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Abstract
Multiagent Systems (MASs) are distributed systems composed by autonomous, reactive,
proactive, heterogeneous communicating entities. In order to dynamically verify the behavior
of such complex systems, a decentralized solution able to scale with the number of agents is
necessary. When, for physical, infrastructural, or legal reasons, the monitor is not able to
observe all the events emitted by the MAS, gaps are generated. In this paper we present a
runtime verification decentralized approach to handle observation gaps in a MAS.
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1. Introduction and Motivations
Distributed Runtime Verification (DRV) is a relatively new research sub-field aimed at
designing fault-tolerant distributed algorithms that monitor other distributed algorithms,
with the end goal of developing lightweight software systems that are more efficient
that traditional verification techniques [1, 2]. The literature on DRV is almost limited
[3, 4, 5, 6, 7, 8] and becomes even more limited when we consider DRV of a special kind
of systems: multiagent systems (MASs [9]). In the MAS area, in fact, we are only aware
of our own previous works [10, 11, 12].

Another sub-field which is raising more and more attention in the RV area concerns
partial observability of the monitored events which can cause gaps in the event traces
[13, 14, 15, 16]. Also in this case, when we consider MASs as the target system of the
verification activity, we find very few works, all related with norm monitoring [17, 18].

This paper addresses the two issues above, decentralized runtime verification of partially
observable systems, in a MAS context. The findings presented in this work can be
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generalized and applied to other kinds of systems, but – for presentation purposes – we
concentrate our investigation on MASs.

The main source of inspiration for our work is the paper by Stoller et al. [14], where
the authors introduce runtime verification with state estimation. With respect to a
more standard RV approach, they are interested in checking system executions (traces)
containing gaps. A gap represents the absence of information in the trace of observed
events and corresponds to an execution point where the monitor knows that the system
emitted some event, but does not know which one. In offline RV gaps in the trace logs
are due to the process of sampling observed events in order to reduce the monitoring
overhead. Gaps can also be met in online RV, where the system behavior is analyzed
while the system is running and problems with the infrastructure, privacy and legal issues
that prevent the monitor to observe some kind of events, faults in the monitor observation
capabilities, may generate gaps. Although the problems raised by online and offline RV
with gaps share many similarities, the online setting is much more challenging. Each
time a gap is perceived, the monitor must make guesses on the possible actual events
that the gap represents and save all the states generated by these guesses. A possibly
huge logical tree-like structure with states as nodes, and moves from states to states as
edges, represents the open possibilities1. In offline RV, this logical tree-like structure can
be explored following a depth-first search, requiring a limited amount of memory. If the
RV takes place online, its exploration must follow a breadth-first strategy, with much
more space needed to save the states, as the final trace of events is unknown and the
levels of the structure are generated and explored at the same time. In order to cope
with the state space explosion due to guesses in the online RV scenario, we propose to
decentralize the monitoring activity.

RV decentralization is a very natural choice when the system under monitoring is a
MAS, which is distributed by definition, and may improve efficiency, as the verification
process can be spread on different machines improving performance; scalability, as under
some conditions depending on the protocol [12, 10] it is possible to associate one monitor
with each agent in the MAS, keeping under control the RV complexity even when the
number of agents grows; feasibility, as for physical/logical/legal reasons one single monitor
might not be able to observe all the events generated by the MAS.

The feature that is usually subject to verification (both static and dynamic) in a MAS
is its communicative behavior [19, 20, 21, 22, 23, 24, 25, 26, 27]. With respect to [14],
in this work we do not aim at verifying temporal properties. Rather, we want to check
the conformance of the MAS actual communicative behavior to an Agent Interaction
Protocol (AIP) that models the allowed interactions among agents, under the hypotesis
that some interactions could not be observed. The research question we address is thus
how to evaluate the probability that a MAS satisfies an AIP, in the presence of gaps.

In a recent paper [28] we introduced Probabilistic Trace Expressions (PTEs) and the
theory behind them. In this work we take a more pragmatical perspective and we show

1In the remainder we will use the term “branch” to denote paths in this logical structure, and we will
sometime use “states” meaning “the final states of all the possible branches”, when this does not generate
confusion.



how to use PTEs for decentralized RV of AIPs within MASs with gaps.

2. Background
Probabilistic Trace Expressions. Trace expressions [29, 30, 31, 32, 33, 34, 35, 36, 37]
are based on the notions of event and event type. We denote by E the fixed universe of
events subject to monitoring. An event trace over E is a possibly infinite sequence of
events in E, and a trace expression over E denotes a set of event traces over E. Trace
expressions are built on top of event types (chosen from a set ET), each specifying a
subset of events in E. A trace expression 𝜏 ∈ T represents a set of possibly infinite event
traces, and is defined on top of the following operators:
∙ 𝜖 (empty trace), denoting the singleton set {𝜖} containing the empty event trace 𝜖.
∙ 𝜗:𝜏 (prefix), denoting the set of all traces whose first event 𝑒 matches the event type 𝜗,
and the remaining part is a trace of 𝜏 .
∙ 𝜏1·𝜏2 (concatenation), denoting the set of all traces obtained by concatenating the
traces of 𝜏1 with those of 𝜏2.
∙ 𝜏1∧𝜏2 (intersection), denoting the intersection of the traces of 𝜏1 and 𝜏2.
∙ 𝜏1∨𝜏2 (union), denoting the union of the traces of 𝜏1 and 𝜏2.
∙ 𝜏1|𝜏2 (shuffle), denoting the set obtained by shuffling the traces of 𝜏1 with the traces of
𝜏2.

Trace expressions support recursion through cyclic terms expressed by finite sets of
recursive syntactic equations, as supported by modern Prolog systems.

A probabilistic trace expression is a trace expression where event types have a proba-
bility associated with them [28], and its modeling and semantics are also implemented
in Prolog (SWI-Prolog, see the code available here, https://vivianamascardi.github.io/
Software/PTE.pl). PTEs are suitable to manage guesses in the presence of observation
gaps; in order for this management to work, we assume that each gap represents one
single unobserved event.

As an example, the probabilistic trace expression

𝜏 = 𝑒1[0.2]:𝜏1∨𝑒2[0.8]:(𝜏2|𝜏3)

represents the protocol where we can accept the event 𝑒1 with probability 0.2, or, the
event 𝑒2 with probability 0.8. If we consume the event 𝑒1, we go to the new state 𝜏1,
while, if we consume 𝑒2, we go to a state where we can have all possible interleaving of
𝜏2 and 𝜏3. If there is a gap in the monitoring activity and the monitor is not able to
observe which event took place, it can nevertheless make its guesses which involve 𝑒1 and
𝑒2, associate a probability with each of them, and keep both possibilities.

Like a “normal” trace expression, a probabilistic trace expression 𝜏 can be seen as the
current state of a protocol that started in some initial state 𝜏𝑖𝑛𝑖𝑡 and reached 𝜏 after 𝑛
events 𝑂1...𝑂𝑛 took place. These events moved 𝜏𝑖𝑛𝑖𝑡 to 𝜏 through intermediate states 𝜏𝑞1,
𝜏𝑞2, ... , 𝜏𝑞𝑛 = 𝜏 . If we denote with 𝜏

𝑂→ 𝜏 ′ the transition from state 𝜏 to state 𝜏 ′ due to
the event 𝑂 taking place and being observed, we may write

𝜏𝑖𝑛𝑖𝑡
𝑂1→ 𝜏𝑞1

𝑂2→ 𝜏𝑞2
𝑂3→ 𝜏𝑞3...

𝑂𝑛→ 𝜏𝑞𝑛, where 𝜏𝑞𝑛 = 𝜏 .

https://vivianamascardi.github.io/Software/PTE.pl
https://vivianamascardi.github.io/Software/PTE.pl


In order to properly manage probabilities, it is convenient to associate with 𝜏 – in an
explicit and easily computable way – the probability of the protocol to have reached 𝜏
starting from 𝜏𝑖𝑛𝑖𝑡 and having observed 𝑂1...𝑂𝑛.

We define a “probabilistic trace expression state” the triple consisting of a trace
expression 𝜏 , a sequence of events 𝑂1...𝑂𝑛 observed before reaching 𝜏 , and the probability
𝜋𝜏 that the protocol reached 𝜏 . We represent the state with the notation ⟨𝜏, 𝜋𝑡𝑟, 𝑂1...𝑂𝑛⟩.

Decentralized MAS Monitoring with DecAMon. In [10] we presented the DecAMon
algorithm to decentralize agent interaction protocols modeled using trace expressions.
There, we defined the notion of “monitoring safe” partition. A partition can be used to
drive the distribution process. To decentralize the monitoring activity, we project the
global AIP onto each subset of agents belonging to the partition, where by “projection”
we mean that we maintain only the interactions involving agents in the chosen subset.
In general, not all the partitions can be used for the RV decentralization. A partition
that can be used to decentralize the RV of a protocol is called “monitoring safe” and the
algorithm presented in [10] generates all the monitoring safe partitions for a given AIP.

Since under the conditions considered in this paper we may observe gaps, we could
not have only one single state representing the current situation of the protocol, like it
happens in our previous works; instead, we have to maintain all the states that may be
possibly reached “via the gaps”. As already anticipated, each state can be represented as
a tuple ⟨𝜏, 𝜋, 𝑒𝑣𝑠⟩, where 𝜏 is the PTE representing the current state of the protocol and
𝜋 is the joint probability that the sequence of events 𝑒𝑣𝑠 is compliant with 𝜏 [28].

Let us name 𝑀0 the set of possible initial states of the monitor (as there may be more
than one). The number 0 stands for the 0𝑡ℎ iteration, since at the beginning we have not
consumed any event yet. We can first run DecAMon on the global AIP to find a good set
of monitoring safe partitions and, after that, we can use one of them to project the 𝜏s in
𝑀0 onto the subsets of the agents. Once we have obtained the distributed versions of the
initial 𝜏s via projection, we can generate one monitor for each partition, and decentralize
the RV.

The combination of decentralization and lack of information calls for a synchronized
management of gaps. Since each monitor has a different state representing its current
protocol evolution, when there is an observation gap, each monitor can have different
opinions about which are the correct events that might suitably “fill the gap”. The
local perspectives can be compared and used by the monitors to cut wrong guesses, and
hence wrong states, on the basis of distributed knowledge. Despite the overhead due to
synchronization, this approach may dramatically improve performance, as discussed in
the next sections.

3. Handling Gaps in Decentralized RV
Gaps represent lack of information, thus a point (or points) in the event trace where the
monitor does not know what event had been actually generated by the system under
monitoring. In the remainder we will write that “gaps can be observed”, in the sense that



a monitor can realize that something went wrong and that an event was generated by
the system, and not correctly observed. We also assume that, in a decentralized setting,
when one monitor “observes a gap”, all the monitors “observe a gap” as well. If this gap
does not involve the sub-system monitored by a monitor 𝑀 , the trace observed by 𝑀
will contain gap(𝑛𝑜𝑛𝑒): this notation means – from 𝑀 ’s point of view – “I am aware
that some event was generated by some component of the system that I am not in charge
of, and that the event was not correctly observed”. From a technical viewpoint, this
could be obtained by forcing one monitor to inform the others when it observes a gap.
This would require some shared clock among the monitors as, in order for our algorithm
to work, the gap must take place at the same time for all the monitors hence raising
clock synchronization issues. Given that these issues are well known and well studied
in distributed systems [38], we leave them out of our investigation. Being well studied
does not mean to be easy to face. Indeed, we are aware that the need of observing all
the gaps at the same time in a decentralized setting, represents a serious limitation of
our framework and we are working towards alternative, and more feasible, solutions.

When a centralized monitor observes a gap, since it is the only monitor checking the
event trace w.r.t. the AIP specification, it can make guesses on what the gap is and
reason on its own guesses, eventually tagging some of them as wrong due to successive
observations. When there are many monitors, each one monitoring a subset of the agents,
and hence a sub-protocol of the global AIP, each monitor can still suppose what the
observed gap is, but the reasoning on its suppositions must be shared with the others.
This sharing phase among the monitors is crucial, because it allows them to cut wrong
branches on the basis of what other monitors suppose, or what they are fully sure of.

Let us consider two monitors 𝑚1 and 𝑚2 that observe a gap. Given that the protocols
driving the two monitors are different, although being derived via projection from the
same global protocol, 𝑚1 might suppose that the events admissible for filling the observed
gap are 𝑒1 and 𝑒2, while 𝑚2 could instead suppose that admissible events are 𝑒2 and 𝑒3.
Both 𝑚1 and 𝑚2 must keep track of these possibilities in their local knowledge bases,
and – so far – they do not need to share they guesses.

Let us now suppose that in the current state of 𝑚1, in the branch where 𝑒1 was
supposed to have taken place, the only successive possible event is 𝑒4, while in the branch
for 𝑒2 the only possible event is 𝑒5. If, after the gap, 𝑚1 observes 𝑒5, it can cut the branch
where the gap was associated with 𝑒1, because 𝑒5 would not be allowed after 𝑒1. The gap
before 𝑒5, that could be filled in principle by 𝑒1 and 𝑒2, becomes bound - “without any
doubt”2 - to 𝑒2. After having found the right value for the gap and cut one branch, 𝑚1
informs 𝑚2 allowing it to cut the branch where the value for that gap was guessed to be

2Modulo the assumption that observed events are compliant with the foreseen protocol. Gaps may
inevitably generate false negatives. In this case, 𝑚1 assumes that the gap was 𝑒2 because this would
be consistent with the successive observation of 𝑒5 and with the protocol to be respected. If the gap
were any other event, a protocol violation would have taken place and 𝑚1 should have raised a protocol
monitoring exception. Depending on the protocol, the violation could be recognized later on, or never.
Suppose for example an infinite protocol where only 𝑎s are allowed. A gap will be necessarily filled with
𝑎 even if the actual event was 𝑏, and if the successive observed events are all 𝑎s, the violation will never
be discovered.



𝑒3. In this way, both 𝑚1 and 𝑚2 can continue the verification process supposing that the
unobserved event represented by the gap was 𝑒2, with some given probability due to the
probability associated with 𝑒2 in the PTE modelling the protocol.

Before presenting the decentralized monitoring algorithm, we make some considerations
on the kind of gaps a monitor can observe. So far, we considered generic events. This is
correct and consistent with the general approach presented in [28], but in a MAS scenario
where PTEs model agent interaction protocols we can be more specific. In this scenario,
in fact, the universe of events is 𝑀𝑠𝑔𝑠, namely the universe of the possible messages
among agents. Such special events can be represented as 𝑎1

𝑐=⇒ 𝑎2, meaning that agent
𝑎1 sends a message to 𝑎2 with content 𝑐. Since messages are composed by (at least)
three mandatory components, sender, receiver and content, there can be many partially
instantiated gaps such as:

• gap(𝑎1
_=⇒ 𝑎2), where the content of the message is unknown;

• gap(_ 𝑚=⇒ 𝑎2), where the sender is unknown;
• gap(𝑎1

𝑚=⇒ _), where the receiver is unknown.

Although, for sake of clarity, in the sequel we consider gaps where neither the sender,
nor the receiver, nor the content are known (total absence of information), all the
combinations of “information holes” are possible, and partially instantiated gaps may be
exploited to reduce branches due to guesses. The algorithm presented in the next section
can be easily adjusted to take partially instantiated gaps into account.

Synchronizing Decentralized Gaps Management. We present the algorithm used by
the decentralized monitors to synchronize the gaps management, in order to cut useless
branches and check the compliance of interactions with the protocol. When an event is
generated by the system, two different situations can take place.

Case 1: The event is not a gap
If the event is not a gap, each monitor that observed it can use the event for updating its

local state(s). If some branches have been removed as in the previous example involving
𝑚1 and 𝑚2, the monitor has to inform the other monitors of the associations between
gaps and events that are not admissible any longer. This phase can be reiterated until
all the monitors have cut all the possible wrong brnches, and have nothing more to say.
After this synchronizations stage, the monitoring process continues in the normal way.

Case 2: The event is a gap
To keep the presentation simple, we assume that gaps are observed by all the monitors

at the same time. Each monitor guesses the events admissible to fill the gap, according
to its local states. If the gap is partially instantiated (some of its components were
correctly observed, like the sender, or the content, or both), the monitor can use this
information to reduce the set of possible candidate events.

The two cases can be seen as a reduce and extend stages, respectively. When the
monitor observes a fully instantiated event it can invalidate zero, one or more branches.
If the invalid branches contain gaps, the monitor can also invalidate the associations



between these gaps and the guessed events, and can allow the other monitors to invalidate
these associations as well via communication. On the other hand, observation of gaps
generates as many branches as the events that, according to the AIP, could fill the gap.
We can formalize this intuition in the following way.

Given 𝑀0 as the set of global states {⟨𝜏1, 𝜋1, []⟩, ..., ⟨𝜏𝑛, 𝜋𝑛, []⟩}.

1. Distribute 𝑀0 with respect to a given partition 𝑃 = {{𝑎𝑔𝑠1}, ..., {𝑎𝑔𝑠𝑛𝑝}}, project-
ing the states onto subsets of the agents involved (the function Π projects an AIP
𝜏 onto a set of agents 𝑎𝑔𝑠 removing all the events whose sender and receiver do not
belong to 𝑎𝑔𝑠), obtaining

𝑀0,{𝑎𝑔𝑠1} = {⟨Π(𝜏1, {𝑎𝑔𝑠1}), 𝜋1, []⟩, ..., ⟨Π(𝜏𝑛, {𝑎𝑔𝑠1}), 𝜋𝑛, []⟩}
...

𝑀0,{𝑎𝑔𝑠𝑛𝑝} = {⟨Π(𝜏1, {𝑎𝑔𝑠𝑛𝑝}), 𝜋1, []⟩, ..., ⟨Π(𝜏𝑛, {𝑎𝑔𝑠𝑛𝑝}), 𝜋𝑛, []⟩}

2. Each monitor observes only the event messages involving the agents belonging to
its set 𝑎𝑔𝑠𝑖:

a) if the event message is a gap, the monitor guesses what it could be and
generates as many states as the possible events (extend);

b) if the event message is ground, the monitor can cut branches, and in this
case it communicates with other monitors the gap values that are no longer
admissible (reduce).

3. If, after observation of an event or because of information received from other
monitors, the set of possible current states for a monitor 𝑚 becomes empty, 𝑚
stops the monitoring process, informs all the other monitors, and they also stop
monitoring. The absence of possible current states for a monitor is due to a protocol
violation that took place, preventing at least one monitor to move a further step.
So, the system checked does not satisfy the agent interaction protocol and the
associated probability is 0.

4. Else,
a) if there are no events left to analyze, the monitoring process ends and the

resulting probability is evaluated (see after how);
b) else, repeat from step 2.

To be clearer, in step 2, given the current event message, each monitor queries its
current state following the PTE operational semantics presented in [28] in order to check
if the event message is admissible or not. In the updating phase, the monitors inform the
others trying to cut not admissible branches.

If the monitoring process ends without violations detected and there are no more
events left to analyze, each monitor stops with at least one admissible branch. Each
monitor states its own evaluation of the probability that the system’s behavior satisfies
the agent interaction protocol. This probability can be computed summing up all the
joint probabilities contained in all the final states, corresponding to the last nodes of
the admissible branches. This leads to having one estimated value for each monitor: we



can adopt different strategies to summarize the final, and global, one, such as taking the
smallest (largest) value among all those estimated by all the monitors, or a weighted
means where weights model each monitor’s trustability, or other domain-dependent
strategies.

4. Example
We present a simple example helping us to show how the extend and reduce steps work.
We consider a MAS involving four agents: {𝑎𝑙𝑖𝑐𝑒, 𝑏𝑜𝑏, 𝑐ℎ𝑎𝑟𝑙𝑖𝑒, 𝑑𝑎𝑣𝑒}. The set of events
of our interest is the set of messages that these agents can use to communicate with each
other.

Given the PTE

𝜏 = 𝜏1∨𝜏2

𝜏1 = 𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔1=⇒ 𝑏𝑜𝑏[0.7]:(𝑏𝑜𝑏

𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒[0.6]:𝜏1|𝑏𝑜𝑏
𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖)

𝜏2 = 𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔4=⇒ 𝑑𝑎𝑣𝑒[0.3]:(𝑐ℎ𝑎𝑟𝑙𝑖𝑒

𝑚𝑠𝑔5=⇒ 𝑑𝑎𝑣𝑒[0.3]:𝜖|𝑏𝑜𝑏
𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.7]:𝜏2)

We decentralize 𝜏 on each single agent, obtaining3:

𝑀0,{𝑎𝑙𝑖𝑐𝑒} = {⟨Π(𝜏, {𝑎𝑙𝑖𝑐𝑒}), 1, []⟩} = {⟨𝜏𝑎𝑙𝑖𝑐𝑒, 1, []⟩}

𝑀0,{𝑏𝑜𝑏} = {⟨Π(𝜏, {𝑏𝑜𝑏}), 1, []⟩} = {⟨𝜏𝑏𝑜𝑏, 1, []⟩}

𝑀0,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒} = {⟨Π(𝜏, {𝑐ℎ𝑎𝑟𝑙𝑖𝑒}), 1, []⟩} = {⟨𝜏𝑐ℎ𝑎𝑟𝑙𝑖𝑒, 1, []⟩}

𝑀0,{𝑑𝑎𝑣𝑒} = {⟨Π(𝜏, {𝑑𝑎𝑣𝑒}), 1, []⟩} = {⟨𝜏𝑑𝑎𝑣𝑒, 1, []⟩}

where

𝜏𝑎𝑙𝑖𝑐𝑒 = 𝜏1𝑎𝑙𝑖𝑐𝑒
∨𝜏2𝑎𝑙𝑖𝑐𝑒

𝜏1𝑎𝑙𝑖𝑐𝑒
= 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔1=⇒ 𝑏𝑜𝑏[0.7]:𝜏1𝑎𝑙𝑖𝑐𝑒

𝜏2𝑎𝑙𝑖𝑐𝑒
= 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔4=⇒ 𝑑𝑎𝑣𝑒[0.3]:𝜏2𝑎𝑙𝑖𝑐𝑒

𝜏𝑏𝑜𝑏 = 𝜏1𝑏𝑜𝑏
∨𝜏2𝑏𝑜𝑏

𝜏1𝑏𝑜𝑏
= 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔1=⇒ 𝑏𝑜𝑏[0.7]:(𝑏𝑜𝑏
𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒[0.6]:𝜏1|𝑏𝑜𝑏

𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖)

𝜏2𝑏𝑜𝑏
= 𝑏𝑜𝑏

𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.7]:𝜏2𝑏𝑜𝑏

𝜏𝑐ℎ𝑎𝑟𝑙𝑖𝑒 = 𝜏1𝑐ℎ𝑎𝑟𝑙𝑖𝑒
∨𝜏2𝑐ℎ𝑎𝑟𝑙𝑖𝑒

𝜏1𝑐ℎ𝑎𝑟𝑙𝑖𝑒
= 𝑏𝑜𝑏

𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒[0.6]:𝜏1𝑐ℎ𝑎𝑟𝑙𝑖𝑒

𝜏2𝑐ℎ𝑎𝑟𝑙𝑖𝑒
= 𝑐ℎ𝑎𝑟𝑙𝑖𝑒

𝑚𝑠𝑔5=⇒ 𝑑𝑎𝑣𝑒[0.3]:𝜏2𝑐ℎ𝑎𝑟𝑙𝑖𝑒

𝜏𝑑𝑎𝑣𝑒 = 𝜏1𝑑𝑎𝑣𝑒
∨𝜏2𝑑𝑎𝑣𝑒

3The initial probability of each state is 1, since we do not want to influence the probability evaluation
process (multiplication of probabilities).



𝜏1𝑑𝑎𝑣𝑒
= 𝑏𝑜𝑏

𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖

𝜏2𝑑𝑎𝑣𝑒
= 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔4=⇒ 𝑑𝑎𝑣𝑒[0.3]:(𝑐ℎ𝑎𝑟𝑙𝑖𝑒
𝑚𝑠𝑔5=⇒ 𝑑𝑎𝑣𝑒[0.3]:𝜖|𝑏𝑜𝑏

𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.7]:𝜏2𝑑𝑎𝑣𝑒
)

Let us suppose that the monitors observe a 𝑔𝑎𝑝 now. Each monitor moves to a new
set of states corresponding to the possible values for the 𝑔𝑎𝑝.

𝑀0,{𝑎𝑙𝑖𝑐𝑒}
𝑔𝑎𝑝→ {⟨𝜏1𝑎𝑙𝑖𝑐𝑒

, 0.7, [gap(𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔1=⇒ 𝑏𝑜𝑏)]⟩,

⟨𝜏2𝑎𝑙𝑖𝑐𝑒
, 0.3, [gap(𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔4=⇒ 𝑑𝑎𝑣𝑒)]⟩,

⟨𝜏𝑎𝑙𝑖𝑐𝑒, 1, [gap(𝑛𝑜𝑛𝑒)]⟩} = 𝑀1,{𝑎𝑙𝑖𝑐𝑒}

𝑀0,{𝑏𝑜𝑏}
𝑔𝑎𝑝→ {

⟨(𝑏𝑜𝑏
𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒[0.6]:𝜏1|𝑏𝑜𝑏

𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖), 0.7, [gap(𝑎𝑙𝑖𝑐𝑒
𝑚𝑠𝑔1=⇒ 𝑏𝑜𝑏)]⟩,

⟨𝜏2𝑏𝑜𝑏
, 0.7, [gap(𝑏𝑜𝑏

𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒)]⟩,

⟨𝜏𝑏𝑜𝑏, 1, [gap(𝑛𝑜𝑛𝑒)]⟩} = 𝑀1,{𝑏𝑜𝑏}

𝑀0,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒}
𝑔𝑎𝑝→ {

⟨𝜏1𝑐ℎ𝑎𝑟𝑙𝑖𝑒
, 0.6, [gap(𝑏𝑜𝑏

𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒)]⟩,

⟨𝜏2𝑐ℎ𝑎𝑟𝑙𝑖𝑒
, 0.3, gap(𝑐ℎ𝑎𝑟𝑙𝑖𝑒

𝑚𝑠𝑔5=⇒ 𝑑𝑎𝑣𝑒)⟩,

⟨𝜏𝑐ℎ𝑎𝑟𝑙𝑖𝑒, 1, [gap(𝑛𝑜𝑛𝑒)]⟩} = 𝑀1,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒},

𝑀0,{𝑑𝑎𝑣𝑒}
𝑔𝑎𝑝→ {

⟨𝜖, 0.4, gap(𝑏𝑜𝑏
𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒)⟩,

⟨(𝑐ℎ𝑎𝑟𝑙𝑖𝑒
𝑚𝑠𝑔5=⇒ 𝑑𝑎𝑣𝑒[0.3]:𝜖|𝑏𝑜𝑏

𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.7]:𝜏2𝑑𝑎𝑣𝑒
), 0.3, gap(𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔4=⇒ 𝑑𝑎𝑣𝑒)⟩,

⟨𝜏𝑑𝑎𝑣𝑒, 1, [gap(𝑛𝑜𝑛𝑒)]⟩} = 𝑀1,{𝑑𝑎𝑣𝑒}

Since they observed a 𝑔𝑎𝑝, the monitors do not know what the actual event was.
Because of this, they have to generate more branches, where each branch represents a
possible value for the gap. This is the extend step.

Let us now suppose that the monitors observe event 𝑚𝑠𝑔2. Since 𝑚𝑠𝑔2 is a ground
event, everything is known about it, in particular the monitors know that its sender is
𝑏𝑜𝑏 and its receiver is 𝑐ℎ𝑎𝑟𝑙𝑖𝑒. Since the monitors observe only the gaps and the events
that involve the agents in the partition they are in charge for, the only monitors that
observe 𝑚𝑠𝑔2 are 𝑀1,{𝑏𝑜𝑏} and 𝑀1,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒}.

By consuming 𝑚𝑠𝑔2, the first iteration of the algorithm leads to:

𝑀1,{𝑏𝑜𝑏}
𝑏𝑜𝑏

𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒→ {

⟨𝜏1|𝑏𝑜𝑏
𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖, 0.42, [gap(𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔1=⇒ 𝑏𝑜𝑏), 𝑏𝑜𝑏
𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒]⟩

} = 𝑀2,{𝑏𝑜𝑏}



𝑀1,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒}
𝑏𝑜𝑏

𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒→ {

⟨𝜏1𝑐ℎ𝑎𝑟𝑙𝑖𝑒
, 0.36, [gap(𝑏𝑜𝑏

𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒), 𝑏𝑜𝑏
𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒]⟩,

⟨𝜏1𝑐ℎ𝑎𝑟𝑙𝑖𝑒
, 0.6, [gap(𝑛𝑜𝑛𝑒), 𝑏𝑜𝑏

𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒]⟩

} = 𝑀2,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒}

It is interesting to analyze what happened in 𝑀2,{𝑏𝑜𝑏}, where the reduce step took place.
In fact, the ground event 𝑚𝑠𝑔2 makes the other two branches not valid anymore. More in
detail, the second branch was ⟨𝜏2𝑏𝑜𝑏

, 0.7, [gap(𝑚𝑠𝑔3)]⟩, and 𝜏2𝑏𝑜𝑏
does not accept the event

𝑚𝑠𝑔2 and cannot move to a new state. In the same way, the PTE in the third branch
⟨𝜏𝑏𝑜𝑏, 1, gap(𝑛𝑜𝑛𝑒)⟩ is 𝜏𝑏𝑜𝑏, and 𝜏𝑏𝑜𝑏 cannot accept the event 𝑚𝑠𝑔2 either. Even though
this information seems important for monitor 𝑀2,{𝑏𝑜𝑏} only, it is actually of interest also
for the other monitors. In fact, it allows all of them to know “without any doubt” that
the only event that can be associated with the first gap is 𝑚𝑠𝑔1, since it is the gap value
associated with the only possible branch of 𝑀2,{𝑏𝑜𝑏}. The monitor 𝑀2,{𝑏𝑜𝑏} can inform
the other monitors that the only admissible value for the gap is 𝑚𝑠𝑔1. The monitors’
new states become:

𝑀2,{𝑐ℎ𝑎𝑟𝑙𝑖𝑒} = {⟨𝜏1𝑐ℎ𝑎𝑟𝑙𝑖𝑒
, 0.6, [gap(𝑛𝑜𝑛𝑒), 𝑏𝑜𝑏

𝑚𝑠𝑔2=⇒ 𝑐ℎ𝑎𝑟𝑙𝑖𝑒]⟩}

𝑀1,{𝑎𝑙𝑖𝑐𝑒} = {⟨𝜏1𝑎𝑙𝑖𝑐𝑒
, 0.7, [gap(𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔1=⇒ 𝑏𝑜𝑏)]⟩}

𝑀1,{𝑑𝑎𝑣𝑒} = {⟨𝜏𝑑𝑎𝑣𝑒, 1, [gap(𝑛𝑜𝑛𝑒)]⟩}

This example shows how the knowledge of a monitor can have a positive impact on
the knowledge of the other monitors. In general, this positive impact can be obtained
any time one monitor discovers that one branch is no longer valid and can hence
invalidate the associations of events with gaps therein. This information may trigger
many communication iterations among the monitors, because, when one monitor is
updated it can also “invalidate one branch” and the related gap-events associations, and
may need to inform the others of some association which is no longer possible. In the
previous example, one single iteration was enough.

As we already anticipated, the proposed approach may lead to false negatives, due to
an optimistic approach of the monitors that stubbornly assume that observed events
are compliant with the protocol, if there is just one possibility left to make such an
assumption. Also in this example, the monitors gave the correctness of the ground event
𝑚𝑠𝑔2 (the second event observed) for granted. But let us suppose that the actual event
masked by the 𝑔𝑎𝑝 was not 𝑚𝑠𝑔1, but 𝑚𝑠𝑔4, and that the successive message 𝑚𝑠𝑔2 was
sent from 𝑏𝑜𝑏 to 𝑐ℎ𝑎𝑟𝑙𝑖𝑒 by mistake and did not comply with the protocol. In this scenario,
since the monitors do not know for sure what the first 𝑔𝑎𝑝 was, it is reasonable to consider
𝑚𝑠𝑔2 a valid message and hence cut the branch where the gap has been supposed to be
𝑚𝑠𝑔4. This is a problem intrinsically related to the state estimation approach, since until
it is acceptable to observe an event in a state, the monitors keep track of the related
branch. Only when a monitor, observing an event, loses all its branches it can conclude



Table 1
Average time of the centralized and decentralized algorithms; “sh. PTE” stands for “shuffled sub-PTE”.

# sh. PTEs # agents for sh. PTE # operations for sh. PTE Centralized [sec] Decentralized [sec]

10 10 20 6.64 1.26
10 10 15 8.26 1.04
10 5 20 9.85 1.49
10 5 15 9.92 1.28
10 15 15 14.86 1.23
10 5 10 18.35 1.08
10 15 10 20.25 1.61
10 10 10 29.59 1.98
15 5 15 93.34 2.73
15 15 10 116.61 3.56
10 15 20 126.31 25.32
15 10 10 283.70 4.14
15 5 10 349.30 2.23
20 10 10 355.90 3.99
15 5 20 363.67 5.83
20 5 15 558.59 9.28
20 5 20 801.37 7.82
15 20 10 952.43 12.36
20 5 10 1223.85 10.64
20 15 10 1340.29 9.57
20 20 10 1727.26 2.89

that a protocol violation took place because some wrong assumption on gaps – confirmed
by successive observations – had been made in the past. This delay in the error detection,
which could also be infinite, can be reduced introducing a threshold on the probability
that a branch must have to be considered valid. In this way, if after observing an event
the probability associated with a branch becomes lower than a chosen threshold, the
monitor can cut that branch and make error detection possibly quicker.

5. Experimental results
In our experiments we have considered the four following features:

1. the number of agents involved in the MAS we want to verify at runtime;
2. the number of shuffled sub-PTEs due to shuffle operators | in the AIP: we name

shuffled sub-PTE each portion of the PTE composed via a |, so for example
𝜏3 = 𝑎𝑙𝑖𝑐𝑒

𝑚𝑠𝑔1=⇒ 𝑏𝑜𝑏[0.7]:𝜖 | 𝑏𝑜𝑏
𝑚𝑠𝑔3=⇒ 𝑑𝑎𝑣𝑒[0.4]:𝜖 consists of 2 shuffled sub-PTEs; we

point out that when decentralizing the monitoring, we can associate one different
monitor with each shuffled sub-PTE, as shuffled sub-PTE are independent one from
the other and can be monitored in a fully decentralized way;

3. the number of operators for each shuffled sub-PTE in the AIP;
4. the number of gaps contained in the analyzed traces.

In Table 1, we report the results of our experiments. For each row, we keep the number
of shuffled sub-PTE, agents and operators fixed, while we change the length of the traces
and the percentage of gaps inside each trace. For each row we executed many different
runs and we have measured the total time required for recognizing the set of 300 randomly
generated traces. We changed the number of gaps contained inside the traces and we
tested both the centralized [28] and the decentralized algorithms. In the following, we
reported the graphics obtained from such executions.



Concerning the figures, the traces used in our experiments contain only gaps (namely, we
run experiments in the worst possible scenario), so the algorithm makes only expansions
and never reductions. We chose traces with only gaps to stress the algorithms as much
as possible. In real scenarios gaps should be the exceptions, and perfectly observable
events the norm.

In Figures 1 and 2, both the centralized and the decentralized algorithms seem to show
linear complexity with respect the number of the agents involved, even if the decentralized
algorithm has better performances.
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Figure 2: Decentralized algorithm:
changing number of agents.

In Figures 3 and 4, we can observe that the complexity of the centralized algorithm
seems to grow in a quadratic way, while the decentralized one seems to grows linearly.
This can be explained by the decentralization of the monitoring of shuffled sub-PTEs, as
if we add one operator to each shuffled sub-PTE, the monitor in charge for that shuffled
sub-PTE will need to manage one more operator only, whereas the centralized monitor
will cope with as many new operators as the shuffled sub-PTEs in the trace expression.
We point out that we use “seems to” to reflect that the complexities emerging from the
figures have not been computed on the basis of the algorithm, but have been estimated on
the basis of the experiments, and the behaviour in situations involving a limited number
of agents, operators, shuffled sub-PTEs, might not be the actual asymptotic behaviour of
the algorithm.

In Figures 5 and 6, we can appreciate the real advantages of decentralization, as –
from the figures – it seems that we have an exponential complexity for the centralized
algorithm and a pseudo-quadratic complexity for the decentralized one. We emphasise
that in the decentralized case (Figure 6) we were able to run experiments with 40 shuffled
sub-PTEs, while in the centralized case we had to stop with half shuffled sub-PTEs,
and with an execution time hundred times higher. The number of shuffled sub-PTEs
is indeed the feature which most impacts the algorithms performance, and this in not
a surprise; intuitively, when we add a new shuffled sub-PTE we have to interleave it
with all the already existent shuffled sub-PTEs. In the centralized case, this brings to a
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state explosion, while in the decentralized one, since we can decentralize the monitoring
of each shuffled sub-PTEs, we simply have to add a new monitor. In this way, we can
avoid the state explosion, even if the presence of a new monitor increases the exchange
of messages among the monitors needed to synchronize information about gaps.
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So far, our experiments are simulated: although trace expressions and the RML
language4 that spun from them [37] have been adopted to model and dynamically verify
behavioural patterns involving interaction among Jason and JADE agents [39], robotic
systems [40], IoT systems [41] and programs developed in Node.js and Node-RED [37],
their probabilistic extension, PTEs, was not tested on real setting yet.

The code for running our experiments can be found in the PTE repository on GitHub,
https://vivianamascardi.github.io/Software/PTE.pl.

4https://rmlatdibris.github.io/, accessed on June 2022.

https://vivianamascardi.github.io/Software/PTE.pl
https://rmlatdibris.github.io/


By calling the generate_mas goal, we can generate one simulated PTE with some
features, for example generate_mas(5, 3, 4, Partition, T) unifies T with a PTE
with 5 branches, 3 randomly generated agents involved in each branch, and 4 randomly
selected operators (such as shuffle, union, etc) for each branch, and Partition with
a partition of T into sub-PTEs to be monitored in a decentralized way. Then, the T
and Partition variables unified with ground temrs can be used as arguments of the
create_output_file goal that generates a csv file containing all the data needed for
making the experiments presented in this section.

In create_output_file(ID, T, MaxLength, NTests, MinProbNoise, MaxProbNoise,
MinProbMsgNoise, MaxProbMsgNoise, Partition), ID is the csv file name to be gener-
ated, T and Partition must be unified with a ground PTE and with a partition into
sub-PTEs, respectively, by calling generate_mas, MaxLength is the maximum length of
the trace to analyze, NTests is the number of tests to be repeated, to have more robust
and reliable results, MinProbNoise and MaxProbNoise define the probability range to
have gaps in the generated and analyzed trace, MinProbMsgNoise and MaxProbMsgNoise
define the probability range to have gaps in the observed message.

6. Conclusions and Future Work
In this paper we presented a distributed approach to runtime verification where we may
lack some pieces of information about observed events. With respect to standard runtime
verification, the state estimation approach allows us to be more reliable, especially in
scenarios where partial or total absence of information is frequent.

For the sake of clarity, we considered only totally uninstantiated gaps. This choice has
been made to make the development of monitors easier. Naturally, the presence of part
of information about the event could be used by the monitors in order to cut useless
branches. We will extend our implementation to cope with partially instantiated gaps.

Another future work will be to consider a threshold in order to cut branches that are
unreasonable to maintain, as the probability to be correct is too low. Fixed a threshold,
a monitor will be able to remove all the branches with a joint probability associated with
them lower than the chosen threshold. This will bring the advantage of anticipating the
error detection and to prune useless branches related to unreasonable possibilities.
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