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Abstract

In this paper we address the problem of hybridising symbolic and sub-symbolic approaches in artificial

intelligence, following the purpose of creating flexible and data-driven systems, which are simultaneously

comprehensible and capable of automated learning. In particular, we propose a logic API for supervised

machine learning, enabling logic programmers to exploit neural networks – among the others – in their

programs. Accordingly, we discuss the design and architecture of a library reifying APIs for the Prolog

language in the 2P-Kt logic ecosystem. Finally, we discuss a number of snippets aimed at exemplifying

the major benefits of our approach when designing hybrid systems.
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1. Introduction

Symbolic and sub-symbolic artificial intelligence (AI) are complementary under several per-

spectives [1, 2]. For this reason, many recent contributions from the literature are discussing

the possible frameworks for their integration and hybridisation [3, 4, 5, 6]. However, what is

currently slowing down scientific progress in this context is not the lack of ideas concerning

how such integration and hybridisation may occur. Conversely, the bottleneck is caused by the

lack of suitable technologies enabling and easing the experimentation of integrated or hybrid

systems. Logic-based technologies are in fact technological islands, for which poor care is given

to the construction of bridges with the rest of the AI land.

Accordingly, in this paper, we address the issue of supporting machine learning (ML) – and,

in particular, neural-networks (NN) based training and inference – in logic programming (LP).

We do so by designing and prototyping a logic based API for machine learning. Along this line,

our contribution is twofold: (i) we let logic programmers exploit the benefits of sub-symbolic AI,

and, in particular, neural networks; and (ii) we enable the practical experimentation of hybrid
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systems—involving both logic and neural processing of data.

Our logic-based API for ML consists of a set of logic predicates enabling the representation,

training, testing, and exploitation of sub-symbolic predictors in LP—possibly, out of data ex-

pressed in logic form. In other words, our API lets logic programmers use neural networks in

their programs – e.g. to train or exploit classifiers or regressors – without requiring them to

abandon the logic realm. Of course, to make this possible, our API supports the whole gamma

of low level tasks that are commonly involved in an ML workflow—including, but not limited

to, data preprocessing, cross-validation, etc.

Technically, we prototype our API via a logic library – namely, the ML-Lib – targetting the

2P-Kt ecosystem [7], the JVM platform, and the Prolog language [8]. DeepLearning4J [9] is

the underlying library we leverage on in this paper. However, our design is general enough to

support other libraries and, possibly, different platforms—e.g. Tensorflow [10] over Python.

Arguably, our work represents the first step towards a wider degree of interoperability among

symbolic- and sub-symbolic AI. In fact, one the long run, we aim to enable the design and

construction of hybrid systems, fruitfully and dynamically combining the major advantages

of both approaches to artificial intelligence by mixing inferential (via LP) and intuitive (via

NN) reasoning capabilities. Along this path, the proposed API is a key enabling factor, as it

supports the creation of logic-based inferential engines which are capable of learning from data

via state-of-the-art mechanisms. Dually, by supporting the training of neural networks from

logic data, our API can also be considered a tool for endowing sub-symbolic predictors with

prior, high-level knowledge.

2. Logic library for ML: goals

To properly design a logic library for dealing with hybrid reasoning, some basic goals to achieve

should be taken into account: namely, (i) enable hybrid reasoning, (ii) full support of declarative

ML, (iii) enable the exploitation of symbolic data sources (in addition to the others), (iv) make

it possible to select a model via resolution. It is worth mentioning that, each one of these

goals comes along with some of the benefits of hybridization, discussed in detail in [2]. In the

following details about these goals are discussed.

Hybrid reasoning. Automatic reasoning may greatly benefit from sub-symbolic AI to over-

come its inherent crispness. Fuzzy data could then be suitably and coherently processed by a

sub-symbolic predictor as part of a wider symbolic resolution process. To make this possible,

sub-symbolic predictors should be representable, trainable, and queryable as any other logic

predicate, without requiring the semantics of logic resolution to be affected. Consequently,

logic programs should be endowed with ad-hoc predicates and syntactical categories, aimed at

representing and manipulating sub-symbolic predictors and data.

Declarative ML. Declarative ML is a paradigm by which data scientists’ code should only

specify what an ML workflow should do, by leaving the underlying platform in charge to

understand how. This is partially supported by the current practice of data science which

relies on high-level languages (e.g. Python) and libraries of elementary components to be



composed (e.g. Scikit-Learn [11]). However, the solutions proposed so far do not leverage

inherently declarative frameworks like LP, but rather object-oriented languages—requiring

imperative statements. Hence, to support the declarative expression of an ML workflow in the

LP framework, a new logic API is required.

Symbolic data sources. Logic knowledge bases are a peculiar way of collecting knowledge.

Unlike datasets and DBMS, they represent information in symbolic form, via – possibly inten-
sional – logic formulæ. Hence, they can virtually represent any sort of datum – be it atomic,

compound or structured – via a concise (yet very expressive) language, while possibly saving

space. Accordingly, when combining LP with ML, knowledge bases should be exploitable as

data sources as well—other than ordinary CSV files or relational databases.

Model selection via resolution. Logic resolution essentially consists of a search procedure

aimed at finding solutions in a proof tree. This could be applied to a common step of any ML

workflow—namely model selection. There, data scientists must assess several predictor families,

to select the one which is better suited for the learning task at hand. Then, they must search for

the best hyper-parameters for the selected family of predictors. All such choices involve several

sorts of predictors, with possibly different hyper-parameters, to be trained and compared—either

in an orderly fashion or in parallel. LP naturally captures the non-deterministic exploration of a

space of possible choices. Hence it is well suited to both declaratively represent and implement

model selection.

3. ML: key aspects to be supported

To support the aforementioned goals, logic APIs must cover the full gamma of aspects involved

in any possible ML workflow, detailed and discussed in this section.

Briefly speaking, an ML workflow is the process of producing a suitable predictor for the

available data and the learning task at hand, following the purpose of later exploiting that

predictor to draw analyses or to drive decisions. Each ML workflow can be conceived as

composed of six major phases – elicited in section 3.1 –, each one involving a number of

activities—elicited in section 3.2. Enumerating and defining all possible phases and activities is

of paramount importance, as any API for ML should support them all.

3.1. ML phases

From a coarse-grained perspective, a machine learning workflow is composed of six major

phases, detailed in the following.

Dataset loading. The first step of any ML workflow consists of loading that dataset in memory

for later processing. To support such a step, ML frameworks come with ad-hoc functionalities

aimed at loading the dataset by reading a file from the local file system, fetching it from the Web,

or querying a DBMS. These usually come in the form of either classes or functions, coherently

w.r.t. the object-oriented nature of mainstream ML frameworks. Accordingly, the logic API



for ML should expose ad-hoc predicates to serve the same purposes. Furthermore, however, it

should also support the loading of datasets out of logic theories of facts and rules.

Data pre-processing. Raw datasets are often inadequate to favour predictors’ training.

Hence, dataset pre-processing is commonly practised to increase the effectiveness of any sub-

sequent training phase. Most common bulk operations of pre-processing are: (i) homogenize

the variation ranges of the many features sampled by the dataset, (ii) detect irrelevant features

and remove them, (iii) construct relevant features by combining the existing ones, (iv) en-

coding non-numeric features into numeric form, and (v) horizontal (by row) or vertical (by

column) partitioning of the dataset. In particular, the purpose (v) is of paramount importance,

as it supports the test set separation as well as splitting input-related columns from output-

related ones—fundamental operation to enable validation and testing and to support training

respectively.

Predictor selection and definition. Many sorts of predictors could be used in principle to

perform supervised learning—e.g. neural networks, decision trees, support vector machines,

etc. A preliminary phase to select the best predictor is a common phase in virtually any ML

workflow. Once a particular sort of predictor has been chosen, a way to specify the shape the

to-be-trained predictor should have is required. Of course, such specification should take into

account the schema of the input data, as well as the schema of the expected outcomes to be

produced by the predictor. Finally, hyper-parameters of the selected algorithm need to be tuned.

Accordingly, the logic API for ML should support the specification of as many sorts of

predictors as possible, as well as their parametrisation. Once again, predicates should be defined

to serve this purpose. In particular, at least one ad-hoc predicate should be defined for each sort

of predictor to be supported, carrying as many arguments as the possible hyper-parameters that

could be specified for that sort of predictor. In case hyper-parameters cannot be conveniently

represented as raw logic types (numbers or strings), ad-hoc predicates should be provided as

well for constructing structured hyper-parameters values.

Training. Predictors’ training plays a pivotal role in ML workflows. This is the phase where

predictors are fit on the available data or, in other words, automated learning actually occurs.

Generally speaking, training can be modelled in LP as a single predicate, mapping untrained

predictors into trained ones, possibly via a number of learning parameters (e.g. learning rate or

momentum for NN, or maximum depth for DT), or stopping criteria (e.g. max epochs for NN, or

max depth for DT), other than, of course, the data to be used for training. Once again, several

ad-hoc predicates should be defined to support structured parameters or stopping criteria in the

logic API for ML. Furthermore, regardless of its shape, the training predicate should accept some

arguments aimed at specifying whether the columns of the training set should be considered as

inputs or outputs.

Inference. Inference is commonly the last phase of any ML workflow. Here, trained predictors

are used to draw predictions on new data—i.e. different data w.r.t. the training set. In most

common cases, predictions attempt to solve classification or regression problems. In any case, yet



another general predicate should be added to our logic API for ML to support drawing predictions

out of a trained predictor and a set of raw data (or a single datum). Ad-hoc predicates may be

provided as well to explicitly model higher-level tasks, such as classification and regression.

Finally, it should be possible to store, retrieve, and re-apply any pre-processing procedure

possibly defined before training, to the raw data for which predictions should be drawn—in

order to make it acceptable for the predictor as an input.

Validation. Validation is the penultimate step of any ML workflow: it follows the training

and precedes the exploitation. It is here discussed as last because it technically relies on the

capability of drawing predictions via trained predictors—which is treated in the paragraph

above.

Generally speaking, validation attempts to measure the predictive performance of a trained

predictor, with the purpose of assessing if and to what extent it will generalise to new, unseen

data. To this end, the predictor is tested against the test set—that is, a collection of unseen

data, for each expected predictions exist. The discrepancy (or similarity) among the actual and

expected predictions is then measured via ad-hoc scoring functions (a.k.a. measures), resulting

in a performance assessment for the trained predictor. Many measures may be used to assess

classifiers (e.g. accuracy, F1-score, etc.) and as many to assess regressors (e.g. MAE, MSE, R
2
,

etc.). Hence, to support validation, the logic API for ML should provide predicates to compute

each possible measure.

3.2. ML activities, per phase

Here we elicit the many activities involved in each phase of any ML workflow, and we describe

them from a computational perspective—i.e. in terms of the sorts of entities (a.k.a. data types)

they accept as input or produce as output (manipulate, for short).

Entities. We start our discussion by identifying the five major sorts of entities each activity

may manipulate.

• Value: a scalar, vectorial, matrix, or tensorial datum from a given domain (e.g. integer or

real numbers, or vectors of integer or real numbers, as well as a string, a table, a time

series, etc.).

• Schema: a concise and formal description of a domain (i.e. a set of values). For scalar

values, schemas are essentially data types (e.g. integers, reals, strings, etc.), while for

non-scalar data they carry information about the name, index, and type of each single

scalar component.

• Dataset: a collection of values matching a particular schema (supposed to be known).

• Transformation: any operation aimed at transforming an entity dataset into another other—

commonly, a dataset into either another dataset (e.g. normalization, standardization, etc.)

or a value (e.g. max, min, average, etc.) From an algebraic perspective, it is a function.

From a computational perspective, it is an algorithm.



• Predictor: a stateful computational entity capable of (i) drawing predictions (i.e. outputting

values) out of (possibly unseen) input values, according to its internal state (ii) updating

its internal state according to a dataset (to improve future predictions)

Any logic-based API for ML should support the representation, combination, and manipulation

of entities of these kinds.

Activities. Each phase of the ML workflow is then characterised by a specific set of activities

possibly manipulating entities of any of these sorts. A logic-based API for ML should support

them as well. Accordingly, in the remainder of this section, we describe such activities along

with the entities they operate upon. In doing so, we partition activities w.r.t. the ML phase they

are most commonly exploited into.

Dataset loading. The main activities to support the loading of a dataset into a solver’s memory,

and its preparation for subsequent processing are

• Dataset loading: operation of loading a dataset from either a value – representing either a

local or remote file –, or from a Prolog theory

• Schema declaration: operation of constructing a representation for a given schema

• Target features declaration: operation of tagging a portion of the features of some schema

as either inputs or outputs (a.k.a. targets)

• Dataset splitting: operation of horizontally partitioning a dataset into two or more smaller

datasets.

Dataset pre-processing. Here, they may be willing to define transformations or cascades of

transformations (pipelines, henceforth) to be eventually applied to datasets:

• Transformation declaration: operation of declaratively encoding a transformation opera-

tion to be applied to all data in a dataset

• Pipeline composition: operation of declaratively constructing a composite transformation

as a cascade of simpler transformations

• Transformation application: operation of actually constructing a new dataset from a prior

dataset and a transformation

Predictor selection and definition. The next phase involves the definition of one or more

predictors via a unique meta-activity, namely:

• Predictor declaration: operation of constructing a representation for a particular predictor,

which implies choosing the predictor family and specifying actual values for its hyper

parameters

Training. Eventually, declared predictors may enter the training phase, meaning that their

learning from data should be triggered. This can be achieved via yet another activity, namely:



Figure 1: Layered view of the proposed ML-Lib. An OO library is assumed behind the scenes, providing
high-level abstraction to optimize ML predictors, possibly via HW acceleration.

• Predictor fitting w.r.t. a training set of data: operation of fitting a predictors’ internal

parameter on some provided training data

Inference. Once in their inference phase, trained predictors may eventually be exploited to

draw predictions. The corresponding activity is:

• Predictor querying: operation where (possibly unseen) values are provided to some trained

predictor as a query, and the resulting values are interpreted as predictions

Validation. Finally, in the validation phase, trained predictors should be assessed by measuring

their performance w.r.t. some test data This is yet another meta-activity, with several possible

variants depending on the particular measure being exploited:

• Predictor scoring: operation of computing a scoring value out of a trained predictor, a test

dataset, and a scoring function

4. ML-Lib Overview and Architecture

This section discusses the design of ML-Lib, the logic programming library reifying the logic API

for ML reifying the meta-model discussed above. The overall architecture is depicted in fig. 1.

The ML-Lib assumes a goal-oriented logic solver being in place, where ordinary logic programs

can be executed. Thanks to the ML-Lib, these logic programs may also exploit a number of

predicates for training and using ML predictors—other than any other entity involved in the

process.

In the backend, the library assumes an underlying object-oriented (OO) library providing

high-level ML abstractions, such as datasets, predictors, and so on. Examples of these libraries

may be for instance Keras [12] or DeepLearning4J [9]. The OO library may in turn be backed

by an optimizer taking care of making training and data management effective on the available

hardware—and possibly exploiting hardware acceleration. In practice, software such as Theano,

Caffe, or Tensorflow may serve this purpose. Actual technological choices may finally depend

on the particular runtime platforms being targeted. For instance, targeting the JVM may



Dataset

read_dataset(+Path: atom, +SourceType: atom, -Dataset: ref)
theory_to_dataset(+Functor: atom, -Dataset: ref)

Creation

fold(+Dataset: ref, +K: int, -Train: ref, -Test: ref)
write_dataset(+Dataset: ref, -Path: atom)
theory_from_dataset(+Schema: ref, +Dataset: ref)
row(+Dataset: ref, ?Index: integer, -Record: compound)
column(+Dataset: ref, ?Key: integer|atom, -Values: list)
cell(+Dataset: ref, ?Index: integer, ?Key: integer|atom, -Values: list)
random_split(+Dataset: ref, +Ratio: real, -Train: ref, -Test: ref)

Manipulation

〈functor〉(〈X11〉, ..., 〈X1j〉, ..., 〈X1n〉).
...
〈functor〉(〈Xi1〉, ..., 〈Xij〉, ..., 〈Xin〉).
...
〈functor〉(〈Xm1〉, ..., 〈Xmj〉, ..., 〈Xmn〉).

Representation

Source Type

source_type(〈T〉)
〈T〉∈ {csv, rdbm, ...}

Creation

Schema

theory_to_schema(-Schema: ref)
Creation

schema(?Schema: ref, ?Name: atom, ?Attributes: list, ?Targets: list)
Manipulation

attribute(1, 〈N1〉, 〈T1〉).
...
attribute(i, 〈Ni〉, 〈Ti〉).
...
attribute(n, 〈Nn〉, 〈Tn〉).
schema_name(〈functor〉).
schema_target(〈Nj〉).

Representation

Transformation

schema_transformation(?Schema: ref, ?Transformation: ref)
〈name〉(+Tin: ref, 〈Arg1〉, ...,〈ArgN〉, -Tout:: ref)

Creation

fit(+Tin: ref, +Dataset: ref, -Tout: ref)
transform(+Din: compound|ref, +Transformation: ref, -Dout: compound|ref)

Manipulation

Normalization

normalize(+Tin: ref, +Attributes: ref, -Tout: ref)

One Hot Encoding

one_hot_encode(+Tin: ref, +Attributes: ref, -Tout: ref)

Attributes Delete

delete_attributes(+Tin: ref, +Attributes: ref, -Tout: ref)

Predictor

〈predictor〉(〈H1〉, 〈H2〉, ..., -Predictor: ref)
Creation

train(+Pin: ref, +Dataset: ref, +Params: list, -Pout: ref)
predict(+Pin: ref, +Data: compund|ref, -Prediction: compund|ref)
classify(+Prediction: compund|ref, +Strategy: compound, +Classes: list, -Classification: compund|ref)

Manipulation

Classification Strategy

classification(〈S〉)
〈S〉∈ {max, threshold(〈T〉), ...}

Creation

Neural Network

network(+Layer: ref, -Network: ref)
Creation

Layer

input_layer(+Size: int, -Layer: ref)
Creation

dense_layer(+Lin: ref, +Size: int, +Activatin: atom, -Lout: ref)
output_layer(+Lin: ref, +Size: int, +Activatin: atom, -Lout: ref)

Manipulation

Activation

activation(〈A〉)
〈A〉∈ {identity, relu, sigmoid, tanh, ...}

Creation

Loss

loss(〈L〉)
〈L〉∈ {mse, mae, cross_entropy, ...}

Creation

Parameter

〈param〉(〈Value〉)
Creation

Max Epochs

max_epochs(+N: int)
Creation

Batch Size

batch_size(+N: int)
Creation

1
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Figure 2: Overview of our ML-Lib design. The chart represents the many entities logic programmers
may exploit via our ML-Lib, and the many predicates supporting their creation, manipulation, or
representation. Predicates are depicted with either a yellow diamond in case they are non-deterministic
(a.k.a. backtrackable), or a green circle otherwise.

imply DeepLearning4J to be exploited, while targetting Python may exploit both Keras and

Tensorflow. However, while technological choices are contingent and subject to change, the

overall architecture is meant to support the implementation of the ML-Lib as a façade towards

the underlying OO library, regardless of what it is.

At the functional level, the design of the ML-Lib is provided in terms of logic predicates acting

on the above defined entities. Details about the predicates are provided in the supplementary

material. Figure 2 provides an overview of these predicates, grouped by entities.

5. ML-Lib Examples

Here we discuss the usage of the ML-Lib to serve the purposes described in section 2.

From an LP perspective, our examples assume the existence of a logic solver/language

exploiting some implementation of the ML-Lib. For the sake of simplicity, we assume a Prolog

solver is employed. Examples consist of Prolog scripts, possibly involving standard Prolog

predicates.

From an ML perspective, our examples assume a very simple scenario where a neural-network

classifier is trained on the well known Iris dataset [13]. The resulting NN is then exploited to

write a simple hybrid predicate aimed at classifying unseen Iris instances.

Declarative ML. Declarativeness is a key benefit of our symbolic approach to ML. The

ML-Lib supports declarative ML in several ways, as exemplified by listings 1, 2, 3, and 5.

In particular, listing 1 shows how the schema and data entries of the Iris dataset can be

treated in logic. Notably, the Iris data set contains 150 rows describing as many individuals



�
1 % schema declaration
2 attribute(0, sepal_length, real).
3 attribute(1, sepal_width, real).
4 attribute(2, petal_length, real).
5 attribute(3, petal_width, real).
6 attribute(4, species, categorical([setosa, versicolor, virginica])).
7 schema_target([species]).
8 schema_name(iris).
9

10 % reading schema from theory
11 iris_schema(S) :- theory_to_schema(S).
12

13 % dataset loading
14 iris_dataset(D) :-
15 read_dataset('/path/to/iris.csv', csv, D).
� �

Listing 1: Dataset loading from file

�
1 % declaring & fitting the preprocessing pipeline
2 preprocessing_pipeline(Dataset, Schema, Pipeline) :-
3 schema_transformation(Schema, Step0),
4 normalize(Step0, [petal_width, petal_length, sepal_width, sepal_length], Step1),
5 one_hot_encode(Step1, [species], Step2),
6 fit(Step2, Dataset, Pipeline).
� �

Listing 2: Pre-processing pipeline

�
1 % neural network declaration
2 multi_layer_perceptron(Nin, Nhidden, Nout, NN):-
3 input_layer(Nin, IL),
4 hidden_layer(IL, Nhidden, H),
5 output_layer(H, Nout, softmax, O),
6 neural_network(O, NN).
7

8 hidden_layer(L, [], L).
9 hidden_layer(L, [N | M], H) :-

10 dense_layer(L, N, relu, L1), hidden_layer(L1, M, H).
� �
Listing 3: Neural network structure declaration

of the Iris flower. For each exemplary, 4 continuous input attributes – petal and sepal width
and length – are recorded, other than a categorical target attribute—denoting the actual Iris

species. There are three particular species of Iris in this data set – namely, Setosa, Virginica,

and Versicolor –, and the 150 examples are evenly distributed among them—i.e., there are 50

instances for each class. The Prolog script describes the Iris dataset’s schema in clausal form,

as discussed in appendix A.1.1. It also declares two predicates – namely, iris_schema/1 and

iris_dataset/1 – aimed at letting the logic programmer retrieve either the schema or its



dataset in object form. More precisely, iris_schema/1 attempts to read the schema from the

local theory, while iris_dataset/1 attempts the load the dataset from a CSV file. Listing 4

(presented later in this section) reports a similar scenario where the dataset as well is loaded

from the local theory.

Listing 2 exemplifies the declaration of a pre-processing pipeline aimed at normalising the

input attributes of any Dataset having the same Schema of Iris, other than one-hot encoding

its output attributes. The resulting Pipeline is then fitted against the provided Dataset, and

bound to the corresponding output argument.

In turn, listing 3 presents a general purpose predicate aimed at defining multi-layered

perceptron predictors with an arbitrary amount of hidden layers. This is enabled by the

multi_layer_perceptron/4 predicate, which requires the caller to provide the number of

neurons to be instantiated for (i) the input layer (Nin), (ii) the output layer (Nout), and (iii) for

each hidden layer (Nhidden). Notably, Nhidden should consist of a list in integers, denoting

the number of neurons for each hidden layer – from the outermost to the innermost –, while

the total amount of integers corresponds to the number of hidden layers. The resulting neural

network predictor is then bound to the NN output argument. So, for instance, a NN having 4

input neurons, 2 hidden layers with 5 and 7 neurons respectively, and 3 output neurons can be

declared as follows:

multi_layer_perceptron(4,[5, 7],3,NN)

Finally, listing 5 declares an end-to-end ML workflow aimed at selecting and training the best

NN architecture to tackle Iris classification. It is worth noting that the declarative nature of the

script can be regarded as a formal – yet human-readable – specification of a classifier training

workflow.

Symbolic data sources. As highlighted above it may be useful to perform ML upon data

expressed in logic form. This requires logic theories to act as symbolic data sources. ML-Lib

supports such scenario, as exemplified in listing 4. The script is assumed to replace listing 4

in those situations where the Iris dataset is logically described in the clausal form. Here, the

iris_dataset/1 attempts to load the data from the local theory instead of a file.

Model selection via resolution. The automatic exploration of a search space subtended

by logic resolution could be exploited to perform model selection. Indeed, model selection

essentially consists of an exploration of the hyper and learning parameters space, looking for

the best possible values—i.e. those hyper and learning parameters assignments corresponding

to well-performing predictors on the available training set.

Accordingly, the ML-Lib supports expressing and performing model selection in logic (list-

ing 5). There hyper, learning, and workflow parameters are expressed as logic facts, and

the params/2 predicate is defined to enumerate all possible combinations of theirs—e.g. via

Prolog’s backtracking mechanism. The model_selection/5 predicate is in charge of step-

ping through all such parameters with the purpose of selecting, and training all correspond-

ing NN predictors which attain a sufficiently high predictive performance—denoted by the

target_performance/1 fact. For each trained predictor, the predicate outputs not only a



�
1 /* attributes definition here */
2

3 % dataset definition
4 iris(5.1, 3.2, 1.4, 0.2, setosa).
5 iris(4.9, 3, 1.7, 1.2, versicolor).
6 iris(5.9, 3.4, 1.1, 0.9, virginica).
7 /*... other entries here...*/
8

9 % reading schema from theory
10 iris_schema(S) :- theory_to_schema(S).
11

12 % reading dataset from theory
13 iris_dataset(D) :- iris_schema(S), theory_to_dataset(S, D).
� �

Listing 4: Dataset loading from the local theory

reference to the Predictor itself, but also its Performance, and the affine Transformation
to be applied to each datum for which predictions should be drawn using that predictor. The

predicate model_selection/5 works by

1. splitting the provided Dataset into a TrainingSet and a TestSet, according to a split

ratio (R) declared by the test_percentage/1 fact

2. declaring and fitting a pre-processing Transformation aimed at normalising the

TrainingSet’s input attributes, and one-hot encoding its output attributes

3. applying such Transformation to the TrainingSet, hence producing a

ProcessedTrainingSet

4. stepping through all possible hyper (HyperParams) and learning (LearnParams) pa-

rameters combinations,

5. training each corresponding predictor, via 10-fold cross validation (CV), and computing

its average validation-test performance (P)

6. skipping each hyper and learning parameters combination such that the average perfor-

mance P is lower than the target performance T

7. re-training a full-fledged MLP on the whole TrainingSet, for each parameters combi-

nation such that P >= T

8. testing that MLP against the ProcessedTestSet – obtained by applying

Transformation to the TestSet –, thus computing the MLP actual Performance

In other words, the model_selection/5 represents a declarative, and pretty general, workflow

for model selection—which may be adapted to other supervised learning tasks with minimal

changes. Further details about the many predicates exploited in this example are provided in

the supplementary material.



�
1 /* Hyper paramenters */
2 hidden_layers([10]). hidden_layers([20, 10]).
3 hidden_layers([30, 20, 10]).
4

5 /* Learning paramenters */
6 max_epochs(30). max_epochs(50).
7 batch_size(32). batch_size(16).
8 learning_rate(0.01). learning_rate(0.1).
9 loss(cross_entropy).

10

11 /* Workflow paramenters */
12 target_performance(0.90). test_percentage(0.2).
13

14 /* Generates all hyper & learning params combinations */
15 params(
16 [hidden_layers(H)],
17 [iterations(X), learning_rate(Y), batch_size(Z), loss(L)]
18 ) :- hidden_layers(H), max_epochs(X), learning_rate(Y),
19 batch_size(Z), loss(L).
20

21 /* Generates and trains all Predictors for the given Dataset and Schema,
22 whose Performance is at least target_performance. */
23 model_selection(Dataset, Schema, Predictor, Transform, Performance) :-
24 test_percentage(R), target_performance(T),
25 random_split(Dataset, R, TrainSet, TestSet),
26 preprocessing_pipeline(TrainSet, Schema, Transform),
27 transform(TrainSet, Transform, ProcessedTrainSet),
28 params(HyperParams, LearnParams),
29 train_cv(ProcessedTrainSet, HyperParams, LearnParams, P),
30 P >= T,
31 multi_layer_perceptron(4, HyperParams, NN),
32 train(NN, TrainingSet, LearnParams, Predictor),
33 transform(TrainSet, Transform, ProcessedTestSet),
34 test(NN, ProcessedTestSet, Performance).
35

36 /* Example of training query: */
37 ?- iris_dataset(D), iris_schema(S), model_selection(D, S, P, _, A).
� �

Listing 5: Declarative description of a ML workflow aimed at selecting the best hyper and learning

parameters for a NN classifier. Ancillary predicates invoked in this snippet are reported in

the supplementary material.

Under these hypotheses, a model selection workflow for the Iris dataset may be triggered via

a concise logic query such as the one from listing 5 (line 37). If all aspects of the model selection

workflow are correctly declared, the query provide multiple successful solutions corresponding

to all trained predictors (P) and their test-set accuracies (A).

Hybrid reasoning. Finally, listing 6 shows the exploitation of a trained NN predictor as a

predicate aimed at classifying (possibly) unseen instances of the Iris flower. The script serves a



�
1 /* assumption: */
2 :- iris_dataset(D), iris_schema(S), model_selection(D, S, N, T, _), !,
3 assert(iris_nn(N, T)).
4

5 /* hybrid iris classifier */
6 iris(SL, SW, PL, PW, Species) :-
7 iris_nn(Network, Transformation),
8 transform([SL, SW, PL, PW] , Transformation, ActualX),
9 predict(Network, ActualX, Y),

10 classify(Y, argmax, [setosa, versicolor, virginica], Species).
� �
Listing 6: Exploitation of the NN classifier trained in listing 5 to create an hybrid predicate

�
1 iris(SL, SW, PL, PW, setosa) :- PW =< 0.78.
2 iris(SL, SW, PL, PW, versicolor) :- PL >= 2.86, PL < 4.91.
3 iris(SL, SW, PL, PW, virginica).
� �

Listing 7: A purely symbolic classifier for Iris flowers, functionally equivalent to the hybrid one from

listing 6

twofold purpose: it exemplifies the ML-Lib functionalities aimed at drawing predictions out of

trained ML predictors, and, in particular, it provides an example of an hybrid reasoner—where

symbolic and sub-symbolic AI seamlessly interoperate.

The script assumes a fact of the form iris_nn(N, T) is available into the solver’s KB,

storing a reference to a trained NN predictor (N) and to the affine transformation (T) to be

applied to each datum the predictor should be fed with. Such assumption may be satisfied, in

Prolog, by a query such as the one from listing 6 (line 2) which selects and trains a single NN

and stores it into the solver’s dynamic KB.

Under such assumption, logic programmers may write an iris/5 predicate such as the one

shown in listing 6. The predicate allows the caller to classify Iris instances by triggering a

previously trained NN, and by letting it draw predictions on the data row attained by composing

the predicate’s arguments—via the predict/3 predicate. The prediction is then converted

into a class constant – via the classify/4 predicate –, which is in turn bound to the output

parameter of iris/5—namely Species.

It is worth to be highlighted that, from the caller perspective, the iris/5 described so

far is indistinguishable from a purely symbolic predicate serving the same purpose (i.e., Iris

classification) and having the same name and arity—such as the one described in listing 7.

6. Conclusions

In this paper, we propose a logic API supporting the seamless integration of logic solvers

with sub-symbolic AI, and, in particular neural-network-based supervised ML. Stemming

from a domain analysis aimed at identifying the major computational entities involved in

a supervised ML workflow, we design our API in terms of computational entities and the



operations/functionalities they should support. We then reify our API into a set of logic

predicates composing the ML-Lib—i.e., an abstract logic library that any goal-oriented solver

may support, there including Prolog ones. Both the syntax and the semantics of each predicate

are discussed, as well as architectural and technological requirements. Finally, we provide a

number of usage examples aimed at showing the potential of the ML-Lib. In particular, we

discuss examples where our logic API supports declarative ML (possibly from symbolic data

sources), model selection via resolution, and hybrid reasoning. Indeed, the ML-Lib enables the

user to formally define ML workflows in a way that is both human- and machine-interpretable,

focussing on what should be done, rather than how.

Hybrid reasoning, in particular, is the most relevant contribution of ours. It consists of the

seamless integration of logic and sub-symbolic AI at the functional level. In fact, thanks to our

ML-Lib, trained sub-symbolic predictors may be used in LP as ordinary predicates.

In the future, we expect contributions to stem from our ML-Lib along two different research

threads. The first thread concerns the exploitation of the ML-Lib to create hybrid systems,

where LP and ML are integrated into manifold ways. This is made possible by our logic API

for ML, which reduces the abstraction gap among LP and ML, as well as the ML-Lib, which

lowers the technological barriers preventing the integration of symbolic and sub-symbolic AI.

The second thread concerns the extensions of the ML-Lib, which should be eventually delivered

to cover currently unsupported functionalities—as well as other ML predictors than NN.
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A. Supplementary Material

A.1. Realising the API: ML-Lib Design

In the reminder of this section, we adopt the following notation to denote the interfaces of logic

predicates:

functor(⊙1 Name1: type1, . . . , ⊙𝑁 Name𝑁: type𝑁)

where 𝑁 denotes the arity of predicate functor/𝑁 , whose 𝑖𝑡ℎ argument – named Name𝑖 –

must be of type type𝑖, and it must be considered as an input or output parameter depending on

the mode indicator
1⊙𝑖. So, for instance, we denote input parameters by +, output parameters

by -, and input-output parameters by ?. Admissible arguments types include constant term

types (integer, real, atom), structured term types (compound, list), as well as references
(ref), and union types (T1|T2|. . .). References, in particular, are a special kind of constant

term, whose instances represent objects from the object-oriented realm. These are necessary to

make our ML-Lib able to operate with the non-logic entities exposed by the underlying OO

library supporting ML.

Accordingly, in the reminder of this section, we enumerate the predicates constituting our

ML-Lib, categorised w.r.t. the entities they act upon. In particular, the ML-Lib exposes predicates

covering 4 major sorts of entities – i.e. the ones elicited in section 3.2, namely: Schema, Dataset,

Transformation, and Predictor –, plus a number of ancillary entities aimed at supporting their

manipulation – such as Classification Strategy, Source Type, and Parameter – or specialising

their behaviour—such as Neural Network, and Layer.

A.1.1. Schemas

Schemas are concise metadata describing datasets’ columns. They define their indexes, names,

and admissible types, and they are assumed to be declared by the user.

The ML-Lib supports schemas represented as any of two forms: either as clauses or as

objects—to be represented in LP via reference terms. Ad-hoc predicates are provided to support

the conversion from one form to the other.

Schemas as clauses. In the general case, schema declarations are firstly provided by the user

in clausal form. This requires the user to fill the logic theory with clauses of the form:

attribute(1, 𝑁1, 𝑇1).
...

attribute(𝑖, 𝑁𝑖, 𝑇𝑖).
...

attribute(𝑛, 𝑁𝑛, 𝑇𝑛).
schema_name(𝑁).
schema_targets([𝑁𝑗, 𝑁𝑘, . . ., 𝑁ℎ]).

1

cf.https://www.swi-prolog.org/pldoc/man?section=preddesc

cf. https://www.swi-prolog.org/pldoc/man?section=preddesc


where 𝑁 is the name of the schema, and 𝑛 is the total amount of attributes declared for that

schema, while 𝑁𝑖 is the name of the 𝑖𝑡ℎ attribute, and 𝑇𝑖 is its type. Indexes 𝑗, 𝑘, ℎ ∈ {1, . . . , 𝑛}
aim at selecting attributes names declared as targets—i.e. as outputs of the learning process.

While attribute (𝑁𝑖) and schema (𝑁 ) names are simple atoms, attribute types (𝑇𝑖) are compound

terms for which the attribute_type(𝑇𝑖) holds true.

The attribute_type/1 predicate is defined as follows:

attribute_type(string).
attribute_type(integer).
attribute_type(real).
attribute_type(boolean).
attribute_type(categorical([_ | _])).
attribute_type(ordinal([_ | _])).

Hence, admissible attribute types involve infinite domains such as the numeric (either integer

or real numbers), and strings ones, as well as finite domains such as booleans, and categorical

(i.e. unordered) or ordinal sets of constant values.

Schemas as objects. To be exploitable by the underlying OO library, schemas must be

represented as objects. Schemas represented in clausal form can be converted into object form

via the following predicate:

theory_to_schema(-Schema: ref)

which (i) inspects the current KB looking for a schema description in clausal form, (ii) instantiates

a new schema object in the underlying OO library, (iii) creates a new reference term referencing

the newly created schema, (iv) unifies that term with the output parameter denoted by Schema.

References to schemas in object form may be then passed as arguments to many other

predicates from the ML-Lib in order to provide them the necessary metadata to manipulate

datasets.

Manipulating schemas. A part from schema declaration or creation, other relevant opera-

tions over schemas involve the inspection (i.e. reading) of their components—namely, names,

attribute names, attribute types, and targets. This can be achieved via the following predicate:

schema(?Schema: ref, ?Name: atom, ?Attributes: list, ?Targets: list)

Given a schema reference, the predicate retrieves (i) the schema’s name, which is unified with

Name, (ii) the list schema attributes – where each attribute has the form attribute(𝑖, 𝑁𝑖,
𝑇𝑖) –, which is unified with Attributes, and (iii) the list of schema targets – where each

target is an atom acting as attribute name –, which is unified with Targets. Notably, the

predicate is bi-directional and its arguments can act as either input or output parameters. In

case an unbound Schema variable is provided as output parameter, and assuming that the Name,

Attributes, and Targets parameters are fully instantiated, the schema/4 predicate acts as

yet another way to create a schema in object form—and the newly created schema is bound to

Schema.



A.1.2. Datasets

A dataset is a tabular representation of a bunch of homogenous data records. As such, a dataset

is characterised by a schema and a number of records matching that schema.

Similarly to what it does for schemas, the ML-Lib supports datasets represented as either

clauses or objects. Ad-hoc predicates are provided to support the conversion from one form to

the other, other than for loading datasets from some data source, such as a file or a DBMS.

Datasets as objects. In the general case, datasets objects are firstly loaded from a data source.

These may be local or remote files – commonly in “comma separated values” (CSV) format –,

as well as DBMS of any sort—provided that adequate connection support is provided by the

underlying OO library, or any other third-party module. The ML-Lib provides a unique entry

point to load a dataset from any data source, namely:

read_dataset(+Location: atom, +SourceType: atom, -Dataset: ref)

This predicate aims at loading the dataset from a given Location—be it a path on the local

filesystem, a URL referencing some remote resource, or a connection string for some DBMS. It

also requires the caller to specify the SourceType the dataset should be read from. Regardless

of the particular location and source type, the behaviour of the read_dataset/3 predicate is

such that: (i) raw data is retrieved from Location, and (ii) parsed according to the selected

source SourceType; finally (iii) a new dataset object is created along with a reference term for

it, (iv) which is then unified with Dataset.

Admissible values for the SourceType parameter are determined by the source_type/1
predicate, defined as follows:

source_type(csv).

meaning that currently the ML-Lib only supports data provisioning from CSV files. However,

further source types are going be supported in the future. That will imply extending the

source_type/1 predicate definition with further cases.

Datasets as clauses. Logic programmers may also be willing to describe the dataset via a

logic theory. When this is the case, the theory should contain not only the clauses describing the

schema (i.e. the dataset’s columns), but also a number of clauses describing the actual content

of the dataset (i.e. its rows). In particular, the ML-Lib expects data entries to be provided as

clauses of the form:

𝑁(X1,1, . . . , X1,𝑗, . . . , X1,𝑛).
...

𝑁(X𝑖,1, . . . , X𝑖,𝑗, . . . , X𝑖,𝑛).
...

𝑁(X𝑚,1, . . . , X𝑚,𝑗, . . . , X𝑚,𝑛).



where 𝑁 is the schema name declared via schema_name/1, and X𝑖,𝑗 is the value of the 𝑗𝑡ℎ

attribute of the 𝑖𝑡ℎ data entry. Of course, the actual type of X𝑖,𝑗 must be coherent with the

formal type 𝑇𝑖 declared in the schema definition.

Datasets in clausal form must be converted into object form to be exploitable by the underlying

OO library. This can be achieved via the following predicate:

theory_to_dataset(+SchemaName: atom, -Dataset: ref)

which (i) inspects the current KB looking for one or clauses using SchemaName as the head

functor, (ii) instantiates a new dataset object in the underlying OO library, (iii) populates it with

as many rows as the aforementioned clauses, (iv) creates a new reference term referencing the

newly created dataset, (v) unifies that term with the output parameter denoted by Dataset. Of

course, this predicate also takes into account the schema-related metadata which are assumed

to be defined in clausal form as well.

Datasets manipulation. Datasets are amongst the basic bricks of predictors training in ML,

hence they must support several kinds of manipulations. Within the scope of the ML-Lib, we

support partitioning a dataset in several ways to support both cross validation and test set

separation, other than accessing a dataset by row, column, or cell. Conversions from and into

clausal form complete the picture.

Splitting. To support test set separation, the ML-Lib provides a predicate to randomly split a

dataset into a training and test set, given a ratio:

random_split(+Dataset: ref, +Ratio: real, -Train: ref, -Test: ref)

Given a reference to a Dataset in object form, and a Ratio – i.e. a real number in the range

]0, 1[ –, the predicate (i) randomly samples the given percentage of data entries from Dataset,

(ii) collects them into a new dataset, whose reference is bound to Test, and (iii) collects the

remaining data entries into yet another dataset, whose reference is bound to Train. So, for

instance, a ratio of 0.1 would randomly split the dataset into a training set containing 90% of

the original data, and a test set containing 10% of the original data.

To support cross validation, ML-Lib provides an ad-hoc predicate:

fold(+Dataset: ref, +K: integer, -Train: ref, -Validation: ref)

which splits the Dataset into 2 partitions, namely Train and Validation, the former contain-

ing
𝑘−1
𝑘 % data entries – to be used as the training set –, and the latter containing the remaining

1
𝑘% data entries—to be used as the validation set. Both Train and Validation are bound to

reference terms, referencing datasets in object form. Notably, the fold/2 is non-deterministic

as it enumerates all possible folds of a K-fold cross validation process. Hence, provided that

K ≥ 2, the predicate computes K partitioning of the original dataset.

Data access. The ML-Lib supports accessing the information encapsulated into a dataset in

object form via three predicates, namely:

• row(+Dataset: ref, ?Index: integer, -Values: list).

• column(+Dataset: ref, ?Attribute: integer|atom, -Values: list).



• cell(+Dataset: ref, ?Index: integer, ?Attribute: integer|atom,
-Values: list).

They are all non-deterministic, and they both support the retrieval of a particular row / column

/ cell from the dataset as well as the enumeration of all possible rows / columns / cells from that

dataset.

In particular, predicate row/3 aims at retrieving rows. If the Index parameter is a positive

integer, then the predicate attempts to unify the Value parameter with the list of values

contained the Index𝑡ℎ row of the dataset. Otherwise, if Index is uninstantiated, the predicate

enumerates all rows in the dataset, and for each row it unifies the Index and Values parameters

accordingly.

The predicate column/3 is totally analogous to row/3, expect it aims at retrieving or enu-

merating columns. The only notable difference w.r.t. row/3 is that columns can be referenced

by either attribute names or indexes—thus both positive integers and atoms can be bound to

the Attribute parameter.

Finally, predicate cell/4 supports accessing or enumerating cells. In particular, it allows

the user to access the Value in position (Index, Attribute), where Index is a row index in

and Attribute is an attribute name or index. If one or both parameters are uninstantiated,

the predicate enumerates all possible assignments.

Object to clausal form conversion. The logic programmer may also be willing to convert a

dataset in object form into a dataset in clausal form. This can be attained via the following

predicate:

theory_from_dataset(+Schema: ref, +Dataset: ref)

Given the references to both a dataset and its schema in object form, the predicate populates

the solver’s dynamic KB with the a number of clauses representing the dataset and its schema

in the clausal form described above.

A.1.3. Transformations

A transformation is a function altering a dataset and, possibly, its schema. It may be parametric

and hence tuned according to the content of the dataset or its schema.

Consider for instance the case of the “Normalization” transformation. It applies an affine

transformation to each column of the dataset (independently) in such a way that it has a

predefined mean (e.g. 0) and standard deviation (e.g. 1). Hence, it alters the content of a dataset

leaving its schema unaffected. To work properly, it requires two major computational steps,

namely (i) computing (and storing) the mean and standard deviation of each column of the

original dataset, (ii) applying the affine transformation to normalize the dataset columns (i.e.

subtracting the mean and dividing by the standard deviation each cell of each column).

In the general case, transformations are modelled as stateful entities supporting at least 2

operations, namely fitting and transforming a dataset and its schema. The latter operation is also

known as “applying a transformation to a dataset”, and it should not only support the retrieval

of the transformed dataset, but the transformed schema as well. Furthermore, transformations



should be composable into pipelines, i.e. cascades of simpler transformations to be fitted or

applied in a row.

To support all such aspects, the ML-Lib provides predicates aiming to

1. create a transformation given a schema,

2. combine elementary transformations into composite transformations,

3. fit transformations over data (regardless of whether they are elementary or composite),

4. apply composite or elementary transformation to a dataset, thus attaining a new dataset,

5. retrieve the new schema resulting from a transformation application.

Differently from schemas and datasets, for which the ML-Lib supports both clausal and object

representations, transformations are only representable in object form, hence the following

predicates assume transformations to be manipulated via reference terms.

Transformations to/from schemas. To support aims 1 and 5, the ML-Lib provides the

following bi-directional predicate:

schema_transformation(?Schema: ref, ?Transformation: ref)

which changes its behaviour depending on which arguments are instantiated.

In particular, if Schema is bound to a schema object, then Transformation is unified with

an identity transformation – i.e. a transformation leaving the schema and the dataset unaffected

–, which can be used as the initial step of a composite pipeline. This is how aim 1 is served.

Conversely, if Transformation is bound to an actual transformation object, then Schema
is unified with the new schema object attained by applying that transformation to the schema

it was originally constructed from. This is how aim 5 is served.

Creating and combining elementary transformations. To support aim 2, the ML-Lib

provides a number of predicates sharing a similar syntax. Each predicate is in charge of

creating a composite transformation by appending a specific elementary transformation

to some previously created one—like, for instance, the identity transformation created via

schema_transformation/2.

In the general case, the combination and creation of transformations is attained via predicates

of the form:

⟨name⟩(+Pipeline𝑖𝑛: ref, +𝐴1, . . . , +𝐴𝑛, -Pipeline𝑜𝑢𝑡: ref)

where ⟨name⟩ is the name of the transformation being appended to Pipeline𝑖𝑛, while

𝐴1, . . . , 𝐴𝑛 are transformation-specific parameters, and Pipeline𝑜𝑢𝑡 is the output param-

eter to which the newly created transformation is bound.

The ML-Lib currently supports 3 predicates of this sort, and further ones may be defined

following the same syntactical convention. These are normalize/3, one_hot_encoding/3,

and attributes_delete/3, and their details are described later in this paragraph. Here

we focus on the overall design which is aimed at supporting the declaration of pipelines of

transformations, via conjunctions of goals:



theory_to_schema(OriginalSchema),
schema_transformation(OriginalSchema,T0),
transformation1(T0, arg1, T1),

...
transformation𝑚(T𝑚−1, arg𝑚, T𝑚),
schema_transformation(FinalSchema, T𝑚)

Following this convention, logic programmers may declaratively construct the pipeline of

transformations to be applied to OriginalSchema to produce FinalSchema, in such a way

that each variable T𝑖, for 𝑖 ∈ {0, . . . ,𝑚} is bound to an object summarising all transformation

steps from 0 to 𝑖.
Normalization. A dataset’s columns can be normalised in such a way that, for each column,

the mean is 0 and the standard deviation is 1. Such kind of transformations may alter the dataset

while leaving its schema unaffected. A normalization transformation can be created via the

following predicate:

normalize(+Pipeline𝑖𝑛: ref, +Attributes: list|atom, -Pipeline𝑜𝑢𝑡: ref)

There, parameter Attributes must be bound to either a list of attribute names or indexes –

denoting the columns to be normalized –, or the ‘all’ atom—denoting a situation where all

columns should be normalized.

One Hot Encoding. A dataset’s target attributes whose type are categorical with 𝑘-admissible

values can be replaced by 𝑘 binary attributes, via one-hot encoding (OHE) transformations.

Such kind of transformations alter both the dataset and its schema. A OHE transformation can

be created via the following predicate:

one_hot_encode(+Pipeline𝑖𝑛: ref, +Attributes: list|atom, -Pipeline𝑜𝑢𝑡:
ref)

There, parameter Attributes must be bound to a list of attribute names or indexes denoting

the columns to be one-hot encoded.

Attributes Deletion. Columns may be dropped from a dataset and its schema via attribute

deletion transformations. Such kind of transformations alter both the dataset and its schema.

An attribute deletion transformation can be created via the following predicate:

one_hot_encode(+Pipeline𝑖𝑛: ref, +Attributes: list|atom, -Pipeline𝑜𝑢𝑡:
ref)

There, parameter Attributes must be bound to a list of attribute names or indexes denoting

the columns to be dropped.

Fitting transformations to data. To support aim 3, the ML-Lib provides the following

predicate:

fit(+Transformation𝑖𝑛: ref, +Dataset: ref, -Transformation𝑜𝑢𝑡: ref)



which works by tuning Transformation𝑖𝑛 over Dataset, producing a new transformation,

whose reference is unified with Transformation𝑜𝑢𝑡.
The new transformation may be identical to the input one, in case the latter does not require

tuning—such as in the case of OHE. Conversely, in case it does need tuning – as in the case

of normalization –, the output transformation may actually be different than the original

one. Fitting a composite transformation of course has the effect of fitting all its components,

recursively.

Applying transformations to data. Finally, to support aim 4, the ML-Lib provides the

following bi-directional predicate:

transform(?Data𝑖𝑛: ref|compound, +Transformation: ref, ?Data𝑜𝑢𝑡:
ref|compound)

which can either apply a transformation or its inverse depending on either entire datasets or

their rows, depending on how arguments are passed.

In particular, Data𝑖𝑛 and Data𝑜𝑢𝑡 can be either dataset references, or compound terms,

denoting single rows. Of course, applying a (possibly inverse) transformation to a row (resp.

entire dataset) shall produce a row (resp. entire dataset) in return.

The predicate applies Transformation to Data𝑖𝑛 in case the latter parameter is instan-

tiated, unifying the transformed result with Data𝑜𝑢𝑡. Conversely, it applies the inverse of

Transformation to Data𝑜𝑢𝑡 in case the Data𝑖𝑛 parameter is uninstantiated while the former

is not. When this is the case, the transformed result is unified with Data𝑖𝑛.

A.1.4. Predictors

Predictors are stateful entities which can be trained over a dataset to later draw predictions on

new data matching the same schema. In the general case, all predictors may require a number

of hyper parameters to be specified upon creation, and a number or learning parameters to be

provided upon training. Both kinds of parameters aim at regulating the predictor behaviour,

either in general or during training, and their actual values must be decided by the user.

Given the large number of possible predictors from the data science literature, the ML-Lib just

fixes the syntactical convention to support predictors creation, other than the API to support

both training and drawing predictions. Notably, as for transformations, the ML-Lib assumes

predictors to be represented in object form, and therefore manipulated via reference terms.

Creating predictors. The ML-Lib constrains predictor-creating predicates to comply to the

following syntactical convention:

⟨name⟩(+𝐻1, . . . , +𝐻𝑛, -Predictor: ref)

where ⟨name⟩ is the name of the predictor type being instantiated, while 𝐻1, . . . ,𝐻𝑛 are

predictor-type-specific hyper-parameters, and Predictor is the output parameter to which

the newly created predictor is bound.



The ML-Lib currently supports one predicate of this sort – namely, the neural_network/2
predicate, described later in this section –, yet further ones may be defined following the same

syntactical convention.

Training. Regardless of their nature, predictors can be trained on data via the following

predicate:

train(+Predictor𝑖𝑛: ref, +Dataset: ref, +Params: list, -Predictor𝑜𝑢𝑡:
ref)

The predicate accepts Predictor𝑖𝑛 as the predictor to be trained, the Dataset it should

be trained upon, and a list of predictor-specific Params. Behind the scenes, the predicate

exploits a predictor-specific learning algorithm to train Predictor𝑖𝑛, possibly following the

suggestions/constraints carried by Params. Once the training has been completed, a reference

to the trained predictor is bound to Predictor𝑜𝑢𝑡, and the execution of the predicate succeeds.

Learning Parameters. The Params argument of train/4 must be instantiated with a list of

learning parameters aimed at controlling and constraining the execution of a learning algorithm.

In the general case, each parameter is a term of the form:

⟨name⟩(⟨value⟩)

where ⟨name⟩ is a functor describing the purpose of the parameter, while ⟨value⟩ is an arbitrary

term acting as value for the parameter.

In the particular case of neural networks, the ML-Lib admits the following learning parameters

• max_epochs(N: integer) limiting the amount of epochs
2

to be performed while

training a NN;

• batch_size(N: integer) defining the amount of training samples to be taken into

account in each single step of the learning algorithm;

• learning_rate(R: real) defining the step size in a gradient descent learning process;

• loss(Function: atom) dictating which loss function should be optimised during

training (admissible values include: mse for mean squared error, mae for mean absolute

error, cross_entropy, etc.)

Other sorts of learning parameters may be added to the ML-Lib, targeting both NN or other

sorts of predictors.

Drawing predictions. Regardless of their nature, trained predictors can be exploited to draw

predictions from data – e.g. from a whole dataset or a single row –, via the following predicate:

predict(+Predictor: ref, +InputData: ref|compound, -Prediction:
ref|compound)

2

i.e., the amount of times the learning algorithm works through the entire training dataset



The predicate accepts a Predictor (which must have been previously trained via train/4),

and some InputData – which may either be reference to a dataset object, or a compound term

denoting a single row –, and uses the Predictor to compute a prediction for each data entry

in InputData. Predictions may consist of either a single row or a whole dataset, depending on

how many data entries are contained in InputData. In both cases, the Prediction output

parameter is unified with the predicted row/dataset.

In case InputData is bound to a full dataset including one or more target columns, those

target columns are ignored while computing predictions. Conversely, when InputData is

bound to a list of values, the ML-Lib considers them all as input values.

Classification. As many predictors – there including NN – are technically tailored on regression
tasks (where predicted values are real numbers), it is a common practice for data scientists

to map classification tasks (where predicted values are categorical) onto regression tasks, to

make it possible to address them via regressors. The mapping commonly works as follows.

A classification task requiring input data to be classified according to 𝑘 ∈ N≥0 classes, can

be conceived as a regression aimed at predicting continuos vectors y ∈ R𝑘
from the same

input data. Given a particular input datum x, and the corresponding prediction y, the 𝑖𝑡ℎ

component of y – namely, 𝑦𝑖 – could then be interpreted as the confidence of x being classified

as an example of the 𝑖𝑡ℎ class. Depending on the nature of the classification task at hand, the

confidence values in y could be jointly interpreted following several strategies. In a situation

where classes are mutually exclusive, one may use function 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑦𝑖) to select the most

likely class of x. Otherwise, if classes can overlap, one choose a confidence threshold 𝜃 and

classify x according to all those classes 𝑖 such that 𝑦𝑖 ≥ 𝜃.

The ML-Lib supports classification out of regressors via the following predicate:

classify(+Prediction: ref|compound, +Strategy: compound, +Classes:
list, -Classification: ref|compound)

which accepts a Prediction computed via predict/3 – be it a single row or a whole dataset

–, a classification Strategy, a list of Classes, and an output parameter, Classification,

which is bound to a container for as many categorical predictions as in Prediction.

Notably, while the Classes parameter must consist of a list of (at least 2) class names,

admissible values for the Strategy parameter are determined by the classification/1
predicate, defined as follows:

classification(argmax).
classification(threshold(Th)) :- numeric(Th).

meaning that currently the ML-Lib only supports classification via the argmax or threshold-

based strategies—despite further strategies may be added following the same syntactical nota-

tion.

Assessing Predictions. Predictors can be assessed by comparing their actual predictions with

a test dataset containing expected predictions, having no overlap with the data used during

training. Several scoring functions can be used to serve this purpose, like, for instance mean

squared/absolute error (MSE/MAE) or R
2

for regressors, as well as accuracy, recall, or F1-Score

for classifiers.



The ML-Lib supports assessing a predictor via a number of predicates following the same

syntactical convention:

⟨name⟩(+Actual: ref|list, +Expected: ref|list, -Score: real)

where ⟨name⟩ is the name of the scoring function of choice, Actual is either a dataset or a list

containing the actual predictions produced by the predictor under assessment, Actual is either

a dataset or a list containing the test data, and Score is the output parameter to be unified with

the score value computed whenever the predicate is executed.

Notable cases of scoring functions are, for instance: mse/3, mae/3, r2/3, accuracy/3,

recall/3, or f1_score/3, while further ones may be added following the same syntactical

convention.

A.1.5. Neural Networks

Neural networks are a particular sort of predictor. They consist of directed acyclic graphs

(a.k.a. DAG) where vertices are elementary computational units called neurons, and edges (a.k.a.

synapses) are weighted.

Topologically, neural networks are organised in layers, and data scientists design them by

specifying (i) how many layers compose the network, (ii) how many neurons compose each

layer, (iii) which activation function is used by each layer – and therefore by each neuron

therein contained –, and (iv) how are layers – and therefore their neurons – interconnected

with their predecessors and successors in the DAG. Hence, a NN’s hyper-parameters should

provide information about such aspects.

The ML-Lib provides the following predicate to construct NN-like predictors:

neural_network(+Topology: ref, -Predictor: ref)

There, Topology is a reference to an object describing the overall architecture of the network,

and, in particular its layers.

Layers. Layered architectures are commonly composed by at least one input layer – whose

neurons simply mirror the input data –, and one output layer—whose neurons’ output values

jointly represent the NN prediction. In the between an arbitrary amount of layers of different

sorts may be defined—e.g. dense, convolutional, pooling, etc. In all such cases, declaring a layer

implies specifying its sort, size (in terms of neurons), and activation function.

The ML-Lib supports the declaration of layered architectures similarly to how it supports

pipelines of transformations. There are two major sorts of predicates to serve this purpose:

• input_layer(+Size: integer, -Layer: ref).

• ⟨𝑡𝑦𝑝𝑒⟩_layer(+Previous: ref, +Size: integer, +Activation: ref,
-Layer: ref).

The former predicate, input_layer/2, aims at creating a Layer of a given Size. The size

should match the amount of input attributes in the training dataset. This is the entry point of

any cascade of predicates aimed at creating a layered architecture.



Conversely, the latter predicate pattern, ⟨𝑡𝑦𝑝𝑒⟩_layer/4 is matched by a number of actual

predicates aimed at creating intermediate or output layers. There ⟨𝑡𝑦𝑝𝑒⟩ denotes the type of

the layer. Regardless of their type, these predicates accept a reference to some Previous layer,

whose output synapses are connected to the layer under construction, in a way which depends

by its type. They also accept the Size of the layer to be constructed, and the Activation
function its neurons should employ. Finally, they all accept an output parameter, Layer, to

which a reference to the newly created layer is bound, in case creation succeeds.

The dense_layer/4 predicate is a notable case matching the aforementioned pattern. It

aims at declaring a layer whose neurons are densely connected with its predecessor’s ones—in

the sense that, each neuron of the predecessor has an outgoing synapsis towards each neuron of

the dense layer. Layers of such a sort are commonly exploited as intermediate. Conversely, layers

declared via the output_layer/4 predicate – again matching the aforementioned pattern –

are commonly final in any well formed NN architecture.

So, for instance, an ordinary multi-layered perceptron (MLP) composed by 1 input layer with

4 neurons, 1 hidden layer with 7 neurons, and 1 output layer with 3 neurons, where all neurons

exploit the sigmoid activation function, can be declared as follows:

input_layer(4, I),
dense_layer(I, 7, sigmoid, H),
output_layer(H, 3, sigmoid, O),
neural_network(O, NN)

There variable I is bound to the input layer, variable H is bound to the hidden layer, and O
is bound to the output layer, whereas NN is bound to a MLP predictor whose architecture

comprehends I, H, and O.

Activation Functions. The behaviour of neurons should be finely tuned via their activation

function. Indeed, all layer-creating predicates of the form ⟨𝑡𝑦𝑝𝑒⟩_layer/4 expect an activation

function to be provided by the user. Admissible activation functions are regulated by the

activation/1 predicate, defined below:

activation(identity). denoting 𝑓(𝑥) = 𝑥
activation(sigmoid). denoting 𝑓(𝑥) = 1/(1 + 𝑒−𝑥)
activation(tanh). denoting 𝑓(𝑥) = tanh(𝑥)
activation(relu). denoting 𝑓(𝑥) = max (0, 𝑥)

while others may be possibly added.

B. Model selection: further details

The model selection example discussed in section 5 and formally described in listing 5 re-

lies upon a number of ancillary predicates declaring some particular steps of the workflow

and exemplifying many ML-Lib functionalities. These are reported in listing 8. For instance,

train_cv/4 is in charge of performing 10-fold CV on a given Dataset, to assess a given

HyperParams–LearnParams combination, to then compute the AveragePerformance of

the 10 predictors constructed in this way. Every single fold of a K-fold CV process is managed



�
1 /* Trains a NN multiple times, over Dataset, using the provided Params. */
2 /* Returns the AveragePerformance over a 10-fold CV. */
3 train_cv(Dataset, HyperParams, LearnParams, AveragePerformance) :-
4 findall(
5 Performance,
6 train_cv_fold(Dataset, 10, HyperParams, LearnParams, Performance),
7 AllPerformances
8 ),
9 mean(AllPerformances, AveragePerformance).

10

11 /* Trains a NN once, for the k-th round of CV. */
12 /* Returns the Performance over the k-th validation set. */
13 train_cv_fold(Dataset, K, HyperParams, LearnParams, Performance) :-
14 fold(Dataset, K, Train, Validation),
15 train_validate(Train, Validation, HyperParams, LearnParams, Performance).
16

17 /* Tranis a NN on the provided TrainingSet, using the provided Params, */
18 /* and computes its Performance over the provided ValidationSet. */
19 train_validate(TrainingSet, ValidationSet, HyperParams, LearnParams, Performance) :-
20 multi_layer_perceptron(4, HyperParams, 3, NN),
21 train(NN, TrainingSet, LearnParams, TrainedNN),
22 test(NN, ValidationSet, Performance).
23

24 % Computes the Performance of the provided NN against the provided ValidationSet
25 test(NN, ValidationSet, Performance) :-
26 predict(NN, ValidationSet, ActualPredictions),
27 accuracy(ActualPredictions, ValidationSet, Performance).
� �

Listing 8: Ancillary predicates used in listing 5. Each predicate denotes one particular step of a model

selection workflow

by the train_cv_fold/5 predicate, which in turn exploits train_validate/5 predicate

to train and validate every single predictor. Finally, the test/3 predicate can be exploited to

either test or validate a predictor depending on whether the test or validation set is provided as

an argument.
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