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1. Introduction

Today, new trends in data management introduce complex datasets and knowledge graphs
where data is obtained via crowd-sourcing or from observations made by artificial intelligence
systems. Moreover, existing knowledge graphs (KGs) are now commonly enriched using link
prediction and KG-completion techniques [1]. Such data points are often associated with a
degree of certainty, expressing the level of confidence of the human or AI source in the truth of
the datum. These developments raise new challenges for data management and the need for
formalisms that can take into account degrees of certainty in data1.

Fuzzy logic has a long history as a tool for combining logical reasoning with the different
types of uncertainty that are encountered in real-world settings by interpreting degrees of
certainty as degrees of truth. This naturally motivates the study of Datalog with fuzzy logic
semantics as a reasoning formalism for large databases and KGs with uncertainty. Many
variants of fuzzy logic programming have been proposed in the literature [2, 3, 4, 5, 6, 7],
with the most active research focusing on complex multi-adjoint settings [8, 7], or Prolog-
derived semantics based on fuzzy similarity of constants and fuzzy unification procedures [5].
Alternative frameworks for reasoning with uncertainty like Markov Logic Networks [9] and
Probabilistic Soft Logic [10] require extensive grounding before inference that can quickly
become prohibitive when reasoning over large amounts of data. Our proposed language 𝑡-
Datalog aims to be a simpler alternative focused on effective reasoning in large databases and
KGs with uncertainty and aims to be the fuzzy analogue of standard Datalog. In this paper, we
present the 𝑡-Datalog formalism and report on ongoing research.

In particular, we present a simple and efficient fixpoint procedure for computing minimal
fuzzy models for 𝑡-Datalog. Furthermore, we show how Datalog with fuzzy semantics relates to
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1Uncertainty is generally not the same as a probability and typical settings mentioned in the introduction often do
not fit the probabilistic database framework.
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the recently proposed Datalog∘ formalism [11].

2. Datalog over 𝑡-norms

A t-norm is a commutative, monotone, and associative function ⊙ : [0, 1] × [0, 1] → [0, 1]
with identity element 1. They generalise Boolean conjunction to the interval [0, 1] of truth
degrees. Commonly studied t-norms include min (the Gödel t-norm), the Łukasiewicz t-norm
𝑎⊙𝐿 𝑏 = max{0, 𝑎+ 𝑏− 1}, or the real product. But t-norms can also be significantly more

complex, e.g., all functions 𝑓𝑝(𝑥, 𝑦) = (𝑥𝑝 + 𝑦𝑝 − 1)
1
𝑝 for 𝑝 < 0 are t-norms (part of the

Schweizer-Sklar family of t-norms, see [12]). For an extensive overview of t-norms and fuzzy
logic, we refer to Hájek [13].

The following presentation extends recent work on a restricted version of 𝑡-Datalog that
allows only the Łukasiewicz t-norm [6]. A Datalog over t-norms (𝑡-Datalog) program Π is a
finite set of rules where each rule 𝜌 is of the form

𝑅1(x1)⊙𝜌 · · · ⊙𝜌 𝑅𝑘(xk) → 𝑅ℎ(xh) (1)

where ⊙𝜌 is some t-norm2. Note that a program is not limited to one specific t-norm but rather
each rule can use a different t-norm. This is important to express different fuzzy behaviour in
different rules. That is, in some rules, it may be natural to use the pessimistic interpretation of
the Łukasiewicz t-norm ⊙𝐿, while other rules in the same program may be more natural under
the relatively optimistic interpretation of the Gödel t-norm ⊙𝐺. Similar formalisms have been
studied extensively in more general settings, see [14, 15].

To simplify presentation, we assume some fixed global signature 𝜎 and domain Dom through-
out this paper. We write GAtoms for the set of all ground atoms with respect to 𝜎 and Dom . A
truth assignment is a function 𝜈 : GAtoms → [0, 1], intuitively assigning a degree of truth in
the real interval [0, 1] to every ground atom. We extend the application of a truth assignment 𝜈
to ground formulas 𝛾, 𝛾′ inductively as follows3.

𝜈(𝛾 ⊙ 𝛾′) = ⊙(𝜈(𝛾), 𝜈(𝛾′))
𝜈(𝛾 → 𝛾′) = min{1, 1− 𝜈(𝛾) + 𝜈(𝛾′)}

With truth degrees for atoms, it also becomes interesting to consider degrees of satisfaction. For
rational 𝐾 ∈ (0, 1] we say that a rule 𝜌 is 𝐾-satisfied by 𝜈 if for every grounding 𝛾 of 𝜌 over
Dom it holds that 𝜈(𝛾) ≥ 𝐾 . In particular, a rule 𝛾 → 𝛾′ is 1-satisfied by truth assignment 𝜈
exactly when 𝜈(𝛾) ≤ 𝜈(𝛾′). For a program Π, we say that a truth assignment 𝜈 is a 𝐾−fuzzy
model if all formulas in Π are 𝐾-satisfied by 𝜈.

In place of the database in the classical setting, we have (finite) partial truth assignments,
that is, partial functions 𝜏 : GAtoms → (0, 1] that are defined for a finite number of ground
atoms. Let (Π, 𝜏) be a pair where Π is a set of formulas and 𝜏 is a partial truth assignment, a

2By slight abuse of notation we use the same symbol for the t-norm and the corresponding connective in a Datalog
rule

3Note that for technical reasons there is only a single → connective and it can not vary by rule. Note also that all
standard implications in fuzzy logic behave the same when considering 1-satisfiability.
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𝐾-fuzzy model of (Π, 𝜏) is a 𝐾-fuzzy model 𝜈 of Π where 𝜈(𝐺) = 𝜏(𝐺) for every ground atom
𝐺 for which 𝜏 is defined. For a partial truth assignment 𝜏 , we write 𝜏* for the induced truth
assignment where 𝜏*(𝐺) = 𝜏(𝐺) if 𝜏 is defined for 𝐺, and 𝜏*(𝐺) = 0 otherwise.

The natural query task, given Π, 𝜏 and 𝑐,𝐾 ∈ (0, 1] is whether a fact 𝐺 is at least true to
a target degree 𝑐 in all 𝐾-fuzzy models of (Π, 𝜏). For truth assignments 𝜈, 𝜈 ′, we say 𝜈 ≤ 𝜈 ′

if for every fact 𝐺, 𝜈(𝐺) ≤ 𝜈 ′(𝐺). As in Datalog, if (Π, 𝜏) is consistent, then it has a unique
minimal 𝐾-fuzzy model that can be used to evaluate the query task described above.

3. An Efficient Fixpoint Procedure for Datalog over t-norms

A step-wise evaluation of 𝑡-Datalog programs that follows standard procedures for Datalog
directly may have to revise the truth of a fact multiple times, as different paths of inference may
imply different degrees of truth. In this section, we show that with the right kind of procedure
this is not necessary and evaluation of 𝑡-Datalog requires at most as many steps of inference as
classical Datalog.

For program Π, we first define

𝜇Π(𝜈) = max{ 𝜈(body(𝛾)) | 𝛾 ∈ GRulesΠ, 𝜈(head(𝛾)) < 𝜈(body(𝛾)) +𝐾 − 1}

whereGRulesΠ is the set of all groundings of rules inΠ. The immediate maximal𝐾-consequence
operator 𝑇Π,𝐾 is then defined as 𝑇Π,𝐾(𝜈) = 𝜈 ′, where 𝜈 is a truth assignment and 𝜈 ′ is the
truth assignment determined by the following:

1. if 𝐺 is the head of ground rule 𝛾 with 𝜈(body(𝛾)) = 𝜇Π(𝜈) > 0 that is not 𝐾-satisfied
by 𝜈, then set 𝜈 ′(𝐺) = 𝜈(body(𝛾)) +𝐾 − 1,

2. otherwise set 𝜈 ′(𝐺) = 𝜈(𝐺).

Clearly the operator is monotone, i.e., if 𝜈1 ≤ 𝜈2, then also 𝑇Π,𝐾(𝜈1) ≤ 𝑇Π,𝐾(𝜈2). Let 𝑇 (𝛼)
Π,𝐾

denote the 𝛼-fold application of 𝑇Π,𝐾 . It is known that 𝑇Π,𝐾 always reaches a fixpoint in a
finite number of steps, we write 𝑇

(∞)
Π,𝐾 for the application of the operator until a fixpoint is

reached. We call the smallest 𝛼 where 𝑇
(𝛼)
Π,𝐾(𝜈) = 𝑇

(𝛼+1)
Π,𝐾 (𝜈) the fixpoint index of Π, 𝜈 (for 𝐾).

Observe that when 𝜈 maps only to {0, 1} (i.e., a classical database), 𝑇Π,1 is precisely the standard
immediate consequence operator for Datalog. It is not difficult to see that the procedure can be
used for the evaluation of 𝑡-Datalog.

Theorem 1. Let Π be a 𝑡-Datalog program and let 𝜏 be a finite partial truth assignment. Then
𝑇
(∞)
Π,𝐾(𝜏*) is the minimal 𝐾-fuzzy model of (Π, 𝜏).

Simpler immediate consequence operators have been studied in similar settings [7, 15] but
without a computational focus. The important distinction from a practical perspective is
the restriction to only considering the immediate maximal 𝐾-consequences, i.e., only those
immediate consequences with maximum truth degree. This awareness of the truth degree
reveals an important property of the procedure: the truth value of each 𝐺 ∈ GAtoms changes
at most once during the computation of 𝑇∞

Π,𝐾 . In consequence, the computation of a fuzzy
minimal model for a 𝑡-Datalog program requires at most as many steps as the standard fixpoint
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procedure in the classical setting. In the following we write 𝜈Δ to refer to the truth assignment
that sets 𝜈Δ(𝐺) = 1 if 𝜈(𝐺) > 0, and 𝜈Δ(𝐺) = 0 otherwise.

Theorem 2. Let Π be a 𝑡-Datalog program and let 𝜏 be a finite partial truth assignment. The
fixpoint index of Π, 𝜏* for 𝐾 is less or equal to the fixpoint index of Π, 𝜏*Δ for 𝐾 .

Theorem 2 also holds when we adapt the operator 𝑇Π,𝐾 to only change one atom at a time.
That is, 𝑡-Datalog reasoning requires the materialisation of at most as many atoms as reasoning
in Datalog over the corresponding crisp database. This is a significant improvement over the
previously mentioned Markov Logic Networks [9] and Probabilistic Soft Logic [10] which
require extensive grounding before inference and suggests that reasoning in 𝑡-Datalog can be
feasible even for large datasets by efficiently maintaining a list of unsatisfied rules ordered by
truth degree of the body4.

We see that the semantics of 𝑡-Datalog closely follow classical Datalog semantics, both in terms
of minimal models as well as fixpoint semantics. This provides a tight link to existing Datalog
literature and thus opens up clear directions for extensions analogous to work for classical
Datalog. Among them, we are particularly interested in fuzzy extensions of the Datalog± family
of languages, 𝑡-Datalog with stratified negation, as well as integration with existing Datalog
reasoning systems where implementations are based on the immediate consequence operator.

4. t-norms and Datalog∘

Very recently, Abo Khamis, et al. [11] introduced Datalog∘ as an extension of Datalog over
partially ordered pre-semirings. This is motivated by the desire to express numerical recursive
tasks, such as linear regression or shortest path computations in a Datalog-style language.
Beyond numerical applications, Fitting’s three-valued logic and Belnap’s four-valued logic are
also explored as interesting applications of Datalog∘. Here we note that this connection to many-
valued logics can be significantly expanded. Observe that for any t-norm ⊙, ([0, 1],max,⊙, 0, 1)
is a semiring (that also enjoys all necessary other technical properties required by Datalog∘).
One can then show that for a 𝑡-Datalog program Π that mentions the same t-norm ⊙ in all rules,
the minimal 1-fuzzy models of (Π, 𝜏) are exactly the same as the least fixpoints considered in the
semantics of Datalog∘ over the semiring corresponding to ⊙ with the natural partial-ordering
of [0, 1] by ≤5.

This raises the question of whether the Datalog∘ framework and in particular its convergence
conditions, can be extended to consider individual semirings per rule (even with a shared
addition monoid). This would allow full expression of 𝑡-Datalog in Datalog∘, while also opening
up the possibility of combining complex fuzzy reasoning with various forms of aggregation.

4Note that a practical implementation of 𝑇Π,𝐾 does not actually require the materialisation of the full set GRulesΠ
to compute 𝜇Π.

5It remains unclear if the same is also possible for 𝐾-fuzzy models where 𝐾 < 1
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5. Conclusion & Outlook

We reported on new motivations and ongoing research in the intersection between fuzzy logic
and Datalog. The procedure introduced in Section 3 provides an important foundation for future
work. We are in the process of extending the Vadalog system [16] to support arbitrary t-norms
in rule bodies following the ideas presented there. Following the implementation, we plan for a
large-scale experimental evaluation to verify the feasibility of 𝑡-Datalog over large uncertain
datasets. Furthermore, the procedure provides a foundation for fuzzy extensions of Datalog±

languages as it can naturally be extended to a chase procedure. Additionally, the observed
connections to Datalog∘ present further promising directions for future research.
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