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Abstract
In this work we introduce a labelled sequent calculus for Conditional Logics admitting the axiom of
Conditional Excluded Middle (CEM), rejected by Lewis but endorsed by Stalnaker. We also consider some
of its standard extensions. Conditional Logics with CEM recently have received a renewed attention and
have found several applications in knowledge representation and artificial intelligence. The proposed
calculus improves the only existing one, SeqS, where the condition CEM on conditional models is
tackled by means of a simple but computationally expensive process of label substitution. Here we
propose an alternative calculus avoiding label substitution, where a single rule deals simultaneously
with conditional formulas and the CEM axiom. We have implemented the calculi in Prolog following
the “lean” methodology, then we have tested the performances of the prover and compared them with
those of CondLean, an implementation of SeqS. The performances are promising and better than those
of CondLean, witnessing that the proposed calculus provides an effective improvement with respect to
the state of the art.
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1. Introduction

Conditional logics are extensions of classical logic by means of a binary operator >, in order to
express conditional implications of the form 𝐴 > 𝐵. They have a long history, starting with the
seminal works by [1], [2], [3], [4], and [5]. Conditional logics have found an interest in several
fields of artificial intelligence and knowledge representation, from reasoning about prototypical
properties and non-monotonic reasoning [6, 7, 8, 9], where 𝐴 > 𝐵 can be used to formalize
that “typically, the 𝐴s are also 𝐵s” or “in normal circumstances, if 𝐴 then 𝐵”, to modeling belief
change, knowledge update and revision [10, 11, 12], where the relation with conditional logics
is expressed by the so-called Ramsey’s Rule:

(𝐴 ∘𝐵) → 𝐶 holds if and only if 𝐴 → (𝐵 > 𝐶) holds

where the operator ∘ is any update operator satisfying postulates of [13], that are considered
the “core” properties for any concrete and plausible operator of belief update. Ramsey’s rule
means that 𝐶 is entailed by “𝐴 updated by 𝐵” if and only if the conditional 𝐵 > 𝐶 is entailed
by 𝐴. In this sense it can be said that the conditional 𝐵 > 𝐶 expresses an hypothetical update
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of the information 𝐴. Moreover, conditional logics have been employed in order to represent
conditional sentences that cannot be captured by material implication and, in particular, coun-
terfactuals [1], e.g., conditionals of the form “if 𝐴 were the case, then 𝐵 would be the case”,
where 𝐴 is false, as well as to model hypothetical queries in deductive databases and logic
programming [14], causal inference and reasoning about action execution in planning [15, 16],
access control policies in security [17].

Similarly to modal logics, the semantics of conditional logics can be defined in terms of
possible world structures. In this respect, conditional logics can be seen as a generalization
of modal logics (or a type of multi-modal logic) where the conditional operator is a sort of
modality indexed by a formula of the same language. However, as a difference with modal
logics, a universally accepted semantics for conditional logics lacks and it is the main reason for
the underdevelopment of proof-methods and theorem provers. The semantics we consider in
this work is the selection function semantics [2], where truth values are assigned to formulas
depending on a world. Intuitively, the selection function 𝑓 selects, for a world 𝑤 and a formula
𝐴, the set of worlds 𝑓(𝑤,𝐴) which are “most-similar to 𝑤" or “closer to 𝑤" given the information
𝐴. In normal conditional logics, the function 𝑓 depends on the set of worlds satisfying 𝐴 rather
than on 𝐴 itself, so that 𝑓(𝑤,𝐴) = 𝑓(𝑤,𝐴′) whenever 𝐴 and 𝐴′ are true in the same worlds
(normality condition). A conditional sentence 𝐴 > 𝐵 is true in 𝑤 whenever 𝐵 is true in every
world selected by 𝑓 for 𝐴 and 𝑤. It is the normality condition which marks essentially the
difference between conditional logics on the one hand, and multimodal logic, on the other
(where one might well have a family of □ indexed by formulas). We believe that it is the very
condition of normality what makes it difficult to develop proof systems for conditional logics
with the selection function semantics.

Since we adopt the selection function semantics, CK is the fundamental system [2]; it has
the same role as the system K (from which it derives its name) in modal logic: CK-valid
formulas are exactly those ones that are valid in every selection function model. Extensions
are then obtained by imposing restrictions on the selection function. In this work, we focus
on the systems equipped with the condition of Conditional Excluded Middle (CEM), whose
characterizing axioms are of the form

(𝐴 > 𝐵) ∨ (𝐴 > ¬𝐵)

corresponding to the semantic condition that, for each world 𝑤 and for each formula 𝐴, the
selection function 𝑓 selects at most one world for 𝑤 and 𝐴, in other words the cardinality of
the selection function is at most 1.

While [1] provides an argument against CEM, essentially based on his treatment of “might”
counterfactuals so that both conditionals can be false, [3] provides an argument in favor,
intuitively stating that the conditionals can be indeterminate but their disjunction is true.
Consider the example in [18] and the two counterfactual sentences “if Bizet and Verdi were
compatriots, would they be Italian?” and “if Bizet and Verdi were compatriots, would they
be not Italian?”: Lewis rejects, stating that the two conditionals are intuitively false, whereas
Stalnaker endorses it, conjecturing that they are both indeterminate but their disjunction is
true. More recently, [18] has provided a general positive argument for CEM, defending the
Stalnaker’s verdict.



In [19] the authors have introduced a labelled sequent calculus for CK and the extensions
with condition CEM, but also ID (identity), MP (conditional modus ponens), and CS (conditional
strong centering), as well as most of the combinations of them. The proposed calculi, called
SeqS, are modular and, in some cases, optimal, however, for the systems with CEM, a label
substitution mechanism is needed in order to deal with the above mentioned condition on
the selection function. They have also introduced a Prolog theorem prover, called CondLean,
implementing those calculi, whose performances are promising in general, however, due to the
label substitution mechanism, they degrade for systems with CEM, especially in finding that a
formula is not valid.

In this paper we provide a first step in the direction of efficient theorem proving for conditional
logics dealing with conditional excluded middle, by tackling the problems of SeqS and CondLean
with an alternative calculus (and, as a consequence, an alternative implementation) in which
the label substitution mechanism is replaced by a suitable rule for dealing with conditional
formulas in these systems. We are able to give cut-free calculi, called SeqS’, for CK+CEM and
all the extensions with ID and CS. The completeness of the calculi is an immediate consequence
of the admissibility of cut. We show that one can derive a decision procedure from the cut-free
calculi, providing a constructive proof of decidability of the logics considered. As usual, we
obtain a terminating proof search mechanism by controlling the backward application of some
critical rules. By estimating the size of the finite derivations of a given sequent, we also obtain
a polynomial space complexity bound for these logics.

We have implemented the calculi SeqS’ in Prolog following the line of CondLean: our theorem
prover is inspired to the “lean” methodology, whose basic idea is to write short programs and
exploit the power of Prolog’s engine as much as possible. The implementation offer significantly
better performances with respect to those of CondLean, allowing us to conclude that the calculi
SeqS’ can be considered a first, plausible solution to the problem of reasoning in conditional
logics with CEM.

The plan of the paper is as follows. In Section 2 we introduce Conditional Logics with
Conditional Excluded Middle. In Section 3 we present SeqS’, the novel labelled sequent calculi,
by emphasizing the differences with SeqS. In Section 4 we describe a Prolog implementation
of SeqS’, then we conclude in Section 6 with some experimental results witnessing that its
performance are better than those of CondLean. and with some pointers to future works.

2. Conditional Logics with Conditional Excluded Middle

In this section we briefly present propositional conditional logics with CEM.
A propositional conditional language ℒ contains: (i) a set of propositional variables ATM ;

(ii) the constants ⊥ and ⊤; (iii) a set of connectives ¬ (unary), ∧, ∨, →, > (binary). Formulas of
ℒ as follows:

• ⊥, ⊤, and the propositional variables of ATM are atomic formulas;
• if A and B are formulas, ¬𝐴, 𝐴 ∧𝐵, 𝐴 ∨𝐵, 𝐴 → 𝐵 and 𝐴 > 𝐵 are complex formulas.

We define the selection function semantics as follows: given a non-empty set of possible worlds
𝒲 , the selection function 𝑓 selects, for a world 𝑤 and a formula 𝐴, the set of worlds of 𝒲



which are closer to 𝑤 given the information 𝐴. A conditional formula 𝐴 > 𝐵 holds in a world
𝑤 if the formula 𝐵 holds in all the worlds selected by 𝑓 for 𝑤 and 𝐴.

Definition 1 (Selection function semantics). A model is a triple ℳ = ⟨𝒲, 𝑓, [ ]⟩ where:

• 𝒲 is a non empty set of worlds;
• 𝑓 is the selection function

𝑓 : 𝒲 × 2𝒲 −→ 2𝒲

satisfying the condition for conditional excluded middle:

| 𝑓(𝑤, [𝐴]) | ≤ 1

• [ ] is the evaluation function, which assigns to an atom 𝑃 ∈ ATM the set of worlds where
𝑃 is true, and is extended to the other formulas as follows:

– [⊥] = ∅;
– [⊤] = 𝒲 ;
– [¬𝐴] = 𝒲 ∖ [𝐴];
– [𝐴 ∧𝐵] = [𝐴] ∩ [𝐵];
– [𝐴 ∨𝐵] = [𝐴] ∪ [𝐵];
– [𝐴 → 𝐵] = (𝒲∖[𝐴]) ∪ [𝐵];
– [𝐴 > 𝐵] = {𝑤 ∈ 𝒲 | 𝑓(𝑤, [𝐴]) ⊆ [𝐵]}.

It is worth noticing that we have defined 𝑓 taking [𝐴] rather than 𝐴 (i.e. 𝑓 (𝑤,[𝐴]) rather than
𝑓 (𝑤,𝐴)) as an argument; this is equivalent to define 𝑓 on formulas, i.e. 𝑓 (𝑤,𝐴) but imposing
that if [𝐴]=[𝐴

′
] in the model, then 𝑓 (𝑤,𝐴)=𝑓 (𝑤,𝐴

′
). This condition is called normality.

The semantics above characterizes the basic conditional system we consider, called CK+CEM.
An axiomatization of this system is given by:

• any axiomatization of classical propositional calculus;

• (CEM) (𝐴 > 𝐵) ∨ (𝐴 > ¬𝐵)

• (Modus Ponens)
𝐴 𝐴 → 𝐵

𝐵

• (RCEA)
𝐴 ↔ 𝐵

(𝐴 > 𝐶) ↔ (𝐵 > 𝐶)

• (RCK)
(𝐴1 ∧ · · · ∧𝐴𝑛) → 𝐵

(𝐶 > 𝐴1 ∧ · · · ∧ 𝐶 > 𝐴𝑛) → (𝐶 > 𝐵)

As for modal logics, we can consider extensions of CK+CEM by assuming further properties
on the selection function. We consider the following ones:

Logic Axiom Model condition
ID 𝐴 > 𝐴 𝑓(𝑤, [𝐴]) ⊆ [𝐴]

CS (𝐴 ∧𝐵) → (𝐴 > 𝐵) 𝑤 ∈ [𝐴] → 𝑓(𝑤, [𝐴]) ⊆ {𝑤}

The above axiomatization is complete with respect to the semantics [2].



3. A Labelled Sequent Calculus for Conditional Logics with CEM

We introduce SeqS’, a sequent calculus for the conditional systems with CEM. The calculi make
use of labels to represent possible worlds. We consider a language ℒ and a denumerable alphabet
of labels 𝒜, whose elements are denoted by x, y, z, .... There are two kinds of labelled formulas:

• world formulas, denoted by x: A, where x ∈ 𝒜 and 𝐴 ∈ ℒ, used to represent that A holds
in a world x;

• transition formulas, denoted by x 𝐴−→ y, where x, y ∈ 𝒜 and 𝐴 ∈ ℒ. A transition formula

x 𝐴−→ y represents that y ∈ f (x, [A]).

A sequent is a pair ⟨Γ,∆⟩, usually denoted with Γ ⊢ ∆, where Γ and ∆ are multisets of labelled
formulas. The intuitive meaning of Γ ⊢ ∆ is: every model that satisfies all labelled formulas of
Γ in the respective worlds (specified by the labels) satisfies at least one of the labelled formulas
of ∆ (in those worlds). Formally, given a model ℳ = ⟨𝒲, 𝑓, [ ]⟩ for ℒ, and a label alphabet
𝒜, we consider any mapping 𝐼 : 𝒜 → 𝒲 . Let 𝐹 be a labelled formula, we define ℳ |=𝐼 𝐹 as
follows:

• ℳ |=𝐼 𝑥: 𝐴 if and only if 𝐼(𝑥) ∈ [𝐴]

• ℳ |=𝐼 𝑥
𝐴−→ 𝑦 if and only if 𝐼(𝑦) ∈ 𝑓(𝐼(𝑥), [𝐴])

We say that Γ ⊢ ∆ is valid in ℳ if for every mapping 𝐼 : 𝒜 → 𝒲 , if ℳ |=𝐼 𝐹 for every
𝐹 ∈ Γ, then ℳ |=𝐼 𝐺 for some 𝐺 ∈ ∆. We say that Γ ⊢ ∆ is valid in a system, either the basic
CK+CEM or any extension of it, if it is valid in every ℳ satisfying the specific conditions for
that system.

The calculi SeqS’ are shown in Figure 1. We say that a sequent Γ ⊢ ∆ is derivable if it admits
a derivation in SeqS’, i.e. a proof tree, obtained by applying backwards the rules of the calculi,
having Γ ⊢ ∆ as a root and whose leaves are all instances of (AX). As usual, the idea is as
follows: in order to prove that a formula 𝐹 is valid in a conditional logic, then one has to check
whether the sequent ⊢ 𝑥 : 𝐹 is derivable in SeqS’, i.e. if there is a derivation, obtained by
applying backwards the rules, having ⊢ 𝑥 : 𝐹 as a root.

As a difference with the starting point of this work, namely the sequent calculi SeqS introduced
in [19], the calculi SeqS’ deal with the CEM condition by means of a second rule whose principal
formula is a conditional 𝐴 > 𝐵 on the right-hand side of a sequent, in addition to the “standard”
one already belonging to the original calculus. The novel rule, called (𝐶𝐸𝑀>), is as follows:

Γ ⊢ ∆, 𝑥
𝐴−→ 𝑦 Γ ⊢ ∆, 𝑦 : 𝐵

(𝐶𝐸𝑀>)
Γ ⊢ ∆, 𝑥 : 𝐴 > 𝐵

This rule replaces the following rule (CEM) of SeqS:

Γ, 𝑥
𝐴−→ 𝑦 ⊢ ∆, 𝑥

𝐴−→ 𝑧 (Γ, 𝑥
𝐴−→ 𝑦 ⊢ ∆)[𝑦/𝑢, 𝑧/𝑢]

(𝐶𝐸𝑀)

Γ, 𝑥
𝐴−→ 𝑦 ⊢ ∆

where Σ[𝑥/𝑢] is used to denote the multiset obtained from Σ by replacing the label 𝑥 by 𝑢
wherever it occurs, and where it holds that 𝑦 ̸= 𝑧 and 𝑢 ̸∈ Γ,∆. The basic idea underlying the



Figure 1: Rules of sequent calculi SeqS’

.

new formulation is to generate a new label when dealing with a conditional 𝑥 : 𝐴 > 𝐵 on the
right-hand side of a sequent only one time, in order to generate a single world belonging to
the selection function of the world represented by 𝑥 for 𝐴, satisfying the semantic condition of
having at most one such a world. As an example, Figure 2 shows a derivation of an instance of
the characterizing axiom (CEM).

It is easy to observe that the rule (> R) is first applied to 𝐴 > 𝐵, introducing the new label
𝑦, representing the world selected by the selection function. Then, when the other conditional
𝐴 > ¬𝐵 is taken into account, the rule (> R) is no longer applied, however the new rule
(𝐶𝐸𝑀>) is applied by selecting the world represented by 𝑦 as the only one belonging to the
“most similar” worlds to the one represented by 𝑥 given the formula 𝐴.

The following basic structural properties hold for all the calculi SeqS’ (proofs are similar to
those in [19] and omitted to save space.



(𝐴𝑋)
𝑥

𝐴−→ 𝑦 ⊢ 𝑥
𝐴−→ 𝑦, 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵

(𝐴𝑋)
𝑥

𝐴−→ 𝑦, 𝑦 : 𝐵 ⊢ 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵
(¬R)

𝑥
𝐴−→ 𝑦 ⊢ 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵, 𝑦 : ¬𝐵

(𝐶𝐸𝑀>)
𝑥

𝐴−→ 𝑦 ⊢ 𝑥 : 𝐴 > 𝐵, 𝑥 : 𝐴 > ¬𝐵, 𝑦 : 𝐵
(> R)

⊢ 𝑥 : 𝐴 > 𝐵, 𝑥 : 𝐴 > ¬𝐵
(∨R)

⊢ 𝑥 : (𝐴 > 𝐵) ∨ (𝐴 > ¬𝐵)

Figure 2: A derivation of CEM in SeqS’.

Theorem 1 (Height-preserving admissibility of weakening). If Γ ⊢ ∆ is derivable in
SeqS’ with a derivation whose height is ℎ, then also are Γ ⊢ ∆, 𝐹 and Γ, 𝐹 ⊢ ∆, with proofs of
height ℎ1 ≤ ℎ and ℎ2 ≤ ℎ, respectively, where 𝐹 is any labelled formula.

Theorem 2 (Height-preserving invertibility of the rules). If Γ ⊢ ∆ is derivable in SeqS’
with a derivation whose height is ℎ, and Γ ⊢ ∆ is an instance of the conclusion of a rule R of SeqS’,
then also Γ′ ⊢ ∆′, where Γ′ ⊢ ∆′ is an instance of one of the premises of R, is derivable in SeqS’
with a proof of height ℎ′ ≤ ℎ.

Theorem 3 (Height-preserving admissibility of contraction). If Γ ⊢ ∆, 𝐹, 𝐹 , where 𝐹 is
any labelled formula, is derivable in SeqS’ with a derivation whose height is ℎ, then also Γ ⊢ ∆, 𝐹
is derivable in SeqS’ with a proof of height ℎ′ ≤ ℎ. If Γ, 𝐹, 𝐹 ⊢ ∆, where 𝐹 is any labelled formula,
is derivable in SeqS’ with a derivation whose height is ℎ, then also Γ, 𝐹 ⊢ ∆ is derivable in SeqS’
with a proof of height ℎ′ ≤ ℎ.

The calculi SeqS’ are sound and complete for all the systems considered, namely the basic
system CK+CEM, as well as the three extensions with ID, CS, and both CS and ID:

Theorem 4 (Soundness and completeness). Given a conditional formula 𝐹 , it is valid in a
conditional logic with conditional excluded middle if and only if it is derivable in the corresponding
calculus of SeqS’, that it to say |= 𝐹 if and only if ⊢ 𝑥 : 𝐹 is derivable in SeqS’.

Proof. For the soundness, we have to prove that, if a sequent Γ ⊢ ∆ is derivable, then the
sequent is valid. This can be done by induction on the height of the derivation of Γ ⊢ ∆. The
basic cases are those corresponding to derivations of height 0, that is to say instances of (𝐴𝑋).
It is easy to see that, in all these cases, Γ ⊢ ∆ is a valid sequent. As an example, consider
Γ, 𝑥 : 𝑃 ⊢ ∆, 𝑥 : 𝑃 : consider every model ℳ and every mapping 𝐼 satisfying all formulas in
the left-hand side of the sequent, then also 𝑥 : 𝑃 . This means that 𝐼(𝑥) ∈ [𝑃 ], but then we
have that ℳ satisfies via 𝐼 at least a formula in the right-hand side of the sequent, the same
𝑥 : 𝑃 . For the inductive step, we proceed by considering each rule of the calculi SeqS’ in order
to check that, if the premise(s) is (are) valid sequent(s), to which we can apply the inductive
hypothesis, so is the conclusion. Due to space limitations, we only present the case of the



new rule (𝐶𝐸𝑀>), for the other rules the proof is similar to the one of SeqS in [19]. Let the
considered proof ended as:

(1) Γ ⊢ ∆, 𝑥
𝐴−→ 𝑦 (2) Γ ⊢ ∆, 𝑦 : 𝐵

(𝐶𝐸𝑀>)
(3) Γ ⊢ ∆, 𝑥 : 𝐴 > 𝐵

By inductive hypothesis, both (1) and (2) are valid. By absurd, suppose (3) is not, that is to
say there exists a model ℳ and a mapping 𝐼 satisfying all formulas in Γ but falsifying all
formulas in ∆ as well as 𝑥 : 𝐴 > 𝐵. Since (1) is valid, since ℳ and 𝐼 falsifies all formulas in

∆, necessarily we have that ℳ |=𝐼 𝑥
𝐴−→ 𝑦, that is to say 𝐼(𝑦) ∈ 𝑓(𝐼(𝑥), [𝐴]). By the CEM

semantic condition, it follows that (*) 𝑓(𝐼(𝑥), [𝐴]) = {𝐼(𝑦)}. Analogously, by the validity of
(2) we have that ℳ |=𝐼 𝑦 : 𝐵. If ℳ ̸|=𝐼 𝑥 : 𝐴 > 𝐵 in (3), there exists a world 𝑤 such that
𝑤 ∈ 𝑓(𝐼(𝑥), [𝐴]) and 𝑤 ̸∈ [𝐵], however, since (*), we have that 𝐼(𝑦) = 𝑤, against the validity
of (2), and we are done.

The completeness is an easy consequence of the admissibility of the cut rule:

Γ ⊢ ∆, 𝐹 𝐹,Γ ⊢ ∆
(𝑐𝑢𝑡)

Γ ⊢ ∆

where 𝐹 is any labelled formula. As usual, the proof proceeds by a double induction over
the complexity of the cut formula and the sum of the heights of the derivations of the two
premises of cut, in the sense that we replace one cut by one or several cuts on formulas of
smaller complexity, or on sequents derived by shorter derivations. We only show one of the
paradigmatic cases involving the novel rule (𝐶𝐸𝑀>), namely the case in which the cut formula
is the principal formulas in both the premises of (𝑐𝑢𝑡), and the rules applied to it are (𝐶𝐸𝑀>)
and (> L). The situation is as follows:

(1)Γ ⊢ Δ, 𝑥
𝐴−→ 𝑦 (2)Γ ⊢ Δ, 𝑦 : 𝐵

(𝐶𝐸𝑀>)
(5)Γ ⊢ Δ, 𝑥 : 𝐴 > 𝐵

(3)Γ, 𝑥 : 𝐴 > 𝐵 ⊢ Δ, 𝑥
𝐴−→ 𝑦 (4)Γ, 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵 ⊢ Δ

(> L)
(6)Γ, 𝑥 : 𝐴 > 𝐵 ⊢ Δ

(𝑐𝑢𝑡)
Γ ⊢ Δ

Since weakening is height-preserving admissible, we can obtain a proof (with a derivation of
at most the same height of (5)) for (5′) Γ ⊢ ∆, 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵. By inductive hypothesis on
the height of the derivations, we can cut (4) and (5′), obtaining a derivation of (7) Γ, 𝑦 : 𝐵 ⊢ ∆.
We can then apply the inductive hypothesis on the complexity of the cut formula to cut (2) and
(7), and we are done with a derivation of Γ ⊢ ∆. The remaining cases are similar to those in
[19] and left to the reader.

With the rule (𝑐𝑢𝑡) at hand, we show that if a formula 𝐹 is valid in a conditional logic
with CEM, then ⊢ 𝑥 : 𝐹 is derivable in SeqS’. We proceed by induction on the complexity of
the formulas, therefore we show that the axioms are derivable and that the set of derivable
formulas is closed under (Modus Ponens), (RCEA), and (RCK). A derivation of axioms (ID)
and (CS) can be obtained as in SeqS [19]. A derivation of (CEM) is provided in Figure 2. For
(Modus Ponens), suppose that ⊢ 𝑥 : 𝐴 → 𝐵 and ⊢ 𝑥 : 𝐴 are derivable. We easily have that
𝑥 : 𝐴 → 𝐵, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐵 is derivable too. Since cut is admissible, by two cuts we obtain



⊢ 𝑥 : 𝐵:
𝑥 : 𝐴 → 𝐵, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐵 ⊢ 𝑥 : 𝐴 → 𝐵

(𝑐𝑢𝑡)
𝑥 : 𝐴 ⊢ 𝑥 : 𝐵 ⊢ 𝑥 : 𝐴

(𝑐𝑢𝑡)
⊢ 𝑥 : 𝐵

For (RCEA), we have to show that if 𝐴 ↔ 𝐵 is derivable, then also (𝐴 > 𝐶) ↔ (𝐵 > 𝐶)
is so. The formula 𝐴 ↔ 𝐵 is an abbreviation for (𝐴 → 𝐵) ∧ (𝐵 → 𝐴). Suppose that
⊢ 𝑥 : (𝐴 → 𝐵) ∧ (𝐵 → 𝐴) is derivable, then also 𝑥 : 𝐴 ⊢ 𝑥 : 𝐵 and 𝑥 : 𝐵 ⊢ 𝑥 : 𝐴 are
derivable since rules are height-preserving invertible. We can derive 𝑥 : 𝐴 > 𝐶 ⊢ 𝑥 : 𝐵 > 𝐶
as follows:

𝑥 : 𝐴 ⊢ 𝑥 : 𝐵 𝑥 : 𝐵 ⊢ 𝑥 : 𝐴
(EQ)

𝑥 : 𝐴 > 𝐶, 𝑥
𝐵−→ 𝑦 ⊢ 𝑥

𝐴−→ 𝑦, 𝑦 : 𝐶 𝑥 : 𝐴 > 𝐶, 𝑥
𝐵−→ 𝑦, 𝑦 : 𝐶 ⊢ 𝑦 : 𝐶

(> L)
𝑥

𝐵−→ 𝑦, 𝑥 : 𝐴 > 𝐶 ⊢ 𝑦 : 𝐶
(> R)

𝑥 : 𝐴 > 𝐶 ⊢ 𝑥 : 𝐵 > 𝐶

The other half is symmetric. For (RCK), suppose that (1) ⊢ 𝑥 : 𝐵1 ∧ 𝐵2 · · · ∧ 𝐵𝑛 → 𝐶 is
derivable, by the height-preserving invertibility of the rules also 𝑦 : 𝐵1, . . . , 𝑦 : 𝐵𝑛 ⊢ 𝑦 : 𝐶 is
derivable. We obtain the following derivation:

𝑥
𝐴−→ 𝑦 ⊢ 𝑥

𝐴−→ 𝑦

𝑥
𝐴−→ 𝑦 ⊢ 𝑥

𝐴−→ 𝑦 𝑥 : 𝐴 > 𝐵1, 𝑦 : 𝐵1, . . . , 𝑦 : 𝐵𝑛 ⊢ 𝑦 : 𝐶
(⇒ L)

𝑥
𝐴−→ 𝑦, 𝑥 : 𝐴 > 𝐵1, 𝑦 : 𝐵1, . . . , 𝑦 : 𝐵𝑛−1 ⊢ 𝑦 : 𝐶

...

𝑥
𝐴−→ 𝑦, 𝑥 : 𝐴 > 𝐵1, . . . , 𝑥 : 𝐴 > 𝐵𝑛, 𝑦 : 𝐵1 ⊢ 𝑦 : 𝐶

(> L)
𝑥

𝐴−→ 𝑦, 𝑥 : 𝐴 > 𝐵1, . . . , 𝑥 : 𝐴 > 𝐵𝑛 ⊢ 𝑦 : 𝐶
(> R)

𝑥 : 𝐴 > 𝐵1, . . . , 𝑥 : 𝐴 > 𝐵𝑛 ⊢ 𝑥 : 𝐴 > 𝐶

■

The presence of labels and of the rules (> L), (ID), and (CS), which increase the complexity
of the sequent in a backward proof search, is a potential cause of a non-terminating proof search.
However, with a similar argument to the one proposed in [19], we can define a procedure that
can apply such rules in a controlled way and introducing a finite number of labels, ensuring
termination. Intuitively, it can be shown that it is useless to apply (> L) on 𝑥 : 𝐴 > 𝐵 by

introducing (looking backward) the same transition formula 𝑥
𝐴−→ 𝑦 more than once in each

branch of a proof tree. Similarly, it is useless to apply (ID) or (CS)on the same transition

𝑥
𝐴−→ 𝑦 more than once in a backward proof search in each branch of a derivation. This leads

to the decidability of the given logics:

Theorem 5 (Decidability). Conditional logics CK+CEM, CK+CEM+ID, CK+CEM+CS, and
CK+CEM+ID+CS are decidable.



We can show that provability in all the conditional logics with CEM considered is decidable in
𝑂(𝑛2 log 𝑛) space, the proof is essentially the same as in [19] and can be omitted in order to
save space.

4. A Theorem Prover for Conditional Logics with CEM

We have implemented the calculi SeqS’ introduced in the previous section (https://gitlab2.educ.
di.unito.it/pozzato/condlean4) in order to show that such a calculus can be the base for efficient
theorem proving for conditional logics with conditional excluded middle. In order to provide a
safe and direct comparison with CondLean [20, 21], as far as we know, the only theorem prover
for these logics, we have followed the so-called “lean” methodology, introduced by Beckert
and Posegga in the middle of the 90s [22, 23, 24]. Beckert and Posegga have proposed a very
elegant and extremely efficient first-order theorem prover, called leanTAP, consisting of only
five Prolog clauses. The basic idea of the “lean” methodology is “to achieve maximal efficiency
from minimal means” [22] by writing short programs and exploiting the power of Prolog’s
engine as much as possible.

We implement each component of a sequent by a list of formulas, partitioned into three
sub-lists: atomic formulas, transitions and complex formulas. Atomic and complex formulas are
implemented by a Prolog list of the form [x,a], where x is a Prolog constant and a is a formula.

A transition formula x 𝐴−→ y is implemented by a Prolog list of the form [x,a,y]. Labels are
implemented by Prolog constants. The sequent calculi are implemented by the predicate

prove(Cond, Gamma, Delta, Labels, Tree)

which succeeds if and only if Γ ⊢∆ is derivable in SeqS, where Gamma and Delta are the lists
implementing the multisets Γ and ∆, respectively and Labels is the list of labels introduced in
that branch. Cond is a list of pairs of kind [𝐹,Used ], where 𝐹 is a conditional formula [X,A =>
B] and Used is a list of transitions [[𝑋,𝐴1, 𝑌1], ..., [𝑋,𝐴𝑛, 𝑌𝑛]] such that (> L) has already

been applied to 𝑥 : 𝐴 > 𝐵 by using transitions 𝑥 𝐴𝑖−→ 𝑦𝑖. The list Cond is used in order to
ensure the termination of the proof search, by applying the restrictions described in the previous
section in order to avoid useless applications of the rules. Similar mechanisms are adopted for
extensions of the basic system CK+CEM, in order to control the applications of rules (ID) and
(CS). Tree is an output term: if the proof search succeeds, it matches an implementation of the
derivation found by the theorem prover.

Each clause of the prove predicate implements one axiom or rule of SeqS’. The theorem prover
proceeds as follows. First of all, if Γ ⊢∆ is an axiom, then the goal will succeed immediately
by using the clauses for the axioms. If it is not, then the first applicable rule is chosen. The
ordering of the clauses is such that the application of the branching rules is postponed as much
as possible. Concerning the rules for > on the right-hand side of a sequent, the rule (> R),
which introduces a new label in a backward proof search, is first applied to a sequent of the
form Γ ⊢ ∆, 𝑥 : 𝐴 > 𝐵. If this does not lead to a derivation, the new rule for CEM is then
applied.

As an example, the clause for the axiom checking whether the same atomic formula occurs
in both the left and the right hand side of a sequent is implemented as follows:

https://gitlab2.educ.di.unito.it/pozzato/condlean4
https://gitlab2.educ.di.unito.it/pozzato/condlean4


prove(_,[LitGamma,_,_],[LitDelta,_,_],_):-
member(F,LitGamma),member(F,LitDelta),!.

As another example, here is the clause implementing (> L):

prove(Cond,[LitGamma,TransGamma,ComplexGamma],
[LitDelta,TransDelta,ComplexDelta], Labels):-

member([X,A => B],ComplexGamma),

select([[X,A => B],Used],Cond,TempCond),

member([X,C,Y],TransGamma),

∖+member([X,C,Y],Used),!,
put([Y,B],LitGamma,ComplexGamma,NewLitGamma,

NewComplexGamma),

prove([[[X, A => B],[[X,C,Y] | Used]] | TempCond],

[LitGamma,TransGamma,ComplexGamma],

[LitDelta,[[X,A,Y]|TransDelta],ComplexDelta],Labels),
prove([[[X, A => B],[[X,C,Y] | Used]] | TempCond],

[NewLitGamma,TransGamma,NewComplexGamma],

[LitDelta,TransDelta,ComplexDelta],Labels).

The predicate put is used to put [Y,B] in the proper sub-list of the antecedent. The two
recursive calls to prove implement the proof search on the two premises of the rule.

As a further example, here is the code of the novel rule (CEM>):

prove(Cond,[LitGamma,TransGamma,ComplexGamma],
[LitDelta,TransDelta,ComplexDelta], Labels):-

select([X,A => B],ComplexDelta,ResComplexDelta),!,

member([X,_,Y],TransGamma),

put([Y,B],LitDelta,ResComplexDelta,NewLitDelta,NewComplexDelta),

prove(Cond,[LitGamma,TransGamma,ComplexGamma],

[LitDelta,[[X,A,Y] | TransDelta],ComplexDelta], Labels),

prove(Cond,[LitGamma,TransGamma,ComplexGamma],

[NewLitDelta,TransDelta,NewComplexDelta], Labels).

In order to search a derivation of a sequent Γ ⊢∆, the theorem prover proceeds as follows.
First, if Γ ⊢∆ is an axiom, the goal will succeed immediately by using the clauses for the axioms.
If it is not, then the first applicable rule is chosen, e.g. if ComplexDelta contains a formula
[X,A -> B], then the clause for (→ R) rule is used, invoking prove on the unique premise of
(→ R). The prover proceeds in a similar way for the other rules. The ordering of the clauses is
such that the application of the branching rules is postponed as much as possible.



In order to check whether a formula is valid in one of the considered system, one has just to
invoke the following auxiliary predicate:

pr(Formula)

which wraps the prove predicate by a suitable initialization of its parameters.
The theorem prover is available for free download at https://gitlab2.educ.di.unito.it/pozzato/

condlean4, where one can also find an updated version of CondLean in order to compute the
statistics described in the next section.

5. Statistics

We have tested both CondLean and our theorem prover over

1. a set of randomly generated formulas, either valid or not
2. a set of formulas holding only in systems with CEM

obtaining the following results:

1. over randomly generated formulas, we have observed an improvement of the perfor-
mances of CondLean of 48, 27%.

2. over a set of valid formulas we are able to improve the performances of CondLean of
20, 57%. As an example, running both the provers over the formula

(𝐴 > (𝐵1 ∨ . . . 𝐵5)) > ((𝐴 > 𝐵1) ∨ . . . ∨ (𝐴 > 𝐵5))

our theorem prover is able to build a derivation in 94 ms, against the 266 ms needed by
CondLean.

We are currently testing the performances of our implementation over the extensions with ID
and CS and we are developing a graphical interface for the prover and we are also providing
Prolog files that will allow the user to reproduce a detailed comparison between the two systems
in a completely automated way.

The performance of the proposed theorem prover are promising, especially concerning all
cases in which it has to answer no for a not valid formula: this is justified by the fact that
CondLean has to make a great effort in order to explore the whole space of alternative choices
in label substitution, operation needed in order to conclude that no derivation exist.

6. Conclusions and Future Works

In this work we have introduced labelled sequent calculi for conditional logics with the axiom
of conditional excluded middle (CEM), as well as all the extensions with axioms ID and CS.
Our calculi revise those introduced in [19], where a modular labelled sequent calculus SeqS has
been introduced for several conditional logics, including those with CEM. We have provided
alternative calculi, where the original rule for CEM, based on an expensive mechanism of label

https://gitlab2.educ.di.unito.it/pozzato/condlean4
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substitution, has been replaced by a novel and “standard” rule, called (𝐶𝐸𝑀>) specifically
tailored for handling conditional formulas 𝐴 > 𝐵 in these systems.

We have also implemented the prosed calculi in order to obtain an empirical witness of the
fact that our solution improves the one in [19]. We have compared the performances of our
theorem prover with those of CondLean, a Prolog implementation of the calculi SeqS. Our
implementation is inspired to the “lean” methodology and, in order to focus on CEM, it adopts
all the choices of CondLean, essentially just by replacing the rule for conditional excluded
middle with a clause implementing the novel (𝐶𝐸𝑀>).

In future work we plan to extend the calculi and the implementation to other conditional
logics with conditional excluded middle. In particular, our main objective is to include extensions
with the axiom MP of conditional modus ponens:

(𝐴 > 𝐵) → (𝐴 → 𝐵),

whose selection functions must respect the following condition:

if 𝑤 ∈ [𝐴], then 𝑤 ∈ 𝑓(𝑤, [𝐴]).

This system, as well as its extensions with ID and CS, is not handled by CondLean, since [19]
does not show that (𝑐𝑢𝑡) is admissible also for them in the calculi SeqS.

Moreover, we aim at implementing a “concrete” theorem prover, starting from the one
proposed in this work, implementing state of the art heuristics, data structures and suitable
refinements. As already mentioned, we are currently working on extending the set of formulas
used in order to obtain further statistics, with the objective of comparing the performances of
the proposed theorem prover with those of CondLean.
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