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Abstract
Computational Argumentation provides tools for both modelling and reasoning with controversial
information. The building blocks in this field are represented by Abstract Argumentation Frameworks,
namely structures which explicit the relationships between arguments in order to establish their accept-
ability. Indeed, arguments can be assigned different justification states: some of the arguments may be
accepted, while some other rejected; it could also be the case that some arguments are ignored. Labels
corresponding to such states are assigned through sets of criteria called labelling-based semantics. In this
paper, we consider Weighted Argumentation Frameworks and propose a novel labelling-based semantics
which differentiates four different states, also generalising existing approaches.
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1. Introduction

Computational Argumentation and its applications are receiving increasing interest in many
fields of AI. For instance, argumentative processes are used in a paper by Lawrence et al. [1] to
interpret online debates, while Walton and Koszowy [2] devise an argumentation system for
supporting expert opinion. Argumentation is also used to aid machine learning (as surveyed
by Cocarascu and Toni [3]) for both improving performances (e.g., classification accuracy) and
providing explanations for the results. Argumentation problems are modelled through Abstract
Argumentation Frameworks (AFs in short) [4], which consist of directed graphs in which the
nodes are arguments that contain abstract information and the edges represent attack relations.
The main goal of these frameworks is to check the acceptability of arguments, which indicates
how credible they can be when used, for example, in a speech or debate.

The acceptability of an argument of an AF can be established following different criteria,
formalised through the extension-based [4] and the labelling-based semantics [5]. Through
the reasoning on the acceptability of the arguments according to a notion of defence, one can
divide the set of arguments into two separated subsets, respectively containing acceptable and
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non-acceptable arguments. Various approaches have been proposed to cope with the problem
of detecting different justification states of arguments in AFs. Indeed, apart from accepted and
rejected, arguments could be just ignored or even in an inconsistent state. Caminada [5], for
example, introduces a labelling-based semantics in which the state of an argument can be left
undecided, without further specifying the reason why. The motivation for not labelling an
argument as neither accepted nor rejected is explicitly expressed by Jakobovits and Vermeir [6],
who made a distinction between arguments we “don’t care” about and those we “do not know”
how to label.

In order to increase the expressiveness of AFs, attack relations between arguments can be
endowed with a value (a weight) which indicates the strength of the attacks themselves. In
this kind of frameworks, called Weighted AF, the acceptability criteria for the arguments also
need to consider the weight of incoming and outgoing attacks. Bistarelli et al. [7, 8] group the
attacks from an argument to a set of arguments as if they were a unique attack; in particular,
the authors consider a weighted notion of defence that takes into account the weight associated
with each attack, also generalising other approaches [9, 10].

In this paper, which complements a series of work [11, 12, 13, 14], we provide a four-state
labelling for Weighted AFs that generalises other approaches proposed in the literature for the
non-weighted case and the three-state labelling for Weighted AFs. For each weighted semantics,
we give the conditions under which a labelling corresponds to an extension (that is a set of
accepted arguments). We use a partial labelling (i.e., we can leave specific arguments unlabelled)
with four labels to identify the possible states of arguments, namely IN for accepted, OUT for
rejected, DK for arguments we don’t know how to label, and DC for arguments we don’t care
about (because not adopted in an AF or just ignored by the user).

The rest of this paper is structured as follows. In Section 2 we summarise the main concepts
of AFs, providing the definitions for extension-based semantics considering both weighted and
non-weighted cases. In Section 3 we present our definition of four-state labelling for Weighted
Argumentation Frameworks. Section 4 discusses relevant work on labelling-based semantics
for (W)AFs already present in the literature, and finally, in Section 5 we conclude the paper,
also discussing possible future research lines.

2. Preliminaries

In this section, we recall the formal definitions of AFs [4] and Weighted AFs [7, 8], together
with te notion of extension- and labelling-based semantics [15, 5].

Definition 1 (Abstract Argumentation Framework). Let 𝒰 be the set of all available argu-
ments1. An Abstract Argumentation Framework is a pair ⟨𝒜,ℛ⟩ where 𝒜 ⊆ 𝒰 is a set of arguments
and ℛ is a binary relation on 𝒜. Arguments in 𝒜 are said to be adopted.

Definition 2 (Attacks). Let ⟨𝒜,ℛ⟩ be an AF, and consider two arguments 𝑎, 𝑏 ∈ 𝒜. If (𝑎, 𝑏) ∈
ℛ, we say that 𝑎 attacks 𝑏; conversely, 𝑏 is an attacker of 𝑎. Moreover, given 𝐴 ⊆ 𝒜, we define

1The set 𝒰 , which we refer to as the Universe of arguments, is not present in the original definition of AFs, and it is
introduced to model arguments which are external to 𝒜 [16, 17].



the sets 𝑎+ = {𝑏 ∈ 𝒜 | (𝑎, 𝑏) ∈ ℛ}, 𝑎− = {𝑏 ∈ 𝒜 | (𝑏, 𝑎) ∈ ℛ}, 𝐴+ =
⋃︀
{𝑎+ | 𝑎 ∈ 𝐴} and

𝐴− =
⋃︀
{𝑎− | 𝑎 ∈ 𝐴}.

In order for an argument 𝑎 to be acceptable, we require that every attacker of 𝑎 is defeated in
turn by some other argument.

Definition 3 (Acceptable argument). Let ⟨𝒜,ℛ⟩ be an AF, and consider 𝑎 ∈ 𝒜 and 𝐷 ⊆ 𝒜.
The argument 𝑎 is acceptable with respect to the subset 𝐷 if and only if ∀𝑏 ∈ 𝐴.∃𝑑 ∈ 𝐷 | (𝑏 ∈
𝑎−) =⇒ (𝑑 ∈ 𝑏−). In that case, we say that 𝑎 is defended by 𝐷 from the attack of 𝑏.

We also say that argument is acceptable if there exists a subset of arguments with respect to
which it is acceptable. Using the notion of defence as a criterion for distinguishing acceptable
arguments in the framework, one can further refine the set of selected arguments through the
so-called extension-based semantics.

Definition 4 (Extension-based semantics). Given an AF ⟨𝒜,ℛ⟩, we say that a set of argu-
ments 𝐸 ⊆ 𝒜 is conflict-free if and only if ∄𝑎, 𝑏 ∈ 𝐸 such that (𝑎, 𝑏) ∈ ℛ. A conflict-free set 𝐸 is
said to be

• admissible, if each 𝑎 ∈ 𝐸 is defended by 𝐸

• complete, if it is admissible and ∀𝑎 ∈ 𝒜 defended by 𝐸, 𝑎 ∈ 𝐸

• stable, if 𝐸 ∪ 𝐸+ = 𝒜
• preferred, if it is complete and it is maximal (with respect to set inclusion)
• grounded, if it is complete and it is minimal (with respect to set inclusion)

In this paper, we only consider the above semantics, although other extension-based semantics
have also been defined in the literature, such as ideal, semi-stable and stage [15]. In Figure 1,
we provide an example of an AF for which we compute the set 𝑆 of conflict-free, admissible,
complete, stable, preferred and grounded extensions (abbreviated with cf, adm, com, stb, prf and
gde, respectively): 𝑆𝑐𝑓 (𝐹 ) = {∅, {𝑎}, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑑}}, 𝑆𝑎𝑑𝑚(𝐹 ) = {∅, {𝑎},
{𝑐}, {𝑑}, {𝑎, 𝑐}, {𝑎, 𝑑}}, 𝑆𝑐𝑜𝑚(𝐹 ) = {{𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}}, 𝑆𝑝𝑟𝑓 (𝐹 ) = {{𝑎, 𝑐}, {𝑎, 𝑑}}, 𝑆𝑠𝑡𝑏(𝐹 )
= {{𝑎, 𝑑}} and 𝑆𝑔𝑑𝑒(𝐹 ) = {{𝑎}}.

Figure 1: Example of an AF with five arguments.

We give some details on the extensions found. The singleton {𝑒} is not conflict-free because
𝑒 attacks itself. Argument 𝑏 is not contained in any admissible extension because no other
argument (included itself) defends 𝑏 from the attack of 𝑎. The empty set and the singletons {𝑐}
and {𝑑} are not complete extensions because they do not contain 𝑎, which is not attacked by
any other argument. Only the maximal complete extensions {𝑎, 𝑐} and {𝑎, 𝑑} are preferred,



while the minimal complete {𝑎} is the unique grounded extension. Since argument 𝑎 attacks
arguments 𝑏 and argument 𝑑 attacks arguments 𝑐 and 𝑒, we have that {𝑎, 𝑑} is a stable extension.

To obtain different nuances for the acceptability of arguments, we can rely on the notion of
labelling-based semantics [5], namely functions that partitions the arguments of an AF into
three subsets.

Definition 5 (Labelling for AFs). Let 𝐹 = ⟨𝒜,ℛ⟩ be an AF. A labelling 𝐿 of 𝐹 is a total
function 𝐿 : 𝒜 → {IN, OUT, UNDEC}.

Notation 1. Given a labelling 𝐿 of 𝐹 = ⟨𝒜,ℛ⟩ and 𝐴 ⊆ 𝒜, we denote 𝐴 ↓IN, 𝐴 ↓OUT and
𝐴 ↓UNDEC the sets of all arguments labelled IN, OUT and UNDEC, respectively, by 𝐿.

We show in Figure 2 an example of labelling: IN arguments are highlighted in green and
OUT ones in red, while UNDEC are represented in yellow. It is also possible to identify a
correspondence between labellings and sets of extensions for a certain semantics [15].

Figure 2: Example of labelling for an AF with five arguments.

Definition 6 (Labelling-based semantics). Let 𝐿 be a labelling of an AF 𝐹 = ⟨𝒜,ℛ⟩ and
𝑎 ∈ 𝒜. Then

• 𝐿 is a conflict-free labelling if:

– 𝐿(𝑎) = IN =⇒ 𝑎− ↓IN = ∅, and
– 𝐿(𝑎) = OUT =⇒ 𝑎− ↓IN ̸= ∅

• 𝐿 is a admissible labelling if:

– 𝐿(𝑎) = IN =⇒ 𝑎− = 𝑎− ↓OUT, and
– 𝐿(𝑎) = OUT =⇒ 𝑎− ↓IN ̸= ∅

• 𝐿 is a complete labelling if:

– 𝐿(𝑎) = IN ⇐⇒ 𝑎− = 𝑎− ↓OUT, and
– 𝐿(𝑎) = OUT ⇐⇒ 𝑎− ↓IN ̸= ∅

• 𝐿 is a stable labelling if:

– 𝐿 is a complete labelling, and
– 𝒜 ↓UNDEC = ∅;

• 𝐿 is a preferred labelling if:

– 𝐿 is an admissible labelling, and
– 𝒜 ↓IN is maximal among all the admissible labellings



• 𝐿 is a grounded labelling if:

– 𝐿 is a complete labelling, and
– 𝒜 ↓IN is minimal among all the complete labellings

We have, for instance, that the labelling of Figure 2 is complete, but not grounded. Since all
attacks in AFs have the same “strength”, it is not possible to further diversify the relations among
arguments, and thus the existence of an attack is the only thing that matters in determining
the semantics. To overcome this limitation, we can resort to Weighted AFs, whose attacks are
endowed with a value that represents the support of the relation [18]. In this kind of framework,
the notion of defence needs to be adapted to encompass the refined attack relation. In a paper
by Bistarelli et al. [8], Weighted AFs are equipped with a c-semiring [19, 20] that provides
operations for composing the weights and estimating the effectiveness of a defence.

Definition 7 (c-semirings). A c-semiring is a tuple S = ⟨𝑆,⊕,⊗, ⊥,⊤⟩ such that 𝑆 is a set,
⊤,⊥ ∈ 𝑆, and ⊕,⊗ : 𝑆×𝑆 → 𝑆 are binary operators making the triples ⟨𝑆,⊕,⊥⟩ and ⟨𝑆,⊗,⊤⟩
commutative monoids (semi-groups with identity), satisfying i) ∀𝑠, 𝑡, 𝑢 ∈ 𝑆. 𝑠 ⊗ (𝑡 ⊕ 𝑢) =
(𝑠 ⊗ 𝑡) ⊕ (𝑠 ⊗ 𝑢) (distributivity), and ii) ∀𝑠 ∈ 𝑆. 𝑠 ⊗ ⊥ = ⊥ (annihilator). Moreover, we have
that ∀𝑠, 𝑡 ∈ 𝑆. 𝑠⊕ (𝑠⊗ 𝑡) = 𝑠 (absorption). The operator ⊕ also defines a preference relation ≤S
over the set 𝑆, such that 𝑎 ≤S 𝑏 if and only if 𝑎⊕ 𝑏 = 𝑏, for all 𝑎, 𝑏 ∈ 𝑆.

We list some of the most common instances of c-semirings:

• Sboolean = ⟨{false, true},∨,∧, false, true⟩
• Sfuzzy = ⟨[0, 1],max,min, 0, 1⟩
• Sprobabilistic = ⟨[0, 1],max,×, 0, 1⟩
• Sweighted = ⟨R+ ∪ {+∞},𝑚𝑖𝑛,+,+∞, 0⟩

The interval [0, 1] used for Sfuzzy and Sprobabilistic is to be considered valid for both real and
rational numbers. We denote with WAFS a Weighted AF endowed with a c-semirings S and we
call it a semiring-based Weighted AF.

Definition 8 (Semiring-based Weighted AF). Let 𝒰 be the set of all available arguments. A
semiring-based Weighted AF is a quadruple ⟨𝒜,ℛ,𝑊,S⟩, where 𝒜 ⊆ 𝒰 is the set of adopted
arguments, ℛ the attack relation on 𝒜, 𝑊 : 𝒜×𝒜 → 𝑆 a binary function, and S a c-semiring
⟨𝑆,⊕,⊗,⊥,⊤⟩.

The binary function 𝑊 assigns a weight to attacks between arguments: we use 𝑊 (𝑎, 𝑏) = 𝑠
to indicate that the attack from 𝑎 towards 𝑏 has weight 𝑠 ∈ 𝑆. In our setting, the ⊤ element of
a c-semiring (e.g., 0 for the weighted and 𝑡𝑟𝑢𝑒 for the boolean) denotes the absence of a pair in
the relation 𝑅. Hence, (𝑎, 𝑏) ∈ ℛ if and only if 𝑊 (𝑎, 𝑏) <S ⊤.

Given a WAFS, we can evaluate the overall weight of all the attacks from a set of arguments
towards another set through the binary composition operator ⊗ of the c-semiring S [7, 21]. In
particular, we use

⨂︀
to indicate the ⊗ operator on a set of values.



Definition 9 (Weighted attacks). Let 𝐹 = ⟨𝒜,ℛ,𝑊,S⟩ be a WAFS and consider two sets of
arguments 𝐵,𝐷 ∈ 𝒜. We say that 𝐵 attacks 𝐷, and the weight of such attack is 𝑘 ∈ 𝑆, if

𝑊 (𝐵,𝐷) =
⨂︁

𝑏∈𝐵,𝑑∈𝐷
𝑊 (𝑏, 𝑑) = 𝑘.

Following Definition 9, it is also possible to compose the attacks both from a set of arguments
towards a single argument and from a single argument towards a set of arguments. We can
now express the notion of weighted defence.

Definition 10 (Weighted defence). Let 𝐹 = ⟨𝒜,ℛ,𝑊,S⟩ be a WAFS. We say that 𝐵 ⊆ 𝒜
𝑤-defends 𝑏 ∈ 𝒜 if and only if ∀𝑎 ∈ 𝒜 such that (𝑎, 𝑏) ∈ ℛ, 𝑊 (𝑎,𝐵 ∪ {𝑏}) ≥S 𝑊 (𝐵, 𝑎).

Consider the WAFS of Figure 3. To verify whether the set {𝑎} 𝑤-defends 𝑑 we need to
check if 𝑊 (𝑐, {𝑎, 𝑑}) ≥S 𝑊 ({𝑎}, 𝑐). We have that 𝑊 (𝑐, {𝑎, 𝑑}) = 3 and 𝑊 ({𝑎}, 𝑐) = 2,
and since 3 ≱S 2, we conclude that 𝑎 alone is not sufficient to 𝑤-defend 𝑑 in this example2.
If we consider the set {𝑎, 𝑏}, instead, we can see that 𝑊 (𝑐, {𝑎, 𝑏, 𝑑}) ≥S 𝑊 ({𝑎, 𝑏}, 𝑐) since
𝑊 (𝑐, {𝑎, 𝑏, 𝑑}) = 𝑊 ({𝑎, 𝑏}, 𝑐) = 3, and therefore {𝑎, 𝑏} 𝑤-defends 𝑑.

Figure 3: Example of a WAFS with S = Sweighted .

Notation 2. Let 𝐹 = ⟨𝒜,ℛ,𝑊,S⟩ be a WAFS and consider an argument 𝑎 ∈ 𝒜. We denote the
weight of a set of attacks towards 𝑎 with 𝑤𝑎−↓IN = 𝑊 (𝑎− ↓IN, 𝑎), and the weight of outgoing
attacks with 𝑤𝑎+↓IN = 𝑊 (𝑎, 𝑎+ ↓IN).

It is then possible to redefine all the extension-based semantics of Definition 4 by using the
notion of weighted defence for checking the acceptability of arguments [8].

Definition 11 (Extension-based semantics for WAFS). Consider a WAFS 𝐹 =
⟨𝒜,ℛ,𝑊,S⟩ and a subset of arguments 𝐸 ⊆ 𝒜. We have that 𝐸 is 𝑤-conflict-free if
𝑊 (𝐸,𝐸) = ⊤. A 𝑤-conflict-free subset 𝐸 is

• 𝑤-admissible, if ∀𝑎 ∈ 𝐸−. 𝑊 (𝑎,𝐸) ≥S 𝑊 (𝐸, 𝑎)

• 𝑤-complete, if it is 𝑤-admissible and each 𝑏 ∈ 𝒜 such that 𝐸 ∪ {𝑏} is 𝑤-admissible belongs
to 𝐸

• 𝑤-stable, if it is 𝑤-admissible and ∀𝑎 /∈ 𝐸. ∃𝑏 ∈ 𝐸 such that 𝑊 (𝑏, 𝑎) <S ⊤
2We remark that 3 <S 2 when S = Sweighted , i.e., greater means worse.



• 𝑤-preferred, if it is a maximal (with respect to set inclusion) 𝑤-admissible subset of 𝒜
• 𝑤-grounded, if it is the maximal (with respect to set inclusion) 𝑤-admissible extension

included in the intersection of 𝑤-complete extensions

As for the non-weighted case, also sets of acceptable arguments in a WAFS can be identified
through special labelling functions. In the next section, we expand the discussion in this
direction, introducing a weighted labelling that differentiates up to four states of acceptability.

3. From Three-State to Four-State Weighted Labelling

The labelling for AFs of Definition 5 and the derived labelling-based semantics are a useful
tool which identifies up to three degrees of acceptability for the arguments while maintaining
a direct connection with set of extensions for the classical semantics introduced by Dung [4].
However, the labelling function shown in the previous section forces all arguments that are
neither IN nor OUT to be labelled UNDEC, thus not allowing to distinguish arguments we don’t
know how to label from arguments we deliberately decide to ignore. In other words, three labels
are not sufficient to express the difference between the possible causes for which an argument
can be labelled UNDEC. Consider for instance the AF in Figure 4, whose arguments are labelled
according to the admissible labelling-based semantics. Arguments 𝑐 and 𝑑 are both labelled
UNDEC, but for two distinct reasons: 𝑐, which could potentially be accepted (it has no IN
attackers), is ignored, while 𝑑 is attacking itself and thus it can neither be accepted nor rejected.
To overcome these inconvenience, more informative labellings have been proposed [22, 6, 23]
that split the UNDEC label into two distinct labels, resulting in a total of four recognisable
acceptability states3.

Figure 4: Example of labelling with two UNDEC arguments.

Before introducing our proposal for a labelling function able to work with WAFS and which
makes use of four labels, we recall the definition of three-state weighted labelling [11, 12, 14].
In order to incorporate the notion of weighted defence into the labelling, also the strength of
the attack relations is taken into account.

Definition 12 (Three-state Labelling for WAFS). Let 𝐹 = ⟨𝒜,ℛ,𝑊,S⟩ be a WAFS. A three-
state labelling 𝐿 of 𝐹 is a total function 𝐿 : 𝒜 → {IN, OUT, UNDEC}.
3More nuances of acceptability can be enabled through ranking-based semantics [24], however, losing the corre-
spondence with accepted arguments identified by extension-based semantics.



Definition 13 (Three-state labelling-based semantics for WAFS). Consider a three-state
labelling 𝐿 of 𝐹 = ⟨𝒜,ℛ,𝑊,S⟩ and an argument 𝑎 ∈ 𝒜.

• 𝐿 is a 𝑤-conflict-free labelling when

– 𝐿(𝑎) = IN =⇒ 𝑎− ↓IN = ∅ and
– 𝐿(𝑎) = OUT =⇒ 𝑎− ↓IN ̸= ∅

• 𝐿 is a 𝑤-admissible labelling for 𝐹 if and only if:

– 𝐿(𝑎) = IN =⇒ 𝑎− = 𝑎− ↓OUT ∧ ∀𝑏 ∈ 𝑎−. 𝑤𝑏−↓IN ≤S 𝑤𝑏+↓IN

– 𝐿(𝑎) = OUT =⇒ 𝑤𝑎−↓IN <S ⊤
• 𝐿 is a 𝑤-complete labelling for 𝐹 if and only if:

– 𝐿(𝑎) = IN ⇐⇒ 𝑎− = 𝑎− ↓OUT ∧ ∀𝑏 ∈ 𝑎−. 𝑤𝑏−↓IN ≤S 𝑤𝑏+↓IN

– 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN <S ⊤
• 𝐿 is a 𝑤-stable labelling for 𝐹 if and only if

– 𝐿 is a 𝑤-complete labelling and
– 𝒜 ↓UNDEC= ∅

• 𝐿 is a 𝑤-preferred labelling for 𝐹 if and only if

– 𝐿 is a 𝑤-admissible labelling and
– 𝒜 ↓IN is maximal among all the 𝑤-admissible labellings

• 𝐿 is a 𝑤-grounded labelling for 𝐹 if and only if:

– 𝐿(𝑎) = IN ⇐⇒ for all 𝑤-complete labellings 𝐿′, 𝐿′(𝑎) = IN and
– 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN <S ⊤

The sets of arguments labelled IN by the labelling-based semantics of Definition 13 are
equivalent to extensions of the corresponding semantics. OUT and UNDEC arguments, instead,
are considered to be rejected. Our proposal for a richer labelling function is based on four labels,
namely IN, OUT, DK and DC.

Definition 14 (Four-State Labelling for WAFS). Let 𝒰 be a universe of arguments and 𝐹 =
⟨𝒜,ℛ,𝑊,S⟩ a WAFS with 𝒜 ⊆ 𝒰 . A four-state labelling 𝐿 of 𝐹 is a partial function 𝐿 : 𝒰 ⇀
{IN,OUT,DK,DC}.

Notation 3. Given a four-state labelling 𝐿 of 𝐹 = ⟨𝒜,ℛ,𝑊,S⟩, 𝐴 ⊆ 𝒜 and 𝑙 ∈
{IN,OUT,DK,DC}, we use 𝐴 ↓𝑙= {𝑎 ∈ 𝐴 | 𝐿(𝑎) = 𝑙} to restrict to arguments in 𝐴 only
labelled with 𝑙. We also denote with 𝐿 ↓𝐴 a total mapping 𝐿 ↓𝐴: 𝐴 → {IN, OUT, DK, DC}.

We see in Figure 5 an example of four-state weighted labelling. Accepted and rejected
arguments, labelled with IN and OUT as usual, are still highlighted in green and red, respectively.
An argument with label DK, which is highlighted in yellow, could be both accepted and rejected,
meaning that we cannot decide about its acceptability (we “don’t know”, indeed). The DC label is
depicted in grey and stands for “don’t care” [6] and identifies arguments that are not interesting



Figure 5: Two possible labellings of a WAFS with S = Sweighted .

to analyse and that we just want to ignore. Finally, arguments in 𝒰 ∖ 𝒜 (that are only part of
the universe but not of the AF) are not labelled.

According to the definition of collective weighted defence (Definition 10), a set of arguments
is defended from an attacker 𝑐 only if the

⨂︀
of all the defending arguments is stronger than the⨂︀

of the attacks coming from 𝑐. This means that the strength of the attacks of the defending
arguments is distributed among the defended arguments and it is not guaranteed for two
arguments that are separately 𝑤-defended to still be 𝑤-defended when considered together
(this is what happens in the example of Figure 5 with arguments 𝑑 and 𝑒).

We give a characterisation of four-state weighted semantics through the notion of labelling
of WAFS following the intuition that attacks of defending arguments are “consumed” by the
defended one. In particular, an argument that cannot be accepted because its defenders are
not strong enough will be labelled UNDEC. The first semantics we investigate is the basic
requirement of conflict-freeness.

Fact 1 (𝑤-conflict-free four-state labelling). The 𝑤-conflict-free four-state labelling coin-
cides with the 𝑤-conflict-free labelling.

We want to identify a set of non-conflicting arguments, so we don’t have to consider the
weight of the attacks, but only if attacks exist between arguments in this set. We now define
the 𝑤-admissible four-state labelling.

Definition 15 (𝑤-admissible four-state labelling). Let 𝐿 be a four-state labelling of a WAFS
𝐹 = ⟨𝒜,ℛ,𝑊,S⟩ and 𝑎 ∈ 𝒜. 𝐿 is 𝑤-admissible if and only if:

• 𝐿(𝑎) = IN =⇒
(∀𝑏 ∈ 𝑎−.𝐿(𝑏) ∈ {OUT,DC} ∧ 𝐿(𝑏) = OUT =⇒ 𝑤𝑏−↓IN ≤S 𝑤𝑏+↓IN)

• 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN <S ⊤

The condition𝑤𝑏−↓IN ≤S 𝑤𝑏+↓IN for IN arguments makes sure that defenders of 𝑎 are stronger
than the attack of 𝑏. For an argument to be OUT, then, we require 𝑤𝑎−↓IN <S ⊤, meaning that
there must exist at least an attack coming from an IN argument. The two labellings in Figure 5
represent 𝑤-admissible four-state labellings for the considered WAFS.

Definition 16 (𝑤-complete four-state labelling). Let 𝐿 be a four-state labelling of a WAFS
𝐹 = ⟨𝒜,ℛ,𝑊,S⟩ and 𝑎 ∈ 𝒜. 𝐿 is 𝑤-complete if and only if:



• 𝐿(𝑎) = IN ⇐⇒
(∀𝑏 ∈ 𝑎−.𝐿(𝑏) ∈ {OUT,DC} ∧ 𝐿(𝑏) = OUT =⇒ 𝑤𝑏−↓IN ≤S 𝑤𝑏+↓IN)

• 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN <S ⊤

A 𝑤-complete four-state labelling is also 𝑤-admissible. The difference is in the condition for
IN arguments, which needs to be both necessary and sufficient. The four-state labellings in
Figure 5 are not 𝑤-complete, since both have an UNDEC argument (𝑒 and 𝑑, respectively) which
is only attacked by an OUT one.

Definition 17 (𝑤-stable four-state labelling). Let 𝐿 be a four-state labelling of a WAFS 𝐹 =
⟨𝒜,ℛ,𝑊,S⟩. 𝐿 is 𝑤-stable if and only if

• 𝐿 is a 𝑤-complete four-state labelling and
• 𝒜 ↓DK= ∅

In contrast with the semantics in Definitions 15 and 16, a 𝑤-stable four-state labelling might
not exist for a certain WAFS, depending on the presence of DK arguments. It is easy to verify
that none of the labellings in Figure 5 is 𝑤-stable. We next present 𝑤-preferred and 𝑤-grounded
four-state labelling for WAFS, which rely on the cardinality of the set of acceptable arguments.

Definition 18 (𝑤-preferred labelling). Let 𝐿 be a four-state labelling of a WAFS 𝐹 =
⟨𝒜,ℛ,𝑊,S⟩. 𝐿 is 𝑤-preferred if and only if

• 𝐿 is a 𝑤-admissible four-state labelling and
• 𝒜 ↓IN is maximal among all the 𝑤-admissible four-state labellings

Definition 19 (𝑤-grounded four-state labelling). Let 𝐿 be a labelling of a WAFS 𝐹 =
⟨𝒜,ℛ,𝑊,S⟩ and 𝑎 ∈ 𝒜. 𝐿 is 𝑤-grounded if and only if:

• 𝐿(𝑎) = IN ⇐⇒ for all 𝑤-complete four-state labellings 𝐿′, 𝐿′(𝑎) = IN and
• 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN <S ⊤

We summarize in Table 1 the conditions given for the presented labellings. Next, we show how
four-state labelling-based semantics for WAFS can be traced to their three-state counterparts.

Theorem 1. 𝐿 is a 𝑤-conflict-free four-state labelling on 𝐹 = ⟨𝒜,ℛ⟩ if and only if 𝐿 ↓𝒜 is a 𝑤-
conflict-free three-state labelling and there exists a label renaming function such that, for all 𝑎 ∈ 𝒜,
(𝐿(𝑎) = DC ∨ 𝐿(𝑎) = DK) =⇒ 𝐿(𝑎) = UNDEC and 𝐿(𝑎) = UNDEC =⇒ 𝐿(𝑎) = DC.

Theorem 2. 𝐿 is a 𝑤-admissible (𝑤-complete, 𝑤-stable, 𝑤-preferred, 𝑤-grounded) four-state
labelling on 𝐹 = ⟨𝒜,ℛ,𝑊,S⟩ with 𝒜 ↓DC= ∅ if and only if 𝐿 ↓𝒜 is a 𝑤-admissible (𝑤-complete,
𝑤-stable, 𝑤-preferred, 𝑤-grounded, respectively) three-state labelling and there exists a label
renaming function such that, for all 𝑎 ∈ 𝒜, 𝐿(𝑎) = DK ⇐⇒ 𝐿(𝑎) = UNDEC.



Table 1
Summary of the labellings for WAFS.

Sem. Conditions on IN arguments Conditions on OUT arguments Other

𝑤-cf 𝐿(𝑎) = IN =⇒ 𝑎− ↓IN= ∅ 𝐿(𝑎) = OUT =⇒ 𝑎− ↓IN ̸= ∅

𝑤-adm
𝐿(𝑎) = IN =⇒ 𝑎− = 𝑎− ↓{OUT,DC} 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN

<S ⊤∧∀𝑏 ∈ 𝑎− ↓OUT . 𝑤𝑏−↓IN
≤S 𝑤𝑏+↓IN

𝑤-com
𝐿(𝑎) = IN ⇐⇒ 𝑎− = 𝑎− ↓{OUT,DC} 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN

<S ⊤∧∀𝑏 ∈ 𝑎− ↓OUT . 𝑤𝑏−↓IN
≤S 𝑤𝑏+↓IN

𝑤-stb
𝐿(𝑎) = IN ⇐⇒ 𝑎− = 𝑎− ↓{OUT,DC} 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN

<S ⊤ 𝒜 ↓DK= ∅∧∀𝑏 ∈ 𝑎−. 𝑤𝑏−↓IN
≤S 𝑤𝑏+↓IN

𝑤-pre
𝐿(𝑎) = IN =⇒ 𝑎− = 𝑎− ↓{OUT,DC} 𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN

<S ⊤ 𝒜 ↓IN is
∧∀𝑏 ∈ 𝑎−. 𝑤𝑏−↓IN

≤S 𝑤𝑏+↓IN
max 𝑤-adm

𝑤-gde
𝐿(𝑎) = IN ⇐⇒ ∀𝐿′𝑤-com.

𝐿(𝑎) = OUT ⇐⇒ 𝑤𝑎−↓IN
<S ⊤

𝐿′(𝑎) = IN

The intuition behind Theorem 2 is that the acceptability of all labelled arguments in a WAFS
(that is, those labelled by 𝐿 ↓𝒜) must depend only on the state of arguments that are not ignored.
The proof is carried out by comparing Definition 13 with the conditions given for the four-state
case. Moreover, since the four-state labelling introduced in this paper generalises the three-state
one [14], we obtain a direct correspondence with weighted extensions.

Theorem 3. Let 𝐿𝐹 be a four-state labelling on 𝐹 = ⟨𝒜,ℛ,𝑊,S⟩. 𝐿𝐹 is a 𝑤-conflict-free
labelling if and only if 𝒜 ↓IN is a 𝑤-conflict-free extension of 𝐹 . Moreover, 𝐿𝐹 is a 𝑤-admissible
(respectively 𝑤-complete, 𝑤-stable, 𝑤-preferred, 𝑤-grounded) four-state labelling if and only if
𝒜 ↓IN is a 𝑤-admissible (respectively 𝑤-complete, 𝑤-stable, 𝑤-preferred, 𝑤-grounded) extension
of 𝐹 ′ = ⟨𝒜 ↓{IN,OUT,DK},ℛ ↓{IN.OUT,DK}⟩.

Finally, we observe that any four-state weighted labelling instantiated with a boolean c-
semiring corresponds to a four-state labelling. Indeed, when a WAFS is instantiated with a
boolean c-semiring, all the attacks in the framework are associated with the value 𝑓𝑎𝑙𝑠𝑒 and
𝑤𝑎−↓IN always corresponds to 𝑓𝑎𝑙𝑠𝑒 if 𝑎 has at least one attacker.

Theorem 4. Let 𝐹 be a WAFS where S is a boolean c-semiring. If 𝐿 is a 𝑤-admissible (respec-
tively 𝑤-complete, 𝑤-stable, 𝑤-preferred, 𝑤-grounded) four-state labelling of 𝐹 , then 𝐿 is also an
admissible (respectively complete, stable, preferred, grounded) four-state labelling.

4. Related Work

The problem of extending classical AFs with values expressing the strength of arguments and
attacks is widely studied, and many different approaches have been presented in the literature.
Amgoud and Cayrol [25] take into account preference orderings for comparing arguments,
while in a paper by Bench-Capon [26] the success of an attack conducted by an argument
toward another one depends on an ordering among the “values” promoted by each argument.

A study on bipolar Weighted AFs is conducted by Pazienza et al. [27], who present an
extension for weighted frameworks taking into account two different types of relations: one for



attack and one for support. We consider, instead, Weighted AFs with only one type of possible
relation between arguments (the attack relation). Note that there exist techniques for translating
bipolar AFs into classical AFs [28], although the weighted case has not been investigated yet.
Another formalism based on a notion of strength is given in a paper by Baroni et al. [29], where
arguments in Quantitative Argumentation Debate Frameworks are evaluated through a scoring
system. The main difference with our work lies in the fact that we take into account the basic
definition of Weighted AFs [18], without further refinements on the framework level. Moreover,
our study is focused on the interpretation of the labelling in the weighted case.

Labelling functions using four justification states are proposed by various authors [22, 6,
23]; the additional label identifies those arguments that should not be considered during the
computation of acceptability. A more general labelling has also been proposed [13], which
unifies different representations and can be mapped into sets of extensions. However, weights
are not considered in any of these works.

For what concern the notion of weighted defence, many possible definitions can be considered:
for instance, Martìnez et al. [10] use the relative strength of the attacks in order to determine if
some defence constraints are satisfied, while Coste-Marquis et al. [9] aggregate the weights of
the defence and check if this value is greater than the weight of the corresponding attack. On the
other hand, we exploited the notion of collective weighted defence [7], which also generalises
the other two approaches mentioned above.

5. Conclusion and Future Work

In this paper, we introduce labelling for Weighted AFs that uses up to four states to discern
various grades of acceptability for arguments, namely IN, OUT, DK and DC. We also identify sets
of conditions under which the proposed labelling corresponds to a weighted extension for some
semantics. Our labelling function generalises both the classical approach for the non-weighted
case and the three-state labelling for WAFS.

The work can be expanded in many directions. In our setting, arguments only attacked
by DC arguments are always labelled IN. Is future work, we want to consider a pessimistic
interpretation for ignored arguments: since a DC-labelled argument 𝑎 could be (re)considered
into the AF, thus gaining an IN, OUT or DK label, arguments only attacked by 𝑎 could be labelled
OUT in turn. The definition we give of a four-state labelling-based semantics for Weighted
AFs does not include conditions for DK arguments, since they are indirectly obtained from IN
and OUT. In this sense, we would like to investigate the possible advantages of giving explicit
conditions for labelling the DK arguments, similarly to what is by Modgil and Caminada [30] for
classical AFs. We also plan to consider 𝑤-strongly admissible extensions [31, 14] and introduce
the respective four-state labelling. In addition to the collective weighted defence [7] that we
used in this paper, there are other notions of weighted defence [9, 10] that could be considered
for obtaining different variations of the four-state weighted labelling. We would also like to
take into account a relaxed version of the weighted defence [8] where two parameters (𝛼
and 𝛾) are used to both enable a tolerance threshold for inconsistencies inside extensions and
consider arguments that are not fully 𝑤-defended. Finally, extended versions of AFs (e.g., Bipolar
Argumentation Frameworks [32]) could be investigated from the perspective of the four-state



labelling-based semantics.
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