
Declarative Pattern Mining in Digital Forensics:
Preliminary Results
Francesca Alessandra Lisi1,*, Gioacchino Sterlicchio1

1University of Bari “Aldo Moro", Via E. Orabona 4, Bari, 70125, Italy

Abstract
This paper proposes the application of ASP-based sequential pattern mining techniques in the analysis
of evidence collected according to the practice of digital forensics. In particular, it reports preliminary
results concerning the analysis of anonymised mobile phone recordings, which highlight the sequences
of events in a given time span.

Keywords
Sequential Pattern Mining, Answer Set Programming, Digital Forensics

1. Introduction

Digital Forensics (DF) is a branch of criminalistics which deals with the identification, acquisition,
preservation, analysis and presentation of the information content of computer systems, or in
general of digital devices, by means of specialized software, and according to specific regulations.
In particular, the phase of Evidence Analysis involves examining and aggregating evidence about
possible crimes and crime perpetrators collected from various electronic devices in order to
reconstruct events, event sequences and scenarios related to a crime. Evidence Analysis results
are made available to law enforcement, investigators, intelligence agencies, public prosecutors,
lawyers and judges.

Unlike the phase of Identification, where the application of Machine Learning (ML) tech-
niques can be useful for the analysis of big data, the phase of Evidence Analysis has particular
requirements that make the use of techniques from Knowledge Representation (KR) and Auto-
mated Reasoning (AR) a much more promising approach, potentially becoming a breakthrough
in the state-of-the-art. The ultimate goal of Evidence Analysis is indeed the formulation of
verifiable evidence that can be rationally presented in a trial. Under this perspective, the results
provided by ML classifiers or other types of “black box” AI systems do not have more value
than human witness’ suspicions and cannot be used as legal evidence. Logical methods provide
a broad range of proof-based reasoning functionalities that can be implemented in a declarative
framework where the problem specification and the computational program are closely aligned.

CILC 2022: 37th Italian Conference on Computational Logic, June 29 – July 1, 2022, Bologna, Italy
*Corresponding author, affiliated to Dipartimento di Informatica and to Centro Interdipartimentale di Logica e
Applicazioni (CILA) of the University of Bari.
$ FrancescaAlessandra.Lisi@uniba.it (F. A. Lisi); g.sterlicchio2@studenti.uniba.it (G. Sterlicchio)
� http://www.di.uniba.it/~lisi/ (F. A. Lisi)
� 0000-0001-5414-5844 (F. A. Lisi)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:FrancescaAlessandra.Lisi@uniba.it
mailto:g.sterlicchio2@studenti.uniba.it
http://www.di.uniba.it/~lisi/
https://orcid.org/0000-0001-5414-5844
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

This has the benefit that the correctness of the resulting systems can be formally verified.
Moreover, recent research has led to new methods for visualising and explaining the results
of computed answers (e.g., based on argumentation schemes). So one can not only represent
and solve relevant problems, but also provide tools to explain the conclusions (and their proofs)
in a transparent, comprehensible and justified way. This approach to DF was first explored
by Costantini et al. [1, 2], and subsequently adopted by the COST Action “Digital forensics:
evidence analysis via intelligent systems and practices" (DigForASP)1 which aims at promoting
formal and verifiable AI methods and techniques for Evidence Analysis [3].

Pattern mining [4] is a class of data mining tasks that consist of extracting interesting
structured patterns from a set of structured examples. These tasks encompass itemset mining,
sequence mining and graph mining. The interestingness measure of a pattern is, in most
of the algorithms, the number of its occurrences in the set of examples. Given a threshold
𝑘, interesting patterns are those that occur at least in 𝑘 examples. In this case, the task is
known as frequent pattern mining for which many algorithms have been proposed. Most of
the efficient algorithmic solutions rely on an antimonotonicity property of the support: the
larger the pattern, the fewer it occurs. Declarative pattern mining (DPM) aims at encoding
pattern tasks in a declarative framework, and more specifically the frequent pattern mining
tasks. Declarative pattern mining addressed the tasks of frequent itemset mining [5, 6], frequent
sequential patterns [7, 8]. Different declarative frameworks have been explored: SAT [5], CP
[9, 6], and ASP [8, 10]. We do not expect DPM to be competitive with dedicated algorithms,
but to take advantage of the versatility of declarative frameworks to propose pattern mining
tools that could exploit background knowledge during the mining process to extract less but
meaningful patterns. In this paper we will consider the case of sequential patterns, which turn
out to be promising as a support to the analysis of events and sequences of events in scenarios
of interest to DF experts.

The paper is organized as follows. In Section 2 we provide the necessary preliminaries on
ASP, sequential pattern mining and the ASP encoding used in our work. In Section 3 we describe
the application to a typical DF problem: the analysis of mobile phone recordings. In Section 4
we report some preliminary experimental results. In Section 5 we conclude by commenting the
ongoing work and by outlining some promising directions for research.

2. Preliminaries

2.1. Answer Set Programming

In the following we give a brief overview of the syntax and semantics of disjunctive logic
programs in ASP. The reader can refer to, e.g., [11] for a more extensive introduction to ASP.

Let 𝑈 be a fixed countable set of (domain) elements, also called constants, upon which a
total order ≺ is defined. An atom 𝛼 is an expression 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 is a predicate of
arity 𝑛 ≥ 0 and each 𝑡𝑖 is either a variable or an element from 𝑈 (i.e., the resulting language is
function-free). An atom is ground if it is free of variables. We denote the set of all ground atoms

1DigForASP: https://digforasp.uca.es/

https://digforasp.uca.es/

over 𝑈 by 𝐵𝑈 . A (disjunctive) rule 𝑟 is of the form

𝑎1 ∨ . . . ∨ 𝑎𝑛 ← 𝑏1, . . . , 𝑏𝑘, 𝑛𝑜𝑡 𝑏𝑘+1, . . . , 𝑛𝑜𝑡 𝑏𝑚

with 𝑛 ≥ 0, 𝑚 ≥ 𝑘 ≥ 0, 𝑛 + 𝑚 > 0, where 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑚 are atoms, or a count
expression of the form #𝑐𝑜𝑢𝑛𝑡{𝑙 : 𝑙1, . . . , 𝑙𝑖} ◁▷ 𝑢, where 𝑙 is an atom and 𝑙𝑗 is a literal (i.e.,
an atom which can be negated or not), 1 ≥ 𝑗 ≥ 𝑖, ◁▷∈ {≤, <,=, >,≥}, and 𝑢 ∈ N. Moreover,
“not” denotes default negation. The head of 𝑟 is the set ℎ𝑒𝑎𝑑(𝑟) = {𝑎1, . . . , 𝑎𝑛} and the body
of 𝑟 is 𝑏𝑜𝑑𝑦(𝑟) = {𝑏1, . . . , 𝑏𝑘, 𝑛𝑜𝑡 𝑏𝑘+1, . . . , 𝑛𝑜𝑡 𝑏𝑚}. Furthermore, we distinguish between
𝑏𝑜𝑑𝑦+(𝑟) = {𝑏1, . . . , 𝑏𝑘} and 𝑏𝑜𝑑𝑦−(𝑟) = {𝑏𝑘+1, . . . , 𝑏𝑚}. A rule 𝑟 is normal if 𝑛 ≤ 1 and a
constraint if 𝑛 = 0. A rule 𝑟 is safe if each variable in 𝑟 occurs in 𝑏𝑜𝑑𝑦+(𝑟). A rule 𝑟 is ground
if no variable occurs in 𝑟. A fact is a ground rule with 𝑏𝑜𝑑𝑦(𝑟) = ∅ and |ℎ𝑒𝑎𝑑(𝑟)| = 1. An
(input) database is a set of facts. A program is a finite set of rules. For a program Π and an input
database 𝐷, we often write Π(𝐷) instead of 𝐷 ∪Π. If each rule in a program is normal (resp.
ground), we call the program normal (resp. ground).

Given a program Π, let 𝑈Π be the set of all constants appearing in Π. 𝐺𝑟(Π) is the set
of rules 𝑟𝜎 obtained by applying, to each rule 𝑟 ∈ Π, all possible substitutions 𝜎 from the
variables in 𝑟 to elements of 𝑈Π. For count-expressions, {𝑙 : 𝑙1, . . . , 𝑙𝑛} denotes the set of all
ground instantiations of 𝑙, governed through 𝑙1, . . . , 𝑙𝑛. An interpretation 𝐼 ⊆ 𝐵𝑈 satisfies
a ground rule 𝑟 iff ℎ𝑒𝑎𝑑(𝑟) ∩ 𝐼 ̸= ∅ whenever 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝐼 , 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝐼 = ∅, and for
each contained count-expression, 𝑁 ◁▷ 𝑢 holds, where 𝑁 = |{𝑙|𝑙1, . . . , 𝑙𝑛}|, 𝑢 ∈ N and
◁▷∈ {≤, <,=, >,≥}. A ground program Π is satisfied by 𝐼 , if 𝐼 satisfies each 𝑟 ∈ Π. A
non-ground rule 𝑟 (resp., a program Π) is satisfied by an interpretation 𝐼 iff 𝐼 satisfies all
groundings of 𝑟 (resp., 𝐺𝑟(Π)). A subset-minimal set 𝐼 ⊆ 𝐵𝑈 satisfying the Gelfond-Lifschitz
reduct Π𝐼 = {ℎ𝑒𝑎𝑑(𝑟)← 𝑏𝑜𝑑𝑦+(𝑟)|𝐼 ∩ 𝑏𝑜𝑑𝑦−(𝑟) = ∅, 𝑟 ∈ 𝐺𝑟(Π)} is called an answer set of
Π. We denote the set of answer sets for a program Π by 𝐴𝑆(Π).

The tools used in this work are part of the Potassco2 collection [12]. The main tool of the
collection is the clingo ASP solver [13].

2.2. Sequential Pattern Mining

Our terminology on sequence mining follows the one in [7]. Throughout this article, [𝑛] =
{1, . . . , 𝑛} denotes the set of the first 𝑛 positive integers.

Let Σ be the alphabet, i.e., the set of items. An itemset 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} ⊆ Σ is a finite
set of items. The size of 𝐴, denoted |𝐴|, is 𝑚. A sequence 𝑠 is of the form 𝑠 = ⟨𝑠1𝑠2 . . . 𝑠𝑛⟩
where each 𝑠𝑖 is an itemset, and 𝑛 is the length of the sequence.

A database 𝒟 is a multiset of sequences over Σ. A sequence 𝑠 = ⟨𝑠1 . . . 𝑠𝑚⟩ with 𝑠𝑖 ∈ Σ is
contained in a sequence 𝑡 = ⟨𝑡1 . . . 𝑡𝑛⟩ with 𝑚 ≤ 𝑛, written 𝑠 ⊑ 𝑡, if 𝑠𝑖 ⊆ 𝑡𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑚
and an increasing sequence (𝑒1 . . . 𝑒𝑚) of positive integers 𝑒𝑖 ∈ [𝑛], called an embedding of 𝑠
in 𝑡. For example, we have ⟨𝑎(𝑐𝑑)⟩ ⊑ ⟨𝑎𝑏(𝑐𝑑𝑒)⟩ relative to embedding (1, 3). (𝑐𝑑) denotes the
itemset made of items 𝑐 and 𝑑.

Given a database 𝒟, the cover of a sequence 𝑝 is the set of sequences in 𝒟 that contain 𝑝:
𝑐𝑜𝑣𝑒𝑟(𝑝,𝒟) = {𝑡 ∈ 𝐷|𝑝 ⊑ 𝑡}. The number of sequences in 𝒟 containing 𝑝 is called its support,

2Potassco: https://potassco.org/

https://potassco.org/

Table 1
An example of sequence database 𝒟.

Id Sequence
1 ⟨𝑑 𝑎 𝑏 𝑐⟩
2 ⟨𝑎 𝑐 𝑏 𝑐⟩
3 ⟨𝑎 𝑏 𝑐⟩
4 ⟨𝑎 𝑏 𝑐⟩
5 ⟨𝑎 𝑐⟩
6 ⟨𝑏⟩
7 ⟨𝑐⟩

that is, 𝑠𝑢𝑝𝑝(𝑝,𝒟) = |𝑐𝑜𝑣𝑒𝑟(𝑝,𝒟)|. For an integer 𝑘, the problem of frequent sequence mining
is about discovering all sequences 𝑝 such that 𝑠𝑢𝑝𝑝(𝑝,𝒟) ≥ 𝑘. We often call 𝑝 a (sequential)
pattern, and 𝑘 is also referred to as the (minimum) support threshold. For 𝑘 = 2 we can see how
⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑎 𝑏⟩, ⟨𝑎 𝑐⟩, ⟨𝑏 𝑐⟩ e ⟨𝑎 𝑏 𝑐⟩ are common patterns in the database 𝒟 reported in
Table 1.

2.3. Mining sequential patterns with ASP

The sequence database𝒟 is represented in terms of ASP facts seq(t, p, e), where the seq predicate
says that an item e occurs at position p in a sequence t. For example, Listing 1 represents the
seven sequences of Table 1 in ASP format.

1 seq(1,1,d). seq(1,2,a). seq(1,3,b).seq(1,4,c).
2 seq(2,1,a). seq(2,2,c). seq(2,3,b).seq(2,4,c).
3 seq(3,1,a). seq(3,2,b). seq(3,3,c).
4 seq(4,1,a). seq(4,2,b). seq(4,3,c).
5 seq(5,1,a). seq(5,2,c).
6 seq(6,1,b).
7 seq(7,1,c).

Listing 1: ASP encoding for the sequence database 𝒟 reported in Table 1.

The ASP encoding for sequential pattern mining follows the principles outlined in [14] and
[8]. In particular, there are two parameters to be defined: maxlen determines the maximum
length of the patterns of interest and th specifies the minimum support threshold. The lower
the value of th the more patterns will be extracted; the lower the maxlen parameter, the
smaller the ground program will be. Therefore the parameters allow a tuning for the program
efficiency. Also, each answer set comprises a single pattern of interest. More precisely, an
answer set represents a frequent pattern 𝑠 = ⟨𝑠𝑖⟩𝑖≤𝑡ℎ≤𝑚 such that 1 ≤ 𝑚 ≤ 𝑚𝑎𝑥𝑙𝑒𝑛 from
atoms 𝑝𝑎𝑡(𝑚, 𝑠1), ..., 𝑝𝑎𝑡(1, 𝑠𝑚). The first argument expresses the position of the object in
increasing order, where m can vary, while 1 always indicates the first item in the pattern. For
example the atoms pat(1, a), pat(2, b) and pat(3, c) describe a frequent pattern ⟨𝑎 𝑏 𝑐⟩ of the

database in Table 1.

1 item(I) :- seq(_, _,I).
2

3 %sequential pattern generation
4 patpos(1).
5 0 { patpos(Ip+1) } 1 :- patpos(Ip), Ip<maxlen.
6 patlen(L) :- patpos(L), not patpos(L+1).
7

8 1 { pat(Ip,I): item(I) } 1 :- patpos(Ip).
9

10 %pattern embeddings
11 occ(T,1,Is) :- seq(T,Is,I), pat(1,I).
12 occ(T,Ip,Is) :- occ(T, Ip, Is-1), seq(T,Is,_).
13 occ(T,Ip,Is) :- occ(T, Ip-1, Is-1), seq(T,Is,I), pat(L,I).
14

15 %frequency constraint
16 seqlen(T,L) :- seq(T,L,_), not seq(T,L+1,_).
17 support(T) :- occF(T, L, LS), patlen(L), seqlen(T,LS).
18 :- { support(T) } < th.

Listing 2: Basic ASP encoding for sequential pattern mining [10].

Listing 2 reports the ASP program for sequential pattern mining according to [10]. Line 1
defines a new predicate that provides all items from the database. Lines 4 to 8 of the program
encode the pattern generation. Lines 11 to 13 encode pattern embedding search. Finally, Lines
16 to 18 are dedicated to assess the pattern frequency constraint. For a thorough discussion of
the program the reader can refer to [10].

3. Sequence Mining in Mobile Phone Records with ASP

During the investigation of a crime, it is common to analyze the communications of a particular
suspect. Given that, nowadays the mobile phone or smartphone is an object owned by anyone, it
can be useful for investigators to analyze the calls or messages exchanged. The telephone records
are a set of data inserted in tables that contain the data relating to the external communications
of the devices. In other words, the telephone records contain all the traces of communications
relating to a specific user over a certain period of time, therefore they contain traces of telephone
calls, SMS, and all the data traffic of the mobile phone.

Telephone records concern various pieces of information, such as:

• the telephone number of the caller
• the telephone number of the recipient
• the type of communication, e.g.: call, sms, missed call;
• the duration of the communication, indicated in minutes and seconds in the event of a

call. On the other hand, in the case of text messages or missed calls, this value will be
equal to 0 seconds.

In addition to the information indicated above, telephone records can report a series of
additional information usually referred to mobile users and therefore related to communications
via mobile phones.

Through a telephone records it is not possible to trace a series of important data such as the
audio of calls sent or received, the list of SMS messages, the content of the e-mails received
or sent, and the list of the web sites visited. In fact, through a telephone records it is possible
to have a trace of the communication that has taken place but not to obtain its content. The
telephone records can be requested by the Judicial Authority if it deems it useful to get hold of
them in order to carry out investigations on the individual owner of the user.

Correctly analyzing the telephone records is essential to obtain useful data. Depending on the
analysis, different types of information can be extracted. As a rule, the records are analyzed for
comparing the geographical positions with respect to the declarations, and for reconstructing
the network of contacts with reference to a single user in order to trace which conversations
he/she has had with which people and at what times.

3.1. The DigForASP dataset

For our experiments we have considered a dataset which consists of the telephone records of
four users from a real-word investigative case. The dataset has been made available by Prof.
David Billard (University of Applied Sciences in Geneva) under NDA to DigForASP members
for academic experimentation.

Each file in the dataset has the following schema:

• Type: what kind of operation the user has performed (e.g., incoming/outgoing call or
SMS);

• Caller : who makes the call or sends an SMS;
• Callee: who receives the call or SMS;
• Street: where the operation has taken place;
• Time: when the operation has taken place (ISO format3 HH: MM: SS);
• Duration: how long the operation has been (ISO format HH: MM: SS);
• Date: when the operation has taken place (format: day, month, year).

The type of the operation is one of the following cases: “config”, “gprs”, “redirect”,
“out_sms(SUB_TYPE)”, “in_sms(SUB_TYPE)”, “out_call(SUB_TYPE)”, “in_call(SUB_TYPE)”. Sub-
types are: “simple”, “ack”, “foreign”.

The dataset has undergone the mandatory anonymization process for reasons of privacy and
confidentiality. Therefore it does not contain data that allows tracing back to the real people
involved in the investigative case. For instance, there is no phone number for the caller/callee
but only a fictitious name. The names and the sizes (# rows) of the four files in the dataset are
the following: Eudokia Makrembolitissa (8,783), Karen Cook McNally (20,894), Laila Lalami
(12,689), and Lucy Delaney (8,480). An excerpt of the file containing the phone recordings of
Eudokia Makrembolitissa is reported in Figure 1.

3Format to describe dates and times: https://en.wikipedia.org/wiki/ISO_8601

https://en.wikipedia.org/wiki/ISO_8601

Figure 1: Some rows of the DigForASP dataset. The columns reflect the schema (type, caller, callee,
street_a, street_b, time, duration, date).

3.2. Data pre-processing

The dataset can not be used as is to mine sequences with ASP. So, data is pre-processed to lead
the dataset to a suitable ASP encoding.

As described in Section 2.2, the problem of sequential pattern mining consists in finding
frequent and non-empty sequences 𝑠, called sequential patterns, from a database of sequences
𝒟. The dataset of interest is the one described in Section 3.1. Obviously, in its original state it
cannot be considered as a set of sequences but must undergo an intermediate transformation
that leads it to be like the databases described in Section 2.3. In short, each line of the original
dataset will be transformed into an ASP fact through the seq_event atom.

The procedure for transforming the original dataset into sequences of ASP facts is the
following. Each row of the dataset has been transformed into a fact seq_event(t, p, e) (Listing 3),
where e represents the item (in our case the event), p defines the position of e within the
sequence t (identified by date). The term p is important as it allows you to define the order of
events within a sequence. More specifically, e is made up of the following features:

• Type: type of event (“in_sms”, “redirect”, “out_call”, etc.);
• Caller : the name of the caller;
• Callee: the name of the callee;
• Street_a: the geo-location of the event;
• Street_b: the geo-location of the event;
• the (hour, minute, seconds) triple: indicates the moment in time when the event occurred;
• Weekday: the day of the week (0 = Monday, ..., 6 = Sunday);
• Duration: duration, expressed in seconds, of the operation described by Type.

Depending on the analyst’s needs, it is also possible to transform in sequence only certain
days, months or years so as to subsequently carry out a more granular analysis.

seq_event((1,9,2040),1,(out_call(simple),eudokia_makrembolitissa,florence_violet_mckenzie
,acheson_boulevard,acheson_boulevard,(0,12,9),5,10)).

seq_event((1,9,2040),2,(out_call(simple),eudokia_makrembolitissa,florence_violet_mckenzie
,acheson_boulevard,ashcott_street,(0,12,50),5,39)).

seq_event((1,9,2040),3,(in_sms(simple),florence_violet_mckenzie,eudokia_makrembolitissa,
acheson_boulevard,ashby_place,(1,12,8),5,0)).

.

.
seq_event((2,9,2040),1,(in_sms(simple),annie_dillard,eudokia_makrembolitissa,alder_road,

none,(9,22,26),6,0)).
seq_event((2,9,2040),2,(out_call(simple),eudokia_makrembolitissa,irena_jordanova,

alexander_muir_road,adenmore_road,(11,55,29),6,82)).
seq_event((2,9,2040),3,(out_call(simple),eudokia_makrembolitissa,irena_jordanova,

alder_road,abigail_place,(12,17,57),6,39)).
.
.

Listing 3: Some facts representing sequences of events in the dataset.

Notice that, with reference to the first two facts in Listing 3, the event 𝑒1 is prior to 𝑒2 since
(𝑝𝑒1 = 1) < (𝑝𝑒2 = 2).

The seq_event atoms in Listing 3, in this form, are useless for discovering recurring pat-
terns without first making a more granular choice of which patterns to look for. Additional
pre-processing is required to create simpler and easier to analyze sequences. The idea is to
create sequences whose identifier refers to a particular day describing what events on that day
happened. Two types of sequences have been identified:

Communication sequences The event e refers to the (Caller, Callee) pair.

Localization sequences The event e refers to the (Street_a, Street_b) pair.

Listing 4 creates sequences of events in the format shown in Listing 5). The input to this script is
sequences like the ones shown in 3. Line 6 allows the creation of sequences via the seq predicate.
Line 8 contains a rule for calculating the number of sequences, whereas Line 10 generates
len_sequence facts which denote for each sequence its length, i.e., the number of events. The
rule at Line 11 calculates the average length of all sequences, which is the average number of
events for each sequence. The rule at Line 13 calculates the sequence with the greatest number
of events. Finally, at Lines 15-18, the atoms describing the previously mentioned statistics are
shown on an output standard (e.g., terminal, screen) respectively.

1 % from
2 % seq_event(Date, Seq_position, (Type_op, Caller, Callee, Street_a, Street_b, Time,

Weekday, Duration))
3 % to
4 % seq(Date, Seq_position, (Caller, Callee))
5

6 seq(Date, Seq_position, (Caller, Callee)) :- seq_event(Date, Seq_position, (_, Caller,
Callee, _, _, _, _, _)).

7

8 number_of_sequences(N) :- N = #count{D : seq(D, _, _)}.
9

10 len_sequence(D, L) :- L = #max{P : seq(D, P, _), seq(D1, _, _), D != D1}, seq(D, _, _).
11 avg_len_sequences(A) :- S = #sum{L, D : len_sequence(D, L)}, number_of_sequences(N), A =

S/N.
12

13 max_len_sequences(D, N) :- N = #max{L : len_sequence(_, L)}, len_sequence(D, N).
14

15 #show number_of_sequences/1.
16 #show max_len_sequences/2.
17 #show avg_len_sequences/1.
18 #show seq/3.

Listing 4: Generation of communication sequences with ASP.

avg_len_sequences(53).
number_of_sequences(164).
max_len_sequences((1,2,2041),129).
seq((1,9,2040),1,(eudokia_makrembolitissa,florence_violet_mckenzie)).
seq((1,9,2040),2,(eudokia_makrembolitissa,florence_violet_mckenzie)).
seq((1,9,2040),3,(florence_violet_mckenzie,eudokia_makrembolitissa)).
.
.
seq((2,9,2040),1,(annie_dillard,eudokia_makrembolitissa)).
seq((2,9,2040),2,(eudokia_makrembolitissa,irena_jordanova)).
seq((2,9,2040),3,(eudokia_makrembolitissa,irena_jordanova)).
.
.

Listing 5: Output generated by Listing 4 from the facts reported in Listing 3.

A similar transformation is needed in order to create localization sequences as shown in
Listing 6.

avg_len_sequences(53).
number_of_sequences(164).
max_len_sequences((1,2,2041),129).
seq((1,9,2040),1,(acheson_boulevard,acheson_boulevard)).
seq((1,9,2040),2,(acheson_boulevard,ashcott_street)).
seq((1,9,2040),3,(acheson_boulevard,ashby_place)).
.
.
seq((2,9,2040),1,(alder_road,none)).
seq((2,9,2040),2,(alexander_muir_road,adenmore_road)).
seq((2,9,2040),3,(alder_road,abigail_place)).
.
.

Listing 6: Output generated by Listing 3.2 from the facts reported in Listing 3.

This can be done by replacing the rule in line 6 of Listing 4 with the following:

seq(Date, Seq_position, (Street_a, Street_b)) :- seq_event(Date, Seq_position, (_,_,_,
Street_a,Street_b,_,_,_)).

3.3. Our ASP Encoding for the Analysis of Mobile Phone Records

For the purposes of law enforcement investigations, it is especially useful to understand what
the extracted patterns are and what information they provide to the analyst. To this aim, the
basic algorithm provided by [10] was modified in such a way as to elaborate patterns whose
items have a more complex structure including elements such as caller, callee, type of operation,
and time when this occurred (see Section 3.2).

Listing 7 reports the adapted basic algorithm to handle items with an internal structure (Line
1). Consequently, all the rules that managed the embedding were modified to manage a complex
item (Lines 11 and 13). For investigative purposes it is necessary to understand in which and
how many daily sequences the patterns were found (Lines 21 and 34). Lines 22 and 35, on
the other hand, allows you to associate each pattern found with information such as: type of
operation (Type) carried out between the two communicating entities (CC) and the precise
time of day (Time) with the relative date (T). Furthermore, since the dataset contains rows
with undefined values (indicated with none), two constraints have been added to eliminate all
patterns with a value of none (Lines 25 and 26). A further modification concerns the possibility
of being able to search for patterns between a certain minimum and maximum length. To do
this, in addition to the maxlen parameter, already present, the minlen parameter with relative
constraint has been added (Line 29).

1 item(I) :- seq(_, _,(I, _, _)).
2

3 %sequential pattern generation
4 patpos(1).
5 { patpos(X+1) } :- patpos(X), X<maxlen.
6 patlen(L) :- patpos(L), not patpos(L+1).
7

8 1 {pat(X,I): item(I)} 1 :- patpos(X).
9

10 %pattern embeddings
11 occ(T,1,P) :- seq(T,P,(I, _, _)), pat(1,I).
12 occ(T,L,P) :- occ(T, L, P-1), seq(T,P,_).
13 occ(T,L,P) :- occ(T, L-1, P-1), seq(T,P,(C, _, _)), pat(L,C).
14

15 %frequency constraint
16 seqlen(T,L) :- seq(T,L,_), not seq(T,L+1,_).
17 supp(T) :- occ(T, L, LS), patlen(L), seqlen(T,LS).
18 :- { supp(T) } < th.
19

20 %pattern information
21 len_support(N) :- N = #count{T : supp(T)}.

22 pat_information(T, (Pos, CC) , Type, Time) :- supp(T), pat(Pos, CC), seq(T, P, (CC, Type,
Time)), occ(T, Pos, P).

23

24 % constraint for specific db with none line
25 :- pat(_, (none, _)).
26 :- pat(_, (_, none)).
27

28 % constraint for pattern of minimum lenght
29 :- #count{T : pat(T, _)} < minlen.
30

31 % atom to print
32 #show pat/2.
33 #show len_support/1.
34 #show support/1.
35 #show pat_information/4.

Listing 7: Modified ASP encoding for sequential pattern mining.

Each answer set returned by the ASP encoding in Listing 7 is a sequential pattern represented
by means of the 𝑝𝑎𝑡/2 predicate. The answer includes addition information which is deemed
useful for investigation in forensic practice such as: the days in which that pattern was found
(see predicate 𝑠𝑢𝑝𝑝𝑜𝑟𝑡/1), the type of operation carried out between caller and callee and the
precise time of the day (see predicate 𝑝𝑎𝑡_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛/4), and the support of that pattern
(predicate 𝑙𝑒𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡/1). The support can be useful to understand if the pattern is of interest
or a fact given that it occurs every day.

1 Answer: 1
2 pat(1,(margaret_hasse,karen_cook_mcnally))
3 pat(2,(karen_cook_mcnally,lucie_julia))
4 support((8,9,2040)) support((9,9,2040)) support((12,9,2040))
5 pat_information((8,9,2040),(1,(margaret_hasse,karen_cook_mcnally)),in_sms(simple)

,(1,0,55))
6 pat_information((8,9,2040),(1,(margaret_hasse,karen_cook_mcnally)),in_sms(simple)

,(1,2,27))
7 pat_information((8,9,2040),(2,(karen_cook_mcnally,lucie_julia)),out_sms(simple),(8,55,9))
8 pat_information((8,9,2040),(2,(karen_cook_mcnally,lucie_julia)),out_sms(simple),(8,55,16)

)
9 pat_information((9,9,2040),(1,(margaret_hasse,karen_cook_mcnally)),in_sms(simple)

,(1,33,29))
10 pat_information((9,9,2040),(2,(karen_cook_mcnally,lucie_julia)),out_call(simple)

,(10,24,9))
11 pat_information((12,9,2040),(1,(margaret_hasse,karen_cook_mcnally)),in_call(simple)

,(8,23,41))
12 pat_information((12,9,2040),(2,(karen_cook_mcnally,lucie_julia)),out_call(simple)

,(8,26,17))
13 len_support(3)

Listing 8: First of the 15 answers generated by Listing 7.

As an example, the first answer out of the 15 returned by the ASP encoding in Listing 7

is reported in Listing 8. It refers to the running over 100 instances, with maximum pattern
length equal to 3 and minimum support threshold equal to 25%. Here, Answer 1 highlights
the existence of a sequential pattern which consists of a first communication event between
Margaret Hasse and Karen Cook McNally followed by the one between Karen Cook McNally
and Lucie Julia (see Lines 2 and 3). The pattern occurs in the days 8, 9 and 12 of September
2040, as shown at Line 4. The fact 𝑙𝑒𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡(3) provides numerical information about the
pattern support, in this case 3. Looking at the facts 𝑝𝑎𝑡_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛/4 concerning the date
08/09/2040 (see Lines 5 and 7), we get to know that Karen (the subject of the phone records)
received a text message from Margaret at 01:00:55 and then Karen sent a text message to Lucie
at 08:55:09.

4. Experiments

The goal of the following experiments is to evaluate the number of patterns discovered by
varying the key parameters. For the first group, the minimum support threshold varies from
10% to 50% while keeping the maximum pattern length fixed at 5. For the second group, the
maximum pattern length varies over (3, 5 and 8) while keeping the minimum support threshold
fixed to 25%.

All the experiments were conducted over the largest available file of the DigForASP dataset
(named Karen Cook McNally) made up of more than 20,000 instances. Given the size, a fairly
long execution time for the ASP program is assumed, Therefore, the timeout has been set to 5
hours.

In all presented experiments, we used the version 5.4.0 of clingo, with default solving parame-
ters. The ASP programs were run on a laptop computer with Windows 10 (with Ubuntu 20.04.4
subsystem), AMD Ryzen 5 3500U @ 2.10 GHz, 8GB RAM without using the multi-threading
mode of clingo. Multi-threading reduces the mean runtime but introduces variance due to the
random allocation of tasks. Such variance is inconvenient for interpreting results with repeated
executions.

Table 2
Number of frequent patterns extracted by varying the minimum support threshold (from 10% to 50%)
while keeping the maximum pattern length fixed to 5.

Min. Supp. Threshold # Patterns Execution time
10% 5,135 18000s (5h)
20% 1,004 18000s (5h)
30% 730 18000s (5h)
40% 55 18000s (5h)
50% 78 18000s (5h)

Table 2 summarizes the results from the first group of experiments. One can observe the
decrease in the number of patterns as the minimum support threshold increases. It is interesting
to observe the time taken for the computation: in all cases the computation reached 5 hours

and stopped. This means that the program did not finish the computation but was interrupted
by the set time-out. The reason is to be attributed to the size of the analyzed dataset. Given the
nature of ASP (generate&test paradigm), the high number of combinations contributed to the
long time taken to extract the patterns. Finally the patterns extracted are not all the possible
ones but they are only those extracted within 5 hours. There may be others or not by continuing
to analyze the search space.

Table 3 summarizes the results from the second group of experiments. Here, it is evident the
increase in the number of patterns as the maximum pattern length increases. It is interesting
to observe that, as the maximum pattern length increases, the time taken for computation
increases as well. Only with a maximum pattern length of 3 the computation ended, whereas
for length 5 and 8 the computation was interrupted as soon as the time-out was reached.

Table 3
Number of frequent patterns extracted by varying the maximum pattern length (3, 5, 8) while keeping
the minimum support threshold fixed to 25%.

Max. patt. length # Patterns Execution time
3 769 4816s (1h20s)
5 922 18000s (5h)
8 1,528 18000s (5h)

4.0.1. Scalability tests

With scalability tests, the goal is to assess the performance of Listing 7 over a dataset of
increasing size. Also in this case we considered the dataset concerning Karen Cook McNally,
from which we extracted test instances ranging over 100, 1000 and 10,000. We ran two groups of
tests, by varying the maximum pattern length from 3 to 5, while keeping the minimum support
threshold fixed to 25%. Tables 4 and 5 report the results from the two groups.

Table 4
Number of frequent patterns extracted by varying the number of instances (100, 1K, 10K), while leaving
the minimum support threshold (25%) and maximum pattern length (3) unchanged.

Instances # Sequences # Patterns Execution time
100 6 15 0.079s
1,000 9 9,831 34.962s
10,000 93 947 2468.745s (41m15s)

A similar trend appears evident with a peak of patterns found when the number of instances
is equal to 1,000. This peak is due to the fact that the 1,000 instances are distributed over 9
sequences and with a threshold equal to 25% in minimum number of sequences necessary for a
pattern to be frequent is equal to 3 (rounded up because ASP considers only integers). As for

Table 5
Number of frequent patterns extracted by varying the number of instances (100, 1K, 10K), while leaving
the minimum support threshold (25%) and maximum pattern length (5) unchanged.

Instances # Sequences # Patterns Execution time
100 6 15 0.101s
1,000 9 127,657 625.498s (10m25s)
10,000 93 2,050 18,000s (5h)

the execution time, we observe that the execution ends before the time-out when the patterns
have a maximum length of 3. Conversely, when the maximum pattern length goes from 3 to
5, the execution is interrupted for the time-out set at 5 hours with 10,000 instances while the
execution time for 1,000 instances goes from 34 seconds to more than 10 minutes.

5. Final remarks

Sequential pattern mining provides a suite of powerful tools for discovering regularities in
sequences of events. Therefore it is naturally suitable for analysing evidence in the context of
DF investigations. The expressive power of ASP makes the definition of algorithmic variants of
the basic encoding pretty easy, mainly thanks to a clever use of constraints. As a case study
we have considered the analysis of a real-world dataset of anonymised phone recordings. The
preliminary results are encouraging, although they highlight several weaknesses. A major
limit of the current encoding is the combinatorial explosion due to several factors. In order to
address this limit, we are currently working on extended versions of the basic ASP encoding
here presented, which are aimed at mining so-called condensed patterns (maximal and closed).

For the future we intend to significantly go beyond the state of the art in declarative pattern
mining, e.g., by devising effective constraints to reduce the size of the output. In parallel to the
methodological work, we plan to solicit a feedback from the DF experts involved in DigForASP,
as regards the validity and the usefulness of the work from their viewpoint. The interaction
with experts could trigger new interesting directions of research.

Acknowledgments

This article is based upon work from COST Action 17124 “Digital forensics: evidence analysis
via intelligent systems and practices (DigForASP)”, supported by COST (European Cooperation
in Science and Technology). The work is also partially funded by the University of Bari “Aldo
Moro” under the 2017-2018 grant “Metodi di Intelligenza Artificiale per l’Informatica Forense”.

References

[1] S. Costantini, G. De Gasperis, R. Olivieri, How answer set programming can help in
digital forensic investigation, in: D. Ancona, M. Maratea, V. Mascardi (Eds.), Proceedings

of the 30th Italian Conference on Computational Logic, Genova, Italy, July 1-3, 2015,
volume 1459 of CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 53–65. URL: http:
//ceur-ws.org/Vol-1459/paper29.pdf.

[2] S. Costantini, G. De Gasperis, R. Olivieri, Digital forensics and investigations meet artificial
intelligence, Ann. Math. Artif. Intell. 86 (2019) 193–229. URL: https://doi.org/10.1007/
s10472-019-09632-y. doi:10.1007/s10472-019-09632-y.

[3] S. Costantini, F. A. Lisi, R. Olivieri, DigForASP: A European cooperation network for
logic-based AI in digital forensics, in: A. Casagrande, E. G. Omodeo (Eds.), Proceedings
of the 34th Italian Conference on Computational Logic, Trieste, Italy, June 19-21, 2019,
volume 2396 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 138–146. URL: http:
//ceur-ws.org/Vol-2396/paper34.pdf.

[4] J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: current status and fu-
ture directions, Data Min. Knowl. Discov. 15 (2007) 55–86. URL: https://doi.org/10.1007/
s10618-006-0059-1. doi:10.1007/s10618-006-0059-1.

[5] S. Jabbour, L. Sais, Y. Salhi, Decomposition based sat encodings for itemset mining problems,
in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 2015, pp.
662–674.

[6] T. Guns, A. Dries, S. Nijssen, G. Tack, L. De Raedt, Miningzinc: A declarative framework
for constraint-based mining, Artificial Intelligence 244 (2017) 6–29.

[7] B. Negrevergne, T. Guns, Constraint-based sequence mining using constraint program-
ming, in: International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, Springer, 2015, pp. 288–305.

[8] M. Gebser, T. Guyet, R. Quiniou, J. Romero, T. Schaub, Knowledge-based sequence mining
with asp, in: IJCAI 2016-25th International joint conference on artificial intelligence, AAAI,
2016, p. 8.

[9] L. De Raedt, T. Guns, S. Nijssen, Constraint programming for data mining and machine
learning, in: Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[10] T. Guyet, Y. Moinard, R. Quiniou, T. Schaub, Efficiency analysis of asp encodings for
sequential pattern mining tasks, in: Advances in Knowledge Discovery and Management,
Springer, 2018, pp. 41–81.

[11] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Communi-
cations of the ACM 54 (2011) 92–103. URL: http://doi.acm.org/10.1145/2043174.2043195.
doi:10.1145/2043174.2043195.

[12] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, M. Schneider, Potassco:
The potsdam answer set solving collection, Ai Communications 24 (2011) 107–124.

[13] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Clingo= asp+ control: Preliminary report,
arXiv preprint arXiv:1405.3694 (2014).

[14] M. Järvisalo, Itemset mining as a challenge application for answer set enumeration, in:
International Conference on Logic Programming and Nonmonotonic Reasoning, Springer,
2011, pp. 304–310.

http://ceur-ws.org/Vol-1459/paper29.pdf
http://ceur-ws.org/Vol-1459/paper29.pdf
https://doi.org/10.1007/s10472-019-09632-y
https://doi.org/10.1007/s10472-019-09632-y
http://dx.doi.org/10.1007/s10472-019-09632-y
http://ceur-ws.org/Vol-2396/paper34.pdf
http://ceur-ws.org/Vol-2396/paper34.pdf
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1007/s10618-006-0059-1
http://dx.doi.org/10.1007/s10618-006-0059-1
http://doi.acm.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195

	1 Introduction
	2 Preliminaries
	2.1 Answer Set Programming
	2.2 Sequential Pattern Mining
	2.3 Mining sequential patterns with ASP

	3 Sequence Mining in Mobile Phone Records with ASP
	3.1 The DigForASP dataset
	3.2 Data pre-processing
	3.3 Our ASP Encoding for the Analysis of Mobile Phone Records

	4 Experiments
	4.0.1 Scalability tests

	5 Final remarks

