
A Rule-Based Constraint Language for Event Streams
Isaac Mackey, Jianwen Su

Dept. of Computer Science, University of California, Santa Barbara

Abstract
Software systems and the availability of data collecting devices lead to large amounts of data in the
form of event streams. The ability to query, analyze, reason about, and monitor event streams is in high
demand. In this work, we formalize a model of events and event streams in workflow systems, and a
constraint language by extending Datalog with timestamp variables and gap constraints (inequalities
with constant offsets) over a time domain. We illustrate an application of our language by expressing
rules with time constraints and data dependencies for workflow systems, where event streams from
workflow enactments are monitored in real-time to ensure compliance with policies, regulations, and
business rules.

Keywords
temporal constraints, monitoring, events

1. Introduction
Event streams are increasingly available, either from data collecting devices for IoT systems or
generated by software systems for applications including workflow systems and distributed
systems [1]. Querying data streams have been studied in research communities with SQL
as a primary language [2], though other works address the challenge of maintaining query
answers incrementally for logic programs [3, 4, 5]. In addition to query answering, event stream
processing can identify exceptional situations, i.e., violations of system policies and regulations.
Arising from operational and business rules, security policies, and compliances, OMG introduced
a rule-based language SBVR [6]. Consequently, efficient and effective reasoning methods for
constraint languages becomes an important element of event stream processing. In our earlier
work [7, 8], we formulated a Datalog-like language to specify desirable event behavior during
workflow execution, and developed several monitoring techniques. In this paper, we present
the language and overview the monitoring problem and key results.

Syntactically, our language generalizes Datalog by allowing (i) timestamp variables and (ii)
conjunctions in a rule head. Our previous work primarily uses this language for expressing
constraints. To this end, it generalizes tuple- and equality-generating dependencies (TGDs
and EGDs) in relational databases [9] by allowing timestamp variables and gap constraints
(inequalities with constant offsets) over a time domain. Our language is similar in essence to,
for example, Dedalus [10] (which only allows single time variables in the rule body), LARS [11]

Datalog 2.0 2022: 4th International Workshop on the Resurgence of Datalog in Academia and Industry, September 05,
2022, Genova - Nervi, Italy
$ imackey1415@gmail.com (I. Mackey); su@ucsb.edu (J. Su)
� 0000-0001-6462-1912 (I. Mackey); 0000-0002-4637-1339 (J. Su)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

145

mailto:imackey1415@gmail.com
mailto:su@ucsb.edu
https://orcid.org/0000-0001-6462-1912
https://orcid.org/0000-0002-4637-1339
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Isaac Mackey et al. CEUR Workshop Proceedings 145–150

(which uses window operators for expressing intervals, instead of time variables that can be
used in multiple (in)equalities), and “temporal” Datalog [12] (which does not allow inequalities
over time variables). Streamlog [13] is another Datalog extension for event stream processing,
but its purpose is to reduce blocking queries, so it does not allow rules whose head variables
match timestamps before the timestamps for body variables. In comparison a key omission in
our language is the ability to generate new tuples (as our current focus is event monitoring).

In Sec. 2 we formalize a model of events and event streams, and present the constraint
language. In Sec. 3, we describe the monitoring and early detection problems and present relevant
results. Finally, we discuss generalizations of these results and further applications in Sec. 4.

2. A Rule-Based Constraint Language
In this section, we present a language for writing constraints on events in workflow enactments.
The language is a variant of Datalog with two notable distinctions: the use of (i) timestamp
variables, and (ii) multiple atoms in a rule head. Furthermore, we adopt rules as constraints
rather than for deriving facts, which means the satisfaction of constraints by enactments is the
primary concern, rather than the deduction of new facts. This makes our language a natural
extension of tuple- and equality-generating dependencies [9]. We define below the key notions
of the language, including “events,” “enactments,” and “rules.”

We assume the existence of six countably infinite, pairwise disjoint sets of: activity names A,
attributes C, discrete and ordered timestamps T, (data) values D, variables V, and (workflow)
enactment identifiers, or simply ids, I. Without loss of generality, we use the natural numbers N
as timestamps.

Activities are atomic units of work in a workflow, each with a name and data attributes.
The execution of an activity produces an “event” at a timestamp at which the activity’s data
attributes obtain values.

Definition: An activity 𝐴(c1, ..., c𝑛) has a name 𝐴∈A and an enumeration of 𝑛 (⩾ 0) distinct
attributes c1, ..., c𝑛 from C. An event of 𝐴(c1, ..., c𝑛) is a tuple 𝑒=(𝜏,𝐴, 𝜋, 𝜇) where 𝜏 ∈T is a
timestamp, 𝜋 ∈ I an id, and 𝜇 : {c1, ..., c𝑛}→D a mapping to data values.

A partial enactment of a workflow system is a set of events such that (i) all events share the
same enactment id, (ii) there is exactly one special START event (that marks its beginning) and at
most one END event (that marks its completion), (iii) the timestamp of START is less than that of
all other events, and (iv) the timestamp of END, if it is present, is greater than that of all other
events. An enactment is a partial enactment that contains an END event.

A (partial) enactment can be stored as a relational database, e.g., the database in Fig. 1 for an
enactment with id 𝜋1. For example, the first row of the Request table indicates a Request event
for 𝜋1 from user Alice with account 𝑎3 at time 2.

To express constraints on enactments, we use a language introduced in [7, 14] and extended
with data in [8], presented below. An event atom is an expression “𝐴(𝑣1, ..., 𝑣𝑛)@𝑥” where
𝐴(c1, ..., c𝑛) is an activity and 𝑣1, ..., 𝑣𝑛, 𝑥 are variables in V; 𝑥 is called the timestamp variable.
A gap atom is an expression “𝑥±𝜖 𝜃 𝑦” where 𝑥, 𝑦 are timestamp variables, 𝜖 (the gap) is a
timestamp in T, and 𝜃∈{<,⩽,⩾, >,=} is an (in)equality predicate. Without loss of generality,
we use natural numbers as timestamps, with the associated +/− operations and ordering.

146



Isaac Mackey et al. CEUR Workshop Proceedings 145–150

Start
ID ts
𝜋1 1

Request
ID user account ts

𝜋1 Alice a3 2
𝜋1 Alice a4 6

Approval
ID user ts

𝜋1 Alice 3

Reserve
ID user account ts

𝜋1 Alice a4 8
𝜋1 Alice a3 9

Payment
ID user account ts

𝜋1 Alice a3 8
𝜋1 Alice a4 9

End
ID ts
𝜋1 15

Figure 1: An enactment 𝜋1 with events, as a relational database

Definition: A rule is an expression “𝜙→𝜓” where 𝜙 (the body) and 𝜓 (the head) are sets of
event and gap atoms such that each variable in a gap atom in 𝜙 occurs in an event atom in 𝜙
and each variable in a gap atom in 𝜓 occurs in an event atom in 𝜙∪𝜓.

Example 1. Consider an IaaS provider that offers high-performance cloud computing rentals.
The service is managed by a workflow with activities like Request and Payment, which carry
attributes like user and account. Fig. 1 shows a partial enactment of the workflow. Consider that
the IaaS provider checks enactments against business rules; these rules may measure service
availability, quality, etc. The provider has the following rule:

𝑟1 : Request(𝑢, 𝑎)@𝑥→ Payment(𝑢, 𝑎)@𝑦, 𝑦⩽𝑥+7

This rule 𝑟1 indicates that a payment for a rental must be completed within 7 days of the
request by the same user and account. Observe that the timestamp 𝑥 of the Request event and
the timestamp 𝑦 of the Payment event are constrained to give an upper bound (or “deadline”)
for the payment.

A second rule 𝑟2 requires the presence of Reserve and Payment events (with a matching user
and account) given certain Request and Approval events:

𝑟2 : Request(𝑢, 𝑎)@𝑥,Approval(𝑢)@𝑦, 𝑥⩽𝑦⩽𝑥+7
→ Reserve(𝑢, 𝑎)@𝑤, Payment(𝑢, 𝑎)@𝑣, 𝑥⩽𝑤⩽𝑥+3, 𝑦⩽𝑣⩽𝑦+7, 𝑣⩽𝑤 + 4

In 𝑟2, the timestamp variable 𝑥 in the body constrains another timestamp variable 𝑦 in the body,
restricting which pairs of events trigger 𝑟2. Also, 𝑥 and 𝑦 in the body both constrain 𝑣, 𝑤 in the
head.

Rule satisfaction is defined for enactments using variable assignments: an assignment is a
mapping from V to D ∪ T: timestamp variables are mapped to T and all other variables to
D. An assignment is complete if it is a total mapping for the variables in an atom (or set of
atoms). An enactment 𝜂 satisfies an event atom 𝐴(𝑣1, ..., 𝑣𝑛)@𝑥 under a complete assignment
𝜇 if (𝜇(𝑥), 𝐴, 𝜉, 𝜇(𝑣1), ..., 𝜇(𝑣𝑛)) is an event in 𝜂 and 𝜉 is the id of 𝜂. Let 𝑟:𝜙(𝑥̄, 𝑦)→𝜓(𝑦, 𝑧)
be a rule with distinct variables 𝑥̄, 𝑦, 𝑧. An enactment 𝜂 satisfies 𝑟 if 𝜂 satisfies the formula
∀𝑥̄𝑦(𝜙(𝑥̄, 𝑦)→∃𝑧𝜓(𝑦, 𝑧)) in first-order logic; a violation of 𝑟 is an assignment 𝛼 such that 𝜂
satisfies 𝜙 with 𝛼 and there is no assignment 𝛽 that extends 𝛼 such that 𝜂 satisfies 𝜓 with 𝛽.

3. Monitoring and Early Detection
In this section, we describe an application of rules for monitoring enactments studied in our
recent work [15, 14, 8]. We define the monitoring problem and then present two results:
one concerning the subclass of dataless, simple rules and another concerning early violation
detection for the general class of rules.

147



Isaac Mackey et al. CEUR Workshop Proceedings 145–150

The rule satisfaction problem is to test if specified rules are satisfied by a (complete) enactment.
Often, however, it is possible to know a rule violation is inevitable before the enactment is
complete if the violation is present in all of its possible futures. Consider 𝑟1 in Ex. 1, a Request
event at time 𝑥 is a violation if no Payment event is observed by time 𝑥+ 7. Then, a violation
can be reported before the enactment completes once time 𝑥+8 is observed. It is advantageous
to monitor the inevitability of violations as the partial enactment is updated. To formulate the
monitoring problem, each partial enactment is treated as a relational database, and a “batch”
holds the set of incoming events.

Definition: A batch for a partial enactment 𝜂 is a finite set ∆ of events such that (i) all events
in ∆ have the same timestamp, greater than all timestamps in 𝜂, (ii) the id of each event in ∆ is
the id of 𝜂, (iii) if ∆ has START , 𝜂 is the empty set, and (vi) if 𝜂 has END, ∆ is the empty set.

Given a partial enactment 𝜂 and a batch ∆, the (online) monitoring problem is to decide if
every enactment containing the union 𝜂 ∪∆ violates a (set of) specified rule(s).

In [15, 14] we study this problem for events carrying no data. A rule is dataless if all of its
event atoms have no data attributes, i.e., each event atom has the form 𝐴@𝑥. We develop a
translation into linear temporal logic (LTL) for subclasses of dataless, “simple” rules. Recall that
the body or head is a conjunctive formula. These can be represented as an undirected graph.
Let 𝜑 be a rule body or rule head. The graph of 𝜑 is an undirected graph 𝐺𝜑=(𝑉,𝐸) such that
𝑉 is the set of timestamp variables in 𝜑 and 𝐸 is the set of pairs (𝑥, 𝑦) such that 𝜑 contains a
gap atom using both 𝑥 and 𝑦. We say 𝜑 is acyclic if 𝐺𝜑 is acyclic. A rule is simple if the body
and head are both acyclic and they share at most one variable.

In [14], we show that the monitoring problem can be solved for dataless, simple rules by
translating rules into LTL formulas, then constructing finite state machines from LTL formulas
on finite traces using existing techniques [16]. Then, detecting violations is reduced to applying
a state transition function at each timestamp and checking the reachability of an accepting
state. We use the temporal operators next and future in future-time LTL [17], as well as past
and yesterday [18]. It was stated:

Theorem 2. [14] Let 𝑟 be a simple, dataless rule. An LTL formula 𝛾𝑟 can be effectively con-
structed such that for all enactments 𝜂,

𝜂 satisfies 𝑟 iff 𝜂 satisfies the LTL formula 𝛾𝑟 .

We also studied the monitoring problem for the general class of rules, including enactments
with data. Consider 𝑟2 in Example 1, events Request and Approval at times 𝑥 and 𝑦, resp., with
𝑥⩽ 𝑦⩽𝑥+7. There may be a violation at the earlier of 𝑥+3 and 𝑦+7 if the corresponding head
event doesn’t arrive. Calculating the earliest time a violation becomes inevitable is the early
detection problem. Notably, detecting violations early is much desired as it may, for example,
allow the workflow system to reclaim resources from erring enactments. In [8], we present
an algorithm for early detection. The core technical development is to calculate for each rule
body assignment (a potential violation), the latest time it can be extended (the “deadline”) w.r.t.
partially evaluated head gap atoms. The deadline informs the monitoring algorithm when to
report violations and can result in violations detected significantly earlier than the enactment’s
END event. In the following theorem, we assert that our algorithm reports violations at the
earliest possible time, i.e., when processing a batch update that makes a violation inevitable.

148



Isaac Mackey et al. CEUR Workshop Proceedings 145–150

Theorem 3. [8] Let 𝑟 be a rule, 𝜂 a partial enactment, and ∆ a batch for 𝜂. It can be effectively
determined if some enactment containing 𝜂 satisfies 𝑟 but no enactments containing 𝜂 ∪∆
satisfy 𝑟.

The algorithm in [8] processes multiple enactments and reports every variable assignment
corresponding to a violation. While the current implementation uses relational algebra to handle
event data and imperative subroutines to calculate deadlines, it appears that the algorithm can
be mostly expressed in Datalog, which could provide an alternative means of evaluation.

4. Conclusions
Complex temporal constraints occur in many application domains (IoT, cyber-physical systems,
etc.). For IoT devices, memory and network limitations demand space-efficient algorithms for
stream processing and tolerance of out-of-order events. In cyber-physical systems, violations
must be anticipated as early as possible so that the system can maintain a safe state; this requires
studying early detection for constraints that mix time, space, and other resources. Finally, it is
desirable to have rules that check for the absence of events, generate facts, and allow summaries
and aggregates, alongside rules that express constraints.

References

[1] A. Margara, E. D. Valle, A. Artikis, N. Tatbul, H. Parzyjegla (Eds.), International Conference
on Distributed and Event-Based Systems, ACM, ACM, 2021.

[2] J. Xie, J. Yang, A survey of join processing in data streams, in: Data Streams, Springer,
2007, pp. 209–236.

[3] A. Gupta, I. S. Mumick, V. S. Subrahmanian, Maintaining views incrementally, in: Proc.
ACM Conference on Management of Data (SIGMOD), 1993, pp. 157–166.

[4] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, R. Studer, A rule-based lan-
guage for complex event processing and reasoning, in: International Conference on Web
Reasoning and Rule Systems, Springer, 2010, pp. 42–57.

[5] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, T. Schaub, Stream reasoning
with answer set programming: Preliminary report, in: Thirteenth International Conference
on the Principles of Knowledge Representation and Reasoning, 2012.

[6] I. S. Bajwa, M. G. Lee, B. Bordbar, Sbvr business rules generation from natural language
specification, in: 2011 AAAI Spring Symposium Series, Citeseer, 2011.

[7] I. Mackey, J. Su, Mapping business rules to ltl formulas, in: ICSOC 2019, 2019, pp. 563–565.
[8] I. Mackey, R. Chimni, J. Su, Early detection of temporal constraint violations, in: 29th

International Symposium on Temporal Representation and Reasoning (TIME), to appear,
2022.

[9] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[10] P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier, R. Sears, Dedalus: Datalog

in time and space, in: International Datalog 2.0 Workshop, Springer, 2010, pp. 262–281.
[11] H. Beck, M. Dao-Tran, T. Eiter, Lars: A logic-based framework for analytic reasoning over

streams, Artificial Intelligence 261 (2018) 16–70.

149



Isaac Mackey et al. CEUR Workshop Proceedings 145–150

[12] A. Ronca, M. Kaminski, B. C. Grau, B. Motik, I. Horrocks, Stream reasoning in temporal
datalog, in: Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[13] C. Zaniolo, Logical foundations of continuous query languages for data streams, in:
International Datalog 2.0 Workshop, Springer, 2012, pp. 177–189.

[14] I. Mackey, J. Su, Mapping singly-linked, acyclic rules to linear temporal logic formulas, in
submission, 2022.

[15] I. Mackey, J. Su, Mapping business rules to ltl formulas, in: ICSOC 2019, 2019, pp. 563–565.
[16] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces,

in: IJCAI’13 Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, Association for Computing Machinery, 2013, pp. 854–860.

[17] A. Pnueli, The temporal logic of programs, in: FoCS, 1977.
[18] O. Lichtenstein, A. Pnueli, L. Zuck, The glory of the past, in: Workshop on Logic of

Programs, Springer, 1985, pp. 196–218.

150


	1 Introduction
	2 A Rule-Based Constraint Language
	3 Monitoring and Early Detection
	4 Conclusions

