in the consecutive intervals from the window. Additionally,
for such a sequence, to be a state of the automaton, it is required that the involved metric atoms
are locally consistent, for example if ⊞[0,∞)𝐴—stating that 𝐴 holds always in the future—holds
in some interval 𝜚, then ⊞[0,∞)𝐴 needs to hold also in all the intervals in the window which
are to the right of 𝜚. The rest of the automaton is defined similarly to the way we do it in LTL,
namely the alphabet consists of sets of ground relational atoms, whereas the transition relation
and accepting conditions are analogous to those in the automaton for LTL.

It was shown that consistency checking in DatalogMTL reduces to checking non-emptiness
of (pairs of) the above-described automata, and that the latter is feasible in PSpace [10]. Indeed,
it was shown that states of the automata are polynomially large in the size of the dataset. In
particular, windows can be chosen so that, after the timeline discretisation, the number of
intervals in each window is polynomially large in the size of the dataset—to obtain this property
it is crucial to use the second of the time discretisation methods from Section 4.1. Moreover, the
number of ground metric atoms that can hold in each of these intervals is also polynomially
bounded. Hence, each state is polynomially large and non-emptiness of the automata can be
checked with the standard on-the-fly approach [16] in PSpace.

This approach provides a worst-case optimal reasoning approach for full DatalogMTL, which
was implemented as part of the MeTeoR system [13] and used for reasoning in cases where
materialisation does not terminate. With suitable optimisations, automata construction is
feasible in practice for inputs of moderate size and performs better than the translation to LTL,
but its application to large-scale datasets remains problematic. The automata technique was also
exploited to establish reasoning procedures in extensions of DatalogMTL with non-monotonic
negation; both in the case of stratifiable [11] and general programs [12].

4.4. Arithmetic Progressions

Discretisation of time proved also useful in establishing low-complexity fragments of
DatalogMTL. In particular, it allowed for constructing specific reasoning techniques for frag-
ments in which x is the only MTL operator occurring in a program, and moreover, each rule
is core, that is, has at most one body atom (DatalogMTLx𝑐𝑜𝑟𝑒) or each rule is linear in the sense
that it can mention at most one intensional (IDB) body atom (DatalogMTLx𝑙𝑖𝑛).
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The discussed reasoning technique for DatalogMTLx𝑐𝑜𝑟𝑒 is based on two main observations.
First, since there are no conjunctions in rule bodies nor box operators (which simulate con-
junctions), all derivations in DatalogMTLx𝑐𝑜𝑟𝑒 can be seen as sequences of facts, where each
fact is derived only based on the previous fact in the sequence. Secondly, although the second
type of the timeline discretisation from Section 4.1 yields intervals of different length, there
are polynomially many types of intervals (c.f. the figure from Section 4.1 with four types of
intervals). These observations allow us to represent all derivations as paths in a temporal
dependency graph [10]. To illustrate, consider the following graph:

•
𝑣1𝑃

•
𝑣0𝑄

•
𝑣1𝑄

•
𝑣0𝑅

•
𝑣1𝑅

3

4

0

8

8

8

8

The graph shows that, for example, 𝑃 holding at some interval 𝜚 of type 1 (vertex 𝑣1𝑃 ) allows us
to derive 𝑄 in the interval of type 0 (vertex 𝑣0𝑄) which is located 3 intervals (the weight of the
edge from 𝑣1𝑃 to 𝑣0𝑄) to the right from 𝜚. Lengths of paths (i.e., derivations) connecting any pair
of vertices in such a graph can be succinctly represented with a set of arithmetic progressions
after transforming the initial graph into the Chrobak normal form for automata [17]. This
makes it possible to check entailment in TC0 for data complexity [10] .

This reasoning technique can be extended to DatalogMTLx𝑙𝑖𝑛. The structure of DatalogMTLx𝑙𝑖𝑛
programs allows for decomposing the timeline into (polynomially many) sections in which
reasoning can be performed with the technique established for DatalogMTLx𝑐𝑜𝑟𝑒. The existence
of these sections, however, leads to an increase of the data complexity from TC0 to NL.

Although fact entaiment in both DatalogMTLx𝑐𝑜𝑟𝑒 and DatalogMTLx𝑙𝑖𝑛 is tractable in data
complexity, and the discussed algorithms are optimal, to the best of our knowledge they have
not yet been implemented.

5. Ongoing and Future Research Directions

A promising direction of future work, thrusting from the ongoing research on reasoning
techniques for DatalogMTL, stems from the observation that the canonical model of a program
Π and a dataset𝒟 has a periodic structure (which corresponds to ultimately periodic LTL models).
In particular, by the translation to LTL and reasoning techniques that rely on Büchi automata,
it follows that there exists a left period 𝑝1 and a right period 𝑝2 such that for all (sufficiently
small) time points 𝑡, the same relational atoms hold in CΠ,𝒟 at 𝑡 and 𝑡 − 𝑝1, whereas for all
(sufficiently large) 𝑡, the same relational atoms hold in CΠ,𝒟 at 𝑡 and 𝑡+ 𝑝2. If we knew 𝑝1 and
𝑝2 in advance, we could use them to significantly speed up the materialisation process, and
potentially guarantee its termination for of all programs. The main problem, however, is that
although an (impractically large) upper bound on the length of the periods can be determined
[18], so far no efficient algorithm for computing values of these periods has been proposed. Some
preliminary results in this direction have recently been established by Bellomarini et al. [19],
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but computing periods in advance seems to be a computationally challenging task. Instead, we
are currently working on an approach that computes periods from a partial materialisation; in
particular, we aim to construct an algorithm that performs a bounded number of materialisation
steps until the obtained materialisation satisfies specific properties that allow us to read periods
from this partial materialisation.

Another interesting direction focuses on optimising materialisation, e.g., by developing
semi naïve and parallel rule evaluation strategies and incremental materialisation maintenance
techniques.
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