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Abstract
We propose a novel method to inject symbolic knowledge in form of Datalog formulæ into neural

networks (NN), called KINS (Knowledge Injection via Network Structuring). The idea behind our method

is to extend NN internal structure with ad-hoc layers built out the injected symbolic knowledge. KINS

does not constrain NN to any specific architecture, neither requires logic formulæ to be ground. Moreover,

it is robust w.r.t. both lack of data and imperfect/incomplete knowledge. Experiments are reported to

demonstrate the potential of KINS.
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1. Introduction

Supervised machine learning (ML) commonly exploits opaque predictors – such as neural

networks (NN) – as black boxes [18]. There are several application scenarios where this is

becoming troublesome. Indeed, it is non-trivial to forecast what will NN actually learn from

data, or whether and how they will grasp general, reusable information for the whole domain.

Current state-of-the-art solutions address this issue by supporting a plethora of methods for

“opening the black-box” [14]—i.e., inspecting or debugging the inner functioning of NN.

Rather, in this work we tackle the problem of how injecting prior symbolic knowledge in

order to endow them with the designer’s common sense. In this way the issue of opacity is

circumvented, as designers may force NN to learn correct-by-design information whenever the

situation at hand requires to do so.

Along this line, we propose a novel method for the injection of logic formulæ in Datalog

[1] form into NN of arbitrary structure. Our method – called KINS (Knowledge Injection via

Network Structuring) – works by extending NN architecture with additional modules, i.e., ad-hoc

layers reflecting symbolic knowledge. The modules are in charge of numerically computing the

truth degree of the logic formulæ to be injected, hence increasing the networks performance in

the inference phase. Of course, the network still requires training over data in order to adapt

injected knowledge to the particular situation at hand.
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Unlike other knowledge injection techniques, KINS (i) does not require input formulæ to be

ground, (ii) does not impose any constraint on the NN, and (iii) is robust w.r.t. the lack of data

exemplifying the injected knowledge. In other words, KINS supports the injection of knowledge

describing scenarios where few training data exist. This in turn may let designers suitably

handle the case where poor training data covers a given phenomenon the network should be

able to deal with—e.g., unbalanced classes in classification tasks.

In order to validate our method, we report an experiment on a well-known benchmark dataset

where the designer’s common sense provided by human experts is injected into a NN classifier

to improve its performances.

Accordingly, the paper is organised as follows. Section 2 briefly summarises the background

on symbolic knowledge injection (SKI). Section 3 formally describes KINS, its rationale and

internal operation. Section 4 reports our experiments and their design, whereas results are

discussed in Section 5. Finally, Section 6 concludes the paper by providing some insights about

how the current limitations of KINS could be overcome.

2. Symbolic Knowledge Injection: Background

We call “symbolic knowledge injection” (SKI) the task of letting a sub-symbolic predictor exploit

formal, symbolic information to improve its performances (e.g., accuracy, learning time, need

for less training data). Generally speaking, SKI serves the purpose of transferring the designer’s

common sense into the predictor, hence overcoming the lack of data, or harnessing predictor

towards correct-by-construction directions.

While ML predictors are commonly trained over numeric data, formal logic enables repre-

sentation of knowledge in a compact and expressive way, as intensional representations of

complex concepts may be concisely written via logic. Hence, assuming that the input–output

relation the ML predictor can learn from data can be expressed in formal logic, and that some

SKI procedure is available, human experts may handcraft ad-hoc symbolic knowledge to aid the

training of a particular predictor, for a specific learning task. In other words, injection makes it

possible to provide ML predictors under training with some prior knowledge.

Many methods for SKI have been proposed into the literature along the years [5, 26, 6]. Most

of them target NN for their excellent performances in most ML tasks and domains. Concerning

the kind of the provided knowledge, it is virtually always expressed in first order logic (FOL)

or subsets of FOL such as Horn’s clauses, Datalog, knowledge graphs and propositional logic.

Possible reasons behind these choices are the flexibility of logic in expressing symbolic informa-

tion, and the malleability of NN—which can be structured in manifold ways to serve disparate

purposes.

Broadly speaking, there exist two major sorts of approaches supporting the injection of

symbolic knowledge into NN. Methods of the first sort perform injection during the network’s

training, using the symbolic knowledge as either a constraint or a guide for the optimisation

process (i.e., back-propagation). The core idea is to exploit the training step of a NN to increase

the error between the prediction value and the expected result when the knowledge is vio-

lated. Conversely, approaches of the second sort perform injection by altering the network’s

architecture to make it mirror the symbolic knowledge.



Figure 1: An example of a network’s architecture after the insertion of modules derived from logic
formulæ.

One of the first notable works that combine NN and logic rules is KBANN [24]. There, given a

set of propositional logic rules, a NN is built by mapping each rule into sub parts of the network.

In addition, the loss function of the network is modified with a cost factor that penalises the

violation of the prior knowledge—so KBANN exploits both the main injection methods. The

algorithm is then validated on classification tasks over biological datasets. In Section 4 our SKI

algorithm is compared with KBANN by replicating one of those experiments.

Some other interesting works based on NN structuring are [4, 25, 13, 2, 12, 16, 20], whereas

relevant works based on constraining are [3, 7, 9, 10, 27]. In particular, the method in [13] is

tested on the same task and with the same methodology as [24]. We obtain similar performance

(see Section 5), however they report a greater test accuracy value for KBANN and the other

benchmark algorithms w.r.t. [24]: we believe that they consider the best result for each algorithm.

More details on SKI algorithms can be found in some recent surveys [5, 26, 6].

3. Injection via Network Structuring

We propose an approach to SKI called KINS—short for Knowledge Injection via Network Structur-

ing. There, a neural network architecture is extended with additional neural modules, structured

to reflect and mimic the symbolic knowledge provided by designers. There, a module is a

(sub-)network having the same input layer of the original network, yet outputting a value

representing the evaluation of a logic formula under a continuous interpretation. The model is

aimed at (i) evaluating a specific logic formula against the current input, and (ii) computing

the degree of truth of that formula – i.e., a value in range of [0, 1] – to complement the current

output. Variables in formulæ are “dynamically grounded” w.r.t. the current input during the

feed-forward phase. As a result, non-ground formulæ can be exploited for SKI as such, with no

need for any prior groundisation step—which could result unfeasible for non-trivial domains.

It is worth noticing that the provided formulæ are not required to cover all possible scenarios.

This implies, for instance that rules in classification problems may be provided covering only a



portion of all possible classes.

Figure 1 shows the general architecture of the resulting NN after the injection of 𝑚 modules

(represented as blue rectangles), corresponding to the 𝑚 rules to be injected. Modules can

be arbitrarily complex sub-networks, sharing the same input and their final outputs with the

original NN. White boxes represent arbitrary hidden layers 𝐻1, . . . ,𝐻𝑛 of the original NN,

whereas 𝑋 is the input layer and 𝑌 is the output layer. The injection can be done at any layer

𝐻𝑖 and 𝑌 . For instance, when dealing with networks that first extract features from the input

(such as convolutional NN), then perform classification, one can choose to inject the knowledge

in between the two.

Under the hypotheses above, the injection procedure is straightforward. Formulæ are firstly

encoded into real-valued functions – hence numerically interpreted –, as described in Section 3.1.

Then, a neural module is build to approximate each single real-valued function, following the

strategy described in Section 3.2. Finally, that module is added to the original neural network,

following the pattern depicted in Figure 1.

Notably, the inner synapses of modules can be either immutable – meaning that weights

and biases cannot vary during training – or mutable—meaning that weights are trainable. Of

course, any other synapsis – there including all hidden synapses among layers 𝐻1, . . . ,𝐻𝑖, as

well as all the ingoing synapses of layer 𝐻𝑖+1 and of the following layers – are kept trainable.

Thus the NN can exploit both prior knowledge and the information it gathers from data during

training. Notice that the synapses connecting each module (and the very last hidden layer) with

the output layer are trainable as well. This implies the NN can freely adjust the weights for

logic rules during training. The rationale behind this choice is that one cannot assume a logic

rule to hold for all the possible patterns in a given domain, yet it may be generally true with a

certain degree of confidence. Hence, we let the network learn the relative weight of the injected

knowledge w.r.t. the scenario at hand.

In order to operate, KINS does not require the loss function to be affected, nor it does impose

any constraint on the architecture (e.g., number of layers, number of neurons, types of activation

functions, etc.) or the initialisation status (e.g., random weights or partially trained) of the

network subject to injection. So, it can be applied to untrained networks as well as to (partially)

trained ones. It does require, however, (i) the network to have an input and an output layer,

and (ii) to be trained via gradient descent or similar algorithms. Furthermore, it also requires

(iii) symbolic knowledge to be expressed via one or more formulæ in Datalog form, and (iv) logic

statements about the network’s input or output features to be encoded.

A public implementation of the algorithm is available as part of the PSyKI framework [19].

3.1. Input Knowledge

KINS supports the injection of knowledge bases composed of one or more logic formulæ in

“stratified Datalog with negation” form. Datalog is a restricted subset of first order logic (FOL),

representing knowledge via function-free Horn clauses [1]. Horn clauses, in turn, are formulæ

of the form 𝜑← 𝜓1 ∧ 𝜓2 ∧ . . . denoting a logic implication (←) stating that 𝜑 (the head of the

clause) is implied by the conjunction among a number of atoms 𝜓1, 𝜓2, . . . (the body of the

clause). Since KINS relies on Datalog with negation, atoms in the bodies of clauses are allowed

to be negated. In case the 𝑖th atom in the body of some clause is negated, we write ¬𝜓𝑖. There,



each atom 𝜑, 𝜓1, 𝜓2, . . . may be a predicate of arbitrary arity.

An 𝑙-ary predicate 𝑝 denotes a relation among 𝑙 entities: p(𝑡1, . . . , 𝑡𝑙) where each 𝑡𝑖 is a term,

i.e., either a constant (denoted in monospace) representing a particular entity, or a logic variable

(denoted by Capitalised Italic) representing some unknown entity or value. Well-known binary

predicates are admissible too, such as >, <, =, etc., which retain their usual semantics from

arithmetic. For the sake of readability, we may write these predicates in infix form—hence

> (𝑋, 1) ≡ 𝑋 > 1.

Consider for instance the case of a perfect rule (i.e., always true) aimed at defining when a

Poker hand can be classified as a pair. Assuming that a Poker hand consists of 5 cards, each

one denoted by a couple of variables 𝑅𝑖, 𝑆𝑖 – where 𝑅𝑖 (resp. 𝑆𝑖) is the rank (resp. seed) of

the 𝑖th card in the hand –, hands of type pair may be described via a set of clauses such as the

following one:

pair(𝑅1, 𝑆1, . . . , 𝑅5, 𝑆5) ← 𝑅1 = 𝑅2

pair(𝑅1, 𝑆1, . . . , 𝑅5, 𝑆5) ← 𝑅2 = 𝑅3
.
.
.

pair(𝑅1, 𝑆1, . . . , 𝑅5, 𝑆5) ← 𝑅4 = 𝑅5

(1)

To support injection into a particular NN, we further assume that input knowledge base defines

at least one outer relation – say output or class – involving as many variables as the input and

output features the NN has been trained upon. The relation may be defined via one clause or

more, and each clause may possibly leverage on other predicates in their bodies. In turn, each

predicate may be defined through one or more clause. In that case, since we rely on stratified

Datalog, we require the input knowledge to not include any (directly or indirectly) recursive

clause definition.

For instance, for a 3-class classification task, any provided knowledge base should include a

clause, as in the following example:

class(�̄�, y1)← p1(�̄�) ∧ p2(�̄�)
class(�̄�, y2)← p′1(�̄�) ∧ p′2(�̄�)
class(�̄�, y3)← p ′′1 (�̄�) ∧ p′′2 (�̄�)

where �̄� is a tuple having as many variables as the neurons in the output layer, and y𝑖 is a

constant denoting the 𝑖th class.

3.2. Fuzzy Logic Formulæ as Neural Modules

Before undergoing injection, each formula corresponding to some output neuron must be

converted into a real-valued function aimed at computing the cost of violating that formula. To

serve this purpose, we rely on a multi-valued interpretation of logic inspired to Łukasiewicz’s

logic [15] reported in Table 1.

Accordingly, we encode each formula via J·K function, mapping logic formulæ into real-valued

functions accepting real vectors of size 𝑚 + 𝑛 as input and returning scalars in R as output.



Formula C. interpretation Formula C. interpretation
J¬𝜑K 𝜂(1− J𝜑K) J𝜑 ≤ 𝜓K 𝜂(1 + J𝜓K− J𝜑K)
J𝜑 ∧ 𝜓K 𝜂(𝑚𝑖𝑛(J𝜑K, J𝜓K)) Jclass(�̄�, y𝑖)← 𝜓K J𝜓K*
J𝜑 ∨ 𝜓K 𝜂(𝑚𝑎𝑥(J𝜑K, J𝜓K)) Jexpr(�̄�)K expr(J�̄�K)
J𝜑 = 𝜓K 𝜂(J¬(𝜑 ̸= 𝜓)K) JtrueK 1
J𝜑 ̸= 𝜓K 𝜂(|J𝜑K− J𝜓K|) JfalseK 0
J𝜑 > 𝜓K 𝜂(𝑚𝑎𝑥(0, 12 + J𝜑K− J𝜓K)) J𝑋K 𝑥
J𝜑 ≥ 𝜓K 𝜂(1 + J𝜑K− J𝜓K) JkK 𝑘
J𝜑 < 𝜓K 𝜂(𝑚𝑎𝑥(0, 12 + J𝜓K− J𝜑K)) Jp(�̄�)K** J𝜓1 ∨ . . . ∨ 𝜓𝑘K

* encodes the value for the 𝑖𝑡ℎ output
** assuming 𝑝 is defined by 𝑘 clauses of the form:

p(�̄�)← 𝜓1, . . . , p(�̄�)← 𝜓𝑘

Table 1
Logic formulæ’s encoding into real-valued functions. There, 𝑋 is a logic variable, while 𝑥 is the
corresponding real-valued variable, whereas is �̄� a tuple of logic variables. Similarly, k is a numeric
constant, and 𝑘 is the corresponding real value, whereas k𝑖 is the constant denoting the 𝑖𝑡ℎ class of a
classification problem. Finally, expr(�̄�) is an arithmetic expression involving the variables in �̄� .

Scalars are then clipped into the [0, 1] range, via function 𝜂 : R→ [0, 1] defined as follows:

𝜂(𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑥 ≤ 0

𝑥 if 0 < 𝑥 < 1

1 if 𝑥 ≥ 1

(2)

The resulting values are the continuous truth degrees of the formulæ. It is worth noticing that

this specific mapping is just one among the many that one may design. Therefore, it could be

considered a hyperparameter of the algorithm.

While Table 1 describes the mapping between formulæ and their fuzzy interpretations, we

discuss how such an interpretation can be further encoded into neural modules to be added to

the NN undergoing injection.

By considering the same domain of Equation (1), we can define a perfect rule for class flush,

i.e., all cards have the same suit, as follow:

class(�̄�, flush)← 𝑆1 = 𝑆2 ∧ 𝑆1 = 𝑆3 ∧ 𝑆1 = 𝑆4 ∧ 𝑆1 = 𝑆5 (3)

The overall procedure that encodes a logic formula into an ad hoc network is exemplified in

Figure 3 – where Equation (3) is converted into a neural module –, and it consists of three

phases: (i) the logic formula is parsed and its abstract syntax tree (AST) is constructed, as

shown in Figure 3a; (ii) the AST is simplified, merging commutative binary operators, as

shown in Figure 3b; and finally (iii) the AST is encoded into a NN, where each operator is

converted into a neuron reifying the corresponding operation specified in Table 1, as shown

in Figure 3c. In particular, in the last step, operators are converted by recursively applying

the encoding rules graphically defined in Figure 2. There, variables 𝑆𝑖 are mapped into input

neurons, while constants possibly occurring in formulæ are mapped into neurons with constant



Figure 2: Mapping of formulæ into neurons. White circles are input variables (𝐼), green boxes represent
the corresponding weights (𝑊 ), purple circles are the sum of the weighted inputs (𝑊 × 𝐼). Yellow
rectangles are activation functions, net is the output of 𝑊 × 𝐼 , max and min respectively the maximum
and minimum of input values, 𝜂 is the function described in Equation (2).

output. Similarly, algebraic operators such as addition and multiplication are encoded in single

neurons that perform the same operation.

4. Experiments

Here we report experiments aimed at assessing KINS for SKI w.r.t. its capability to improve

NN’s predictive performance. For the sake of reproducibility, the code of our experiments is

available at https://github.com/matteomagnini/kins-experiments-cilc-2022.

https://github.com/matteomagnini/kins-experiments-cilc-2022


(a) AST of a formula

→

(b) Optimised AST of a formula

→

(c) Layers from the optimised AST

Figure 3: Example of the encoding process of formulæ into module network. Box coloured in the same
way represent the encoding of a given operator through each encoding step.

4.1. Primate Splice-Junction Gene Sequences

To validate our method, we test KINS performance on a well-known benchmark: the primate

splice-junction gene sequences (PSJGS) dataset [11]. The dataset consists of 3190 records, each

of them represents a sequence of 60 DNA nucleotides—namely adenine (a), cytosine (c), guanine

(g) and thymine (t). Each sequence starts from position -30 up to 30, zero excluded. One DNA

sequence can be classified as an intron–exon (ie) boundary, an exon–intron (ei) boundary, or

none (n) of them. Class frequencies are 50% for n, 25% for both ie and ei.

The PSJGS dataset comes with a set of textual logical rules aimed at classifying DNA sequences

provided by human experts. In Table 2 we report the same rules converted in Datalog form.

Datalog rules are equivalent to the original ones that are expressed in a different custom

formalism, but they are machine-interpretable as well.

Within Datalog rules, variables are indexed starting from -30 to 30, zero excluded:

X−30, . . . ,X−1,X+1, . . . ,X+30. There, variable X±𝑖 denotes the value of the nucleotide in

position ±𝑖, which is represented via ad-hoc constants (namely, a, c, g, t). For the sake of

readability, we write X̄ in place of the full sequence of variables X−30, . . . ,X+30.

It is worth noticing that the original rules from the PSJGS dataset include different symbols

to denote multiple possible nucleotides in a compact way. Table 3 reports the meaning of the

additional symbols: rules in Table 2 are reported using them.

When classifying data from the PSJGS dataset according to the rules in Table 2, sequences of type

ie are correctly classified 295 times – true positives (TP) –, however the rule is also true for 25

ei records and for 3 n records—false positives (FP). Instead, ei sequences are correctly classified

31 times, and there are no FP. Figure 4 shows the confusion matrix of the rules considering also

a fictional rule for class n that corresponds to the logical and of both ie and ei rules negated:

class(�̄�, n)← ¬class(�̄�, ei) ∧ ¬class(�̄�, ie) (4)

While this is far from being perfect knowledge describing the entire domain with no or few

errors, it is still good enough to positively affect the training of the predictor.



Class Logic Formulation

EI

class(X̄ , ei)←X−3 = m ∧X−2 = a ∧X−1 = g ∧X+1 = g ∧
X+2 = t ∧X+3 = a = r ∧X+4 = a ∧
X+5 = g ∧X+6 = t ∧ ¬(ei_stop(X̄ ))

ei_stop(X̄ )← X−3 = t ∧X−2 = a ∧X−1 = a

ei_stop(X̄ )← X−3 = t ∧X−2 = a ∧X−1 = g

ei_stop(X̄ )← X−3 = t ∧X−2 = g ∧X−1 = a

ei_stop(X̄ )← X−4 = t ∧X−3 = a ∧X−2 = a

ei_stop(X̄ )← X−4 = t ∧X−3 = a ∧X−2 = g

ei_stop(X̄ )← X−4 = t ∧X−3 = g ∧X−2 = a

ei_stop(X̄ )← X−5 = t ∧X−4 = a ∧X−3 = a

ei_stop(X̄ )← X−5 = t ∧X−4 = a ∧X−3 = g

ei_stop(X̄ )← X−5 = t ∧X−4 = g ∧X−3 = a

IE

class(X̄ , ie)←pyramidine_rich(X̄ ) ∧ ¬(ie_stop(X̄ )) ∧
X−3 = y ∧X−2 = a ∧X−1 = g ∧X+1 = g

pyramidine_rich(X̄ )← 6 ≤ (X−15 = y+ . . .+X−6 = y)
ie_stop(X̄ )← X+2 = t ∧X+3 = a ∧X+4 = a

ie_stop(X̄ )← X+2 = t ∧X+3 = a ∧X+4 = g

ie_stop(X̄ )← X+2 = t ∧X+3 = g ∧X+4 = a

ie_stop(X̄ )← X+3 = t ∧X+4 = a ∧X+5 = a

ie_stop(X̄ )← X+3 = t ∧X+4 = a ∧X+5 = g

ie_stop(X̄ )← X+3 = t ∧X+4 = g ∧X+5 = a

ie_stop(X̄ )← X+4 = t ∧X+5 = a ∧X+6 = a

ie_stop(X̄ )← X+4 = t ∧X+5 = a ∧X+6 = g

ie_stop(X̄ )← X+4 = t ∧X+5 = g ∧X+6 = a

Table 2
Datalog formulæ describing DNA classification criteria generated from the original one.

4.2. Methodology

To make our experiments comparable with already existing literature benchmarks, we follow

the very same method used by Towell and Shavlik in [24]. We use 10-fold cross validation with

a training size of 1000 randomly-chosen records—drawn among the 3190 available ones (i.e.,

31.3% of the overall dataset). Then, for each fold, we train one instance of KINS. Finally, test

accuracy is computed on the 2190 records excluded from training, by averaging the predictions

of the 10 KINS instances. Unlike the original method, we repeat the overall experiment 30 times

– instead of just 10 – to improve result significance.



Symbol Adenine Cytosine Guanine Thymine Logic form
d ∙ ∙ ∙ (X𝑖 = d) ≡ (X𝑖 = a ∨X𝑖 = g ∨X𝑖 = t)
m ∙ ∙ (X𝑖 = m) ≡ (X𝑖 = a ∨X𝑖 = c)
r ∙ ∙ (X𝑖 = r) ≡ (X𝑖 = a ∨X𝑖 = g)
s ∙ ∙ (X𝑖 = s) ≡ (X𝑖 = c ∨X𝑖 = g)
y ∙ ∙ (X𝑖 = y) ≡ (X𝑖 = c ∨X𝑖 = t)

Table 3
Mapping of aggregative symbols and the four nucleotides. Each symbol can be substituted with one
base on the right that has a dot.

More precisely, each time we train an instance of KINS we leverage on a NN with 3 fully

connected layers: input layer (60 neurons), hidden layer (neurons), and output layer (3 neurons).

During training, we exploit dropout [23] for each layer, up to some extent (0.2), to increase

robustness of the network w.r.t. overfitting. Layers have rectified linear unit as activation

function, except the output one that has Softmax. The optimiser used for training is Adam

[17], categorical cross-entropy as loss function. We use the same stopping criteria used in [24],

namely: (i) for the 99% of training examples the activation of every output unit is within 0.25 of

correct, (ii) at most 100 epochs, (iii) predictor has at least 90% of accuracy on training examples

but has not improved its ability to classify training examples for 5 epochs.

Rules (Table 2) ei_stop(�̄�) and ie_stop(�̄�) are immutable, while class(�̄�, ei), class(�̄�, ie)
and pyramidine_rich(�̄�) are mutable. We recall that mutable rules have trainable weights

whereas immutable rules have fixed weights—structure is always preserved.

IE EI N
predicted label

IE

EI

N

tru
e 

la
be

l

295
(0.38)

0
(0.00)

473
(0.62)

25
(0.03)

31
(0.04)

711
(0.93)

3
(0.00)

0
(0.00)

1652
(1.00)

0.0

0.2

0.4

0.6

0.8

Figure 4: Confusion matrix using only the provided knowledge to classify DNA sequences.
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Figure 5: Per-class error rate of different algorithms on the primate slice-junction gene sequences
dataset.

5. Discussion

We test KINS by injection the prior knowledge in different layers of the NN previously described.

Best results are obtained when the injection is performed at the first hidden layer. Following

the aforementioned methodology, we have 10 predictors trained on 900 records each – 1000

unique training records in total out of 3190 – for each experiment. We run 30 experiments using

10-fold cross validation with random weights initialisation.

After the injection of the prior knowledge into the first layer and training, the mean accuracy

of the 30 experiment on the test set is 94.73%. Single mean class accuracies are: (ie) 92.79%,

(ei) 92.49%, (n) 96.67%.

We execute 30 additional runs using the same base architecture NN without the injection

of any knowledge obtaining the following results: (mean accuracy) 94.45%, (ie) 91.67%, (ei)

92.73%, (n) 96.54%. After computing Student’s T-test on the two distributions we reject the null

hypothesis: predictors generated from KINS have better accuracies with statistic relevance.

The improvement of the accuracy using our injection method is significant even with im-

perfect knowledge. Figure 5 reports the error rate per single class using different algorithms.

KINS is our knowledge injection method, while DNN is the network used in KINS, but without

knowledge injection. KBANN is the algorithm proposed in [24]: it performs slightly worse than

DNN and KINS. Arguably, the main reason for this difference in performance is that the entire

structure of KBANN reflects the provided knowledge, whereas in KINS a portion of the network

is free to adapt to the data. This is a strength when the knowledge is close to the real rules

for the domain, but clearly a weakness in the opposite scenario. The remaining algorithms are

(i) standard back-propagation [22], (ii) PEBLS [8], (iii) ID3 [21], and (iv) nearest neighbours.

Generally, they all perform worse than KINS.



6. Conclusion

In this work we define KINS, a general technique for symbolic knowledge injection into deep

neural networks. Designer uses rules in Datalog form (stratified with negation) to express

common sense, which are injected through additional modules – ad-hoc layers – capable of

evaluating the truth degree of the rules themselves. Rules are interpreted as class-specific

fuzzy-logic functions that are then used to build the modules to be inserted into the NN.

We report a number of experiments where we compare networks without knowledge injection

with networks – architecturally equivalent except for knowledge injection – that receives

additional information in a multi-classification task. We also compare our method with different

algorithms, in particular KBANN, which is also based on knowledge injection. The selected

task has some of the common criticalities of ML classification tasks, in particular data set size

limitation and unbalanced classes. Moreover, the provided prior knowledge is far to be perfect.

Results show that our approach can improve network’s accuracy with statistical significance.

Investigating the joint use of SKI and symbolic knowledge extraction (SKE) in the same ML

workflow is indeed a topic of major interest, which we plan to explore. Introducing multiple

cycles of SKI and SKE, possibly using different kind of predictors, could bring several benefits

(e.g., final performances of the predictor, more precise knowledge).
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