
GPU Parallelism for SAT Solving Heuristics⋆

Michele Collevati1, Agostino Dovier1,2 and Andrea Formisano1,2,*

1CLPLab - DMIF - Università di Udine, via delle Scienze 206, 33100 Udine, Italy
2GNCS-INdAM, piazzale Aldo Moro 5, 00185 Roma, Italy

Abstract
Modern SAT solvers employ a number of smart techniques and strategies to achieve maximum efficiency
in solving the Boolean Satisfiability problem. Among all components of a solver, the branching heuristics
plays a crucial role in affecting the performance of the entire solver. Traditionally, the main branching
heuristics that have appeared in the literature have been classified as look-back heuristics or look-ahead
heuristics. As SAT technology has evolved, the former have become more and more preferable, for their
demand for less computational effort.

Graphics Processor Units (GPUs) are massively parallel devices that have spread enormously over the
past few decades and offer great computing power at a relatively low cost. We describe how to exploit such
computational power to efficiently implement look-ahead heuristics. Our aim is to “rehabilitate” these
heuristics, by showing their effectiveness in the contest of a parallel SAT solver.

Keywords
SAT Solving, Branching Heuristics, GPU parallelism

1. Introduction

The central point of either DPLL [1] or CDCL [2] SAT solvers is the choice of the successive
variable to be assigned (variable selection heuristics) and the choice of the Boolean value to
be attempted first (polarity selection heuristics). The algorithms for implementing the two
choices are called branching heuristics, and, apart from the naive ones (e.g., leftmost variable,
random choice, etc.), they can be classified as look-back heuristics or look-ahead heuristics.
The former are, in general, easier to implement, since it is sufficient to collect and maintain
minimal information about the evolution of the computation. Look-ahead heuristics require a
(partial) exploration of the “future” of the computation in order to determine the potential impact
of alternative choices the solver can make at a choice point and this can be computationally
expensive. This is a reason why look-ahead heuristics have largely been abandoned in modern
solvers, in favor of the “lighter” (and, somehow, possibly coarser) look-back heuristics.

CILC 2022: 37th Italian Conference on Computational Logic, June 29 – July 1, 2022, Bologna, Italy
⋆

Research partially supported by Fondazione Friuli/Università di Udine project on Artificial Intelligence for Hu-
man Robot Collaboration and by projects INDAM GNCS-2020 NoRMA and INDAM GNCS-2022 InSANE
(CUP_E55F22000270001).

*Corresponding author.
 michele.collevati@protonmail.com (M. Collevati); agostino.dovier@uniud.it (A. Dovier);
andrea.formisano@uniud.it (A. Formisano)
� 0000-0001-7958-7841 (M. Collevati); 0000-0003-2052-8593 (A. Dovier); 0000-0002-6755-9314 (A. Formisano)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:michele.collevati@protonmail.com
mailto:agostino.dovier@uniud.it
mailto:andrea.formisano@uniud.it
https://orcid.org/0000-0001-7958-7841
https://orcid.org/0000-0003-2052-8593
https://orcid.org/0000-0002-6755-9314
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


GPU manufacturer NVIDIA, through its platform called Computing Unified Device Archi-
tecture (CUDA) [3], is a leading pioneer in GPU-computing. CUDA, unveiled in 2006, is a
general-purpose parallel computing platform and programming model that leverages the parallel
computing engine of NVIDIA GPUs. It can be programmed in C or C++ and it enables the
development of applications that scale their parallelism transparently and take advantage of
the growing number of CPU and GPU cores. Although initially GPU were used for graphical
purposes, e.g., video games, they are nowadays widely used in Deep Learning computation. A
stream of works trying to exploit them for SAT/ASP solving exists [4, 5, 6, 7].

In this paper, we describe how to exploit the computational power of GPUs by developing a
CUDA C library that implements the look-ahead heuristics. In a sense, our aim is to “rehabilitate”
these heuristics, by showing their effectiveness in the contest of a parallel SAT solver. In Section 2
we introduce the main notions and notation used in the paper. Section 3 describes the main ideas
behind the GPU implementation of the look-ahead heuristics. In Section 4 we report on the
experiments made using our implementation with a DPLL and a CDCL solver. Conclusions are
drawn in Section 5.

2. Background

Let 𝒱 be a (denumerable) set of variables. If 𝑥 ∈ 𝒱 then 𝑥 and ¬𝑥 are said literals. A disjunction
𝜔 = (ℓ1∨ · · · ∨ ℓ𝑘) of literals is said a clause. If 𝑘 = 1 the clause 𝜔 is said unit clause (or, simply,
unit). A Boolean formula Φ in Conjunctive Normal Form (CNF) is a conjunction (𝜔1 ∧ · · · ∧ 𝜔ℎ)
of clauses. As common, for denotational convenience, we might refer to Φ as a set of clauses and,
similarly, to a clause 𝜔 as a set of literals.

A (partial) Boolean assignment 𝜎 is a mapping from 𝑋 ⊆ 𝒱 to {false, true}. An assignment
can be applied to literals, clauses, and formulas, and evaluated using the classical semantics of
propositional connectives ¬,∨,∧. In particular, for any clause 𝜔, 𝜎(𝜔) = true if and only if
𝜎(ℓ) = true for some ℓ ∈ 𝜔. In such case, we say that 𝜔 is satisfied by 𝜎. If 𝜎(ℓ) = false for each
ℓ ∈ 𝜔, then 𝜎(𝜔) = false. Given a set of clauses Φ (i.e., a CNF Boolean formula), an assignment
𝜎 is a solution for Φ if 𝜎 satisfies all 𝜔 ∈ Φ. The Boolean Satisfiability (SAT) problem is the
problem of establishing whether a solution exists for a given Φ.

An assignment 𝜎 may be partial. Namely, it might be the case that 𝜎(ℓ) is not defined for some
ℓ ∈ 𝒱 . In case some literals in a clause 𝜔 are not assigned by 𝜎, and 𝜔 is not satisfied by 𝜎, the
clause is said unresolved (w.r.t. 𝜎). An unresolved clause 𝜔 with only one undefined literal is said
unit (w.r.t. 𝜎).

2.1. SAT Solving

The relevance of SAT for the 𝒫 versus 𝒩𝒫 problem is clear since the seminal papers by Cook
and Levin [8, 9]. However, the research of an automatic procedure capable of solving concrete
instances of SAT was already one of the most important research area of theorem proving. In this
context, a milestone was posed by Davis and Putnam [10] developing a procedure later refined
for reducing space occupation by their co-authors Logemann and Loveland [1]. The algorithm,
known as DPLL, combines three stages:



1. (unit) propagation: deterministically infer values for variables under a given partial assign-
ment 𝜎: whenever a clause 𝜔 is unit w.r.t. 𝜎, extend 𝜎 so as to satisfy 𝜔;

2. choice: non-deterministically choose a not yet assigned variable 𝑥, assign it a value among
false and true, and extend the current partial assignment accordingly;

3. backtracking: if a failure is reached because no solutions were found under the current
assignment, backtrack the last choice made in assigning a variable.

The simplest possible solver starts from the empty assignment (all variables are unassigned)
and alternates propagation and choice steps. At each moment in time, the number of active
choices performed is the decision level currently reached in the search for a solution. The search
proceeds until either a solution is found (i.e., an assignment satisfying all clauses) or a clause
gets falsified by the current (partial) assignment. In this case the computation backtracks and the
decision level is decreased (undoing the effects of the last choice). Hence, the solver proceeds by
visiting a tree-shaped search space and the decision level is the depth currently reached in the
search tree.

Implementing a DPLL solver requires the selection of the algorithms to perform step (2).
Concretely, one has to choose two heuristics to be used in choice points to select

• the variable to be assigned, called Variable Selection Heuristics (VSH), and
• the truth value to be attempted first, called Polarity Selection Heuristics (PSH).

A second family of SAT solvers extends the idea of DPLL by analyzing the reasons why an
assignment has lead the search to a failure. Solvers of this family are called Conflict-Driven
Clause-Learning (CDCL) solvers. These solvers proceed as DPLL until a failure is detected.
Then, a step called conflict analysis is performed to detect a reason for the failure, namely, a set of
variable assignments (made by the choice steps (2)) that conjunctively prevent the satisfaction of
some clauses of the input formula Φ. This set of variable assignments identifies a new clause that
can be learned and added to Φ. The rational is that any learned clause 𝜔 is a logical consequence
of Φ. Hence, if 𝜎 is a solution of Φ, it is also a solution of Φ∧𝜔. After a new clause is learned, the
solver backjumps to a decision level preceding (at least some of) conflicting choices (undoing their
effects on the current assignment). Each learned clause is expected to speed up the subsequent
search because it prevents the solver from making the same failing set of assignments again. Here,
usually, unit propagation enters into play: whenever all but one of the assignments of such set
are done, the presence of the learned clause forces a different value selection for the remaining
assignment. Clearly, “short” learned clauses are more effective in speeding up the search by
reducing the search space. We refer the reader to [2] for a detailed formal description of CDCL
solvers.

The branching heuristics can be partitioned into two families:

1. look-back heuristics, which rank variables on the basis of the computation performed till
the choice point;

2. look-ahead heuristics, which rank variables on the basis of the effect of their assignment in
the subsequent part of the computation.

Look-back heuristics are, in general, easier to implement. It suffices to gather, during the
computation, some information about the assignments and their effects (e.g., the simplifications



of the input formula enabled by the performed assignments, or some statistics about failures, etc.).
The overhead involved by these heuristics is small w.r.t. the whole computation. Conversely,
look-ahead heuristics require a (partial) exploration of the “future” of the computation in order to
determine the potential impact of alternative choices the solver can make at a choice point. This
usually amounts to speculatively performing some steps of unit propagation. Albeit, in principle,
look-ahead heuristics may lead to better choices (those that speed up the search the most), they
also involve higher computational overhead, especially in a sequential implementation. This is a
reason why look-ahead heuristics have largely been abandoned in modern solvers, in favor of the
“lighter”, but possibly coarser, look-back heuristics.

2.2. Look-ahead Heuristics

Look-ahead heuristics score variables depending on the effect their assignment has on the current
state of the search. These heuristics can be considered as greedy algorithms: they evaluate,
with respect to some estimation function, the alternative possible choices and select the most
effective/promising one. If the best ranked option is not unique, one could select any of the
best-ranked variables. In our implementation, we force determinism by selecting the variable with
the lowest index. This way, the serial and the parallel implementations make the same choice,
ensuring fairness in comparison.

Let us briefly recall the main families of look-ahead heuristics we are interested in.

Maximum Occurrences in Clauses of Minimum Size

These heuristics [11], briefly referred to as MOM heuristics, aim at selecting the unassigned
variable that might impact the most in the subsequent unit propagation step, being present in
“small” clauses. Variants of the schema appeared in the literature:

1. Jeroslow-Wang heuristics (JW). The goal of the JW heuristics is to select variable and
value in such a way to maximize the chances of satisfying the formula [12]. This is made
by computing the following weight function w for each literal ℓ:

w(ℓ) =
∑︁

𝜔∈Φ∧ ℓ∈𝜔
2−|𝜔| (1)

where Φ is the current set of unresolved clauses and |𝜔| denotes the number of unassigned
literals in the clause 𝜔. There are two subvariants of JW:

• JW-OS (JW One-Sided) considers the weights w(𝑥) and w(¬𝑥) separately: the VSH
selects the unassigned variable 𝑥 having the largest individual weight (being it w(𝑥)
or w(¬𝑥)).

• JW-TS (JW Two-Sided) combines the weights w(𝑥) and w(¬𝑥): the VSH selects the
unassigned variable 𝑥 having the largest |w(𝑥)− w(¬𝑥)| value.

In both cases, the PSH assigns 𝑥 true, if w(𝑥) ≥ w(¬𝑥), false otherwise.
2. BOHM heuristics [13]. This heuristics associates to each unassigned variable 𝑥 an array

of weights ⟨w1(𝑥),w2(𝑥), . . . ,w𝑛(𝑥)⟩ such that, 𝑛 is the number of literals in the largest



clause, and for each 𝑖 ∈ {1, . . . , 𝑛}:

w𝑖(𝑥) = 𝛼 ·max
(︁
𝑙𝑐𝑖(𝑥), 𝑙𝑐𝑖(¬𝑥)

)︁
+ 𝛽 ·min

(︁
𝑙𝑐𝑖(𝑥), 𝑙𝑐𝑖(¬𝑥)

)︁
,

where 𝑙𝑐𝑖(ℓ) denotes the number of occurrences of the literal ℓ in unresolved clauses of
size 𝑖, and 𝛼 and 𝛽 are experimentally tuned parameters. The values used in [13] are
𝛼 = 1 and 𝛽 = 2. The VSH selects the unassigned variable 𝑥 having the maximum
array (considering the lexicographical ordering). The PSH assigns 𝑥 true if

∑︀
𝑖 𝑙𝑐𝑖(𝑥) ≥∑︀

𝑖 𝑙𝑐𝑖(¬𝑥), false otherwise.
3. PrOpositional SatIsfiability Testbed heuristics (POSIT) [11]. This heuristics gives higher

priority to unassigned variables having a high number of occurrences in the smallest
unresolved clauses. This weight function is evaluated for each variable 𝑥:

w(𝑥) = 𝑙𝑐𝑚𝑖𝑛(𝑥) · 𝑙𝑐𝑚𝑖𝑛(¬𝑥) · 2𝜂 + 𝑙𝑐𝑚𝑖𝑛(𝑥) + 𝑙𝑐𝑚𝑖𝑛(¬𝑥),

where 𝑙𝑐𝑚𝑖𝑛(ℓ) denotes the number of occurrences of the literal ℓ in the smallest unresolved
clauses, and 𝜂 is a sufficiently large constant.1 The VSH selects the unassigned variable
𝑥 having the largest weight. The PSH assigns 𝑥 false if 𝑙𝑐𝑚𝑖𝑛(𝑥) ≥ 𝑙𝑐𝑚𝑖𝑛(¬𝑥), true
otherwise. The aim of this heuristics is to maximize the effect of the unit propagation step
that will follow the choice step.

Literal Count Heuristics

Briefly referred to as LC heuristics [14], their purpose is to select the variable whose assignment
causes the satisfaction of the largest number of clauses. To this aim, they classify variables
according to the number of their occurrences in unresolved clauses. Let 𝑙𝑐(ℓ) denote the number
of occurrences of ℓ in unresolved clauses. There are two main LC heuristics:

1. Dynamic Largest Individual Sum (DLIS) [15] that considers the values 𝑙𝑐(𝑥) and 𝑙𝑐(¬𝑥)
separately: the VSH selects the unassigned variable 𝑥 having the largest value (being it
𝑙𝑐(𝑥) or 𝑙𝑐(¬𝑥)).

2. Dynamic Largest Combined Sum (DLCS) [14] that selects the unassigned variable 𝑥 having
the largest 𝑙𝑐(𝑥) + 𝑙𝑐(¬𝑥) value.

For both DLIS and DLCS, the PSH assigns 𝑥 true if 𝑙𝑐(𝑥) ≥ 𝑙𝑐(¬𝑥), false otherwise.

2.3. GPU and CUDA

The CUDA framework [3] is a general-purpose parallel computing platform and programming
model that leverages the parallel computing engine of NVIDIA GPUs. It introduces a number of
key abstractions that specifies, in particular,

• a hierarchical organization of threads (i.e., execution flows);
1According to [11], 𝜂 should be such that 2𝜂 is larger than the number of unresolved clauses, but small enough to
avoid overflow in calculation of w(𝑥). This allows the solver to enforce preference for variables 𝑥 having a similar
number of occurrences of 𝑥 and ¬𝑥.



0 2 5 7 10

1 -3 2 3 -1 -2 -3 1 -2 -3
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4

10

ωo ω1 ω2 ω3

4

3

CNF formula

Number of variables

Number of clauses

10 Number of literals

Clause indexes

Clauses

Figure 1: Data structure for the CNF formula (𝑥1∨¬𝑥3) ∧ (𝑥2∨𝑥3∨¬𝑥1) ∧ (¬𝑥2∨¬𝑥3) ∧
(𝑥1∨¬𝑥2∨¬𝑥3). Each variable 𝑥𝑖 is represented by 𝑖, minus sign denotes negation.

• a hierarchy of memories (global, shared, constant, local, registers, etc.), with different
scopes and lifetimes;

• some synchronization mechanisms.

These abstractions lead the programmer to partition the problem into subproblems that are
independently solved in parallel by groups of threads, called blocks. In turn, the blocks are
organized in grids. In particular, CUDA C extends the C language allowing the definition of
particular functions, called kernels. Kernels, identified by the use of the keyword __global__

in their definition, are called by the host (CPU) and ran, in parallel, on multiple threads, on the
device (GPU). The desired values of the size of grid and of the blocks per grid are passed as
parameter:

kernelName<<<GridDim3D, BlockDim3D>>>(Actual Arguments).

The NVIDIA GPU architecture consists of thousands of identical compute units, called cores,
grouped into a uniform collection of Streaming Multiprocessors (SMs). SMs feature a Single-
Instruction Multiple-Thread (SIMT) execution mode, designed to execute hundreds of threads
concurrently. Each SM creates, schedules, and executes blocks of threads, further partitioned
in groups of 32 threads, called warps. Threads in a warp are intended to execute in lock-step
mode. However, each thread has its own program counter and register status. This allows each
thread to branch out and execute independently, diverging from the execution of the other threads
of its warp. The maximum performance is reached when thread divergence is avoided (so, all
threads of a warp execute the same instruction) and when memory accesses patterns are designed
to exploit the full bandwidth of each specific kind of memory. We refer the reader to [3] for a
detailed presentation of CUDA and to [5, 6, 7] for descriptions of specific implementations of
CUDA-based parallel solvers for SAT and ASP.

3. GPU-enhanced Look-ahead Heuristics

We have developed a CUDA C library, called MiraCle, implementing the look-ahead heuristics
described in Section 2.2. For comparison purposes, the CPU versions have also been implemented
using exactly the same data structures.



0 0 0

0 0 0 0

0 1 2 3

0 1 2

1

Miracle

CNF formula

Decision level

Variable assignments

Clause satisfiability

x1 x2 x3

ωo ω1 ω2 ω3

Figure 2: Miracle data structure d_mrc at (the starting) decision level 1. All variables are
unassigned and all clauses are unresolved.

Data Structures Employed

A CNF formula (i.e., a set of clauses) is represented by the data structure depicted in Figure 1.
It stores the numbers of variables, clauses, and literals, as well as a clause array and a clause
indexing array. Each literal is represented by an integer index (negative values represent negative
literals). Each clause is stored as the sequence of the indices representing its literals. Clauses
are stored consecutively in the clause array. Their starting positions are recorded in the clause
indexing array. Such a representation of a CNF formula is part of a larger data structure (called
Miracle and instantiated as d_mrc in Figure 2 and in Table 1) which represents the state of the
search in a specific moment in time. This data structure encompasses these parts:

• the CNF formula (as described in Figure 1);
• the current decision level (the starting decision level is 1);
• an array 𝑣𝑎 storing the current variable assignments as signed integer values: for each

variable 𝑖, 𝑣𝑎[𝑖] = ℓ means that 𝑖 has been assigned at level |ℓ| with polarity corresponding
to the sign of ℓ. For unassigned variables we set 𝑣𝑎[𝑖] = 0;

• the array 𝑐𝑠 storing information about clause satisfiability: 𝑐𝑠[𝑗] = ℓ if 𝜔𝑗 has been satisfied
at decision level ℓ, or 𝑐𝑠[𝑗] = 0 if 𝜔𝑗 is unresolved.

MiraCle Implementation Details

The library provides functionalities that can be partitioned into three parts:

1. initialization and removal of the formula;
2. updating and restoring the formula;
3. computation of look-ahead heuristics.

We list the procedures of the three groups in Table 1. Due to space limitation, we can-
not go into detail on all of them here. The interested reader can access the source code in
http://clp.dimi.uniud.it/sw/, where they are documented. We restrict our presentation to those
of the third group (see also the bottom part of Table 1). In particular, let us focus on the
JW One-Sided heuristics, since the others essentially differ in the evaluation of the weight-
ing function used to rank literals (cf., Section 2.2). This heuristics is computed by the function
mrc_gpu_JW_OS_heuristics() (a simplified version of it is shown in Alg. 1 and illustrated in

http://clp.dimi.uniud.it/sw/


Miracle mrc_create_miracle(filename) Import a SAT instance in CNF
format into the host data structure.
Return a pointer to host memory.

Miracle mrc_gpu_transfer_miracle_host_to_dev(mrc) Copy the data structure to the device.
Return a pointer to device memory.

mrc_destroy_miracle(mrc)

mrc_gpu_destroy_miracle(d_mrc)

Destroy host-side and device-side
data structure, respectively.

mrc_gpu_increase_decision_level(d_mrc) Increase the decision level (called
before mrc_gpu_assign_lits()).

mrc_gpu_assign_lits(lits, lits_len, d_mrc) Assign the literals lits true and
update the data structure on the device.

mrc_gpu_backjump(dl, d_mrc) Backjump to the decision level dl
and update the device data structure.

Lit mrc_gpu_JW_OS_heuristics(d_mrc)

Lit mrc_gpu_JW_TS_heuristics(d_mrc)

Lit mrc_gpu_BOHM_heuristics(d_mrc, a, b)

Lit mrc_gpu_POSIT_heuristics(d_mrc, n)

Lit mrc_gpu_DLIS_heuristics(d_mrc)

Lit mrc_gpu_DLCS_heuristics(d_mrc)

Compute heuristics on the device,
w.r.t. the current assignment stored
in d_mrc (a,b,n are the parameters
𝛼, 𝛽, 𝜂 described in Section 2.2).
Return the “best” literal.

Table 1
Main components of the MiraCle library (see Section 3).

Figure 3). The computation proceeds as follows. After resetting the working array lit_weights

in global memory and configuring the launch parameters (w.r.t. the number of available SMs),
the kernel JW_weigh_lits_unres_clauses_krn() is run. In its grid, each thread processes
one or more clauses by adopting a grid-stride loop. For each unresolved clause, in lines 16–21,
its contribute to the weight of each of its unassigned literals is computed according to (1). The
global weights are updated using an atomic instruction for all unassigned literals (lines 22-24)
to avoid race conditions. The best selectable literal and its weight are singled out by reducing
the array lit_weights. The computation of the logarithmic reduction is performed on the GPU
by find_idx_max_float(), called in line 7 (where, for readability, we improperly used a
compact form to denote the retrieval of the result).

Integration Into a SAT Solver

The library has been designed by abstracting from CUDA implementation details and to be
easily integrable into any DPLL or CDCL solver. Hence, its use does not require deep CUDA
programming skills. Table 1 lists the basic functions that can be used to enhance a (serial) SAT
solver with CUDA-based evaluation of look-ahead heuristics. To this aim, it suffices adding
suitable calls into the code of the solver. More specifically, the solver has to first initialize
the Miracle data structure by calling mrc_create_miracle(). This creates a representation
of the SAT problem (cf., Figure 2) on host (called mrc in Table 1). Then, mrc is copied to
device global memory, using mrc_gpu_transfer_miracle_host_to_dev(). This function
returns a reference d_mrc to the device-side structure, that will be used by all subsequent calls
to the library functions. Once d_mrc has been created, the solver can proceed as its original
algorithm dictates, but each time the solver assigns a literal, increases the current decision
level, and consequently performs some propagations, it has to update the device-side structure
by calling mrc_gpu_increase_decision_level() and mrc_gpu_assign_lits() (the



¬x2¬x1

-3

Literal weights

1 -3 2 3 -1 -2 -3 1 -2 -3

ωo ω1 ω2 ω3

Clauses

to t1 t2 t3

0.375 0.125 0.125 0.375 0.125 0.625

update weights of 
unassigned literals 
according to (1)

x2 ¬x3x1 x3

logarithmic parallel reduction 
to determine the “best” literal

¬x3

Selected JW-OS 
branching literal

CUDA 
thread

Figure 3: Computation scheme of the JW One-Sided heuristics on the GPU. First, each thread
processes an unresolved clause and updates the weight of each unassigned literals in it according
to (1). Then, the best selectable literal is computed by reducing the array of literal weights.

latter requires the list of assigned and propagated literals as argument). Similarly, whenever the
solver performs a backjump to a level dl, the function mrc_gpu_backjump() should be used to
update d_mrc. Each time the solver needs the GPU-based computation of one or more heuristics,
the corresponding functions (listed in the bottom part of Table 1) can be called.

4. Experimental Results

To experiment with the library, we integrated it into two existing SAT solvers:

• SATSolverDPLL: a DPLL solver developed by Sukrut Rao [16]. This is a basic SAT solver
implementing the raw DPLL algorithm. We have chosen this minimal implementation
because its essentiality guarantees a fairer comparison between the various branching
heuristics (in both their serial and parallel versions), not biased by the effect of other
strategies, techniques, and optimizations that are often adopted in implementing a SAT
solver.

• microsat: a CDCL solver originally developed by Marijn Heule and later modified by
Armin Biere [17]. This is a simple conflict-driven SAT solver exploiting watched literals,
clause learning, restart, and clause forgetting. It exposes greater performance w.r.t. the
aforementioned SATSolverDPLL solver. We used this solver to compare the “quality” of
the look-ahead heuristics against the lock-back heuristics used by microsat, namely VMTF
(Variable Move-To-Front [18]).

To experiment with the two GPU-enhanced SAT solvers, we used a server equipped with
an octa-core (16 threads) Intel i9-11900K 3.5GHz, with 16 MB cache and 64 GB DRAM,
running Ubuntu 20.04.3 LTS (kernel 5.11.0). In this section, we report on experiments ran using
a device NVIDIA GeForce RTX 3090 (compute capability 8.6, Ampere architecture, 24 GB,
82 SMs, 10496 CUDA-cores, clock rate 1.7 GHz). The code was compiled using GCC 9.3.0



Algorithm 1: Host and device code for evaluation of the JW-OS heuristics (simplified)

static Lit MRC_GPU_JW_OS_HEURISTICS(d_mrc){
Data: nlits, num_clauses: number of clauses and literals
Data: lit_weights: array for literal weights (device-side)

1 int blks, tpb;
/* clear lit_weights: */

2 cudaMemset(lit_weights, 0, sizeof(float)*nlits);
/* retrieve values blks and tpb, computed depending on GPU specs: */

3 configureLaunchParam(num_clauses, &blks, &tpb);
/* compute literal ranking on the device: */

4 JW_weigh_lits_unres_clauses_krn<<<blks, tpb>>>(d_mrc);
/* logarithmic parallel reduction to determine the “best” literal: */

5 Lidx blidx; /* Selected JW-OS branching literal index */
6 float lw_blidx; /* and its weight */

/* retrieval of the result: */
7 (blidx,lw_blidx) = find_idx_max_float(lit_weights);
8 return ((lw_blidx == 0)?UNDEF_LIT:lidx_to_lit(blidx));

}

__global__ void JW_WEIGH_LITS_UNRES_CLAUSES_KRN(d_mrc){
Data: ncls: number of clauses

9 float W; /* weight of a literal */
10 Lidx lidx; /* index of a literal in a clause */
11 register int c_size; /* number of unassigned literals in a clause */

/* pointers into d_mrc, kept in registers to speed up accesses: */
12 register int * clss = d_mrc->clause_sat;
13 register int * vars = d_mrc->var_ass;
14 register int K; register int B;

15 for (i=threadIdx.x+blockIdx.x*blockDim.x; i<ncls; i+=blockDim.x*gridDim.x){
/* using a stride-loop each thread processes one or more clauses */

16 if (!(clss[i])){ /* if the clause is unresolved */
17 c_size = 0; B = cl_idxs[i]; K = cl_idxs[i+1];
18 for (int l = B; l < K; l++){ /* count unassigned lits of clause */
19 lidx = cls[l];
20 if (!(vars[lidx_to_var(lidx)])) c_size++;

}
21 W = exp2f((float)-c_size); /* compute weight */
22 for (int l = B; l < K; l++){ /* update weights of unassigned lits */
23 lidx = cls[l];
24 if (!(vars[lidx_to_var(lidx)])) atomicAdd(&(lit_weights[lidx]),W);

}
}

}
}

and CUDA 11.5. We also ran analogous experiments using other GPUs (such as, NVIDIA Tesla
K40c and GeForce GTX 1060), obtaining results in line with those we present here.

The first experiment we report on tries to assess the “quality” of the heuristics, namely, how
much the outcome of different heuristic selection functions affects the overall computation of
SAT solvers. To this aim, we considered the number of heuristics calls a solver has to make
before reaching a solution of a SAT instance. Intuitively, a lower number of calls suggests that the
heuristics better drives the solver to the solution (or to the detection of unsatisfiability). To run this
experiment, we used a dataset of instances from [19]. In particular, we considered 180 instances
from the benchmarks aim, Beijing, blocksworld, dubois, ii16, ii32, jnh, logistics, pigeon-hole,
pret, ssa. Figure 4 shows the comparison of the look-ahead heuristics and the native look-back



Figure 4: Number of calls to the heuristics needed by microsat to solve the instances, using the
various look-ahead heuristics and its native look-back heuristics VMTF.

Id Instance Size (MB) Variables Clauses

I1 at-least-two-sokoban-sequential-p145-microban-
sequential.030-NOTKNOWN.cnf

45 198252 2385409

I2 SC21_Timetable_C_557_E_73_Cl_37_S_35.cnf 63 406207 2841961
I3 Mycielski-11-hints-4.cnf 79 15350 3975330
I4 E00X23.cnf 104 15364 2133873
I5 spg_400_281.cnf 111 792025 4063559
I6 9dlx_vliw_at_b_iq8.cnf 161 371419 7170909
I7 vlsat2_702_14170.cnf 224 70288 14170788
I8 13pipe_k.cnf 239 147626 12295313
I9 crafted_n12_d6_c4_num17.cnf 246 56064 15834160

I10 blocks-blocks-36-0.180-SAT.cnf 247 733825 13169160
I11 sokoban-p16.sas.ex.19-sc2016.cnf 264 2929760 6312685
I12 barman-pfile10-040.sas.ex.15.cnf 405 430288 976816
I13 Kakuro-easy-115-ext.xml.hg_5.cnf 616 171688 24612456

Table 2
Excerpt of the set of instances used in performance comparison of CPU and GPU implementa-
tions of branching heuristics (see Figure 6).

heuristics of microsat (VMTF) for an excerpt of those instances whose computation finished
within a timeout of 10 minutes, for each of the heuristics we used. The cactus-plot shows the
cumulative number of calls (𝑌 -axis) needed to solve a number of instances (𝑋-axis). We observe
that the worst performance are those of the two variants of Jeroslow-Wang heuristics, while all
the others allow the solver to compute the solution using a significantly lower number of calls to
the library functions (observe that the plot uses a log-scale for the 𝑌 -axis).

Similar results have been obtained for the solver SATSolverDPLL, as can be observed from the
analogous cactus-plot shown in Figure 5.

To compare the performance of CPU and GPU implementations of the look-ahead heuristics in



Figure 5: Number of calls to the heuristics needed by SATSolverDPLL to solve the instances,
using the various look-ahead heuristics and its native heuristics (STATIC, in the chart). Such a
native static branching heuristics is the same as DLIS but is executed once for all at the beginning
of the computation.

MiraCle, we ran microsat on a selection of instances from [20] and evaluated the average time
spent in computing each branching literal. We only considered instances having size greater than
40 MB. Figure 6 reports the comparison of the time spent by the 7 different implementations
of the BOHM heuristics for a significant excerpt of the dataset (see Table 2). We observe that
all parallel implementations outperform the serial one, obtaining 100x average speedup. The
best performance are obtained by using 512 threads-per-block: 136x average speedup and 534x
maximum speedup. We also notice that the number of threads-per-block significantly influences
the performance of the solver in almost all instances. In fact, for each instance, Figure 6 shows
how the average time decreases as the number of threads-per-block increases (note that the plot
uses a log-scale for the 𝑌 -axis). Analogous results have been obtained for the other look-ahead
heuristics (charts omitted because of space limits).

The results of the experiments seem to confirm that a GPU-based parallel implementations of a
look-ahead heuristics can provide better performance in heuristic function evaluations. Moreover,
as expected, the quality of the outcome of these branching heuristics is in general greater than
those of the look-back options. Even when this is not the case, as for Jeroslow-Wang (cf., Figs. 4
and 5), the sub-optimal choices in literal selection is compensated by a higher efficiency in
heuristics computation (cf., Figure 6).

5. Concluding Remarks

Due to the high computational cost of look-ahead heuristics, designers of modern SAT solvers
tend to prefer alternative look-back heuristics. In an attempt to rehabilitate look-ahead heuristics,
we described a GPU-based C library, MiraCle, implementing CUDA versions of the main



Figure 6: Average time spent in each BOHM heuristics evaluation by the CDCL solver. 𝑋-axis:
an excerpt of the instances we experimented with. 𝑌 -axis: average time in ms. For each
instance, we compare the time spent by the CPU implementation and by 6 versions of the CUDA
implementation (using 32, 64, 128, 256, 512, and 1024 threads-per-block, resp.).

branching heuristics. We have shown the feasibility of the proposal by realizing the integration
of the GPU-based functionalities into two different SAT solvers. Experimentation carried out
on a significant number of instances has emphasized how CUDA implementations of the most
common look-ahead heuristics can fully exploit the computational power of graphics cards.
This allows to enhance a generic SAT solver (not necessarily parallel) by providing it with
the parallel computation of such branching heuristics, that, in a purely serial context, would
represent an inefficient computational bottleneck. Ameliorations of the library are currently under
development. For instance, we plan to improve the implementation of the functionalities offered
by MiraCle by introducing optimizations that depend on the compute capability of specific GPU
in use (e.g., the possibility of exploiting cutting-edge technologies such as tensor cores and
warp-level optimized intrinsic functions). We intend to extend the library by considering other
heuristics that appeared in the literature, to investigate whether they might benefit from a parallel
implementation. Some examples are the Clause Reduction Heuristics (CRH) [21] proposed
in OKsolver, the Weighted Binaries Heuristics (WBH) [22] applied in the solver Satz, and the
Backbone Search Heuristics (BSH) [23]. This would be a first step toward the realization of a
purely GPU-based full-blown SAT solver, by means of an integration of MiraCle into the existing
parallel solvers, such as, for example, the one described in [5].

Other lines of research can benefit from the experience made in designing and improving
MiraCle. In fact, many of the software solutions designed and implemented to realize a (library
supporting) GPU-based SAT solving, have application in the broader field of Computational
Logic [24, 25]. We intend to adopt and adapt the approach we described in this paper for SAT,
to the prototypical GPU-based solvers we proposed in past research for Answer Set Program-
ming [26, 27] and Constraint Solving [28, 29, 30].



References

[1] M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, Commu-
nications of the ACM 5 (1962) 394–397.

[2] A. Biere, M. Heule, H. van Maaren, T. Walsh, Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, IOS Press, 2009.

[3] NVIDIA, CUDA C++: Programming Guide (v.11.6), NVIDIA Press, Santa Clara, CA, 2022.
[4] A. Dal Palù, A. Dovier, A. Formisano, E. Pontelli, Exploiting unexploited computing

resources for computational logics, in: F. A. Lisi (Ed.), Proc. of the 9th Italian Convention
on Computational Logic, volume 857 of CEUR Workshop Proceedings, CEUR-WS.org,
2012, pp. 74–88. URL: http://ceur-ws.org/Vol-857/paper_f06.pdf.

[5] A. Dal Palù, A. Dovier, A. Formisano, E. Pontelli, CUD@SAT: SAT solving on GPUs, J.
of Experimental & Theoretical Artificial Intelligence (JETAI) 27 (2015) 293–316.

[6] A. Dovier, A. Formisano, E. Pontelli, Parallel answer set programming, in: Y. Hamadi,
L. Sais (Eds.), Handbook of Parallel Constraint Reasoning, Springer, 2018, pp. 237–282.

[7] A. Dovier, A. Formisano, F. Vella, GPU-based parallelism for ASP-solving, in: P. Hofstedt,
S. Abreu, U. John, H. Kuchen, D. Seipel (Eds.), Revised Selected Papers from DECLARE
2019, volume 12057 of Lecture Notes in Computer Science, Springer, 2020, pp. 3–23.

[8] S. A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the third
annual ACM symposium on Theory of computing, 1971, pp. 151–158.

[9] L. A. Levin, Universal sequential search problems, Problemy Peredachi Informatsii 9
(1973) 115–116.

[10] M. Davis, H. Putnam, A computing procedure for quantification theory, Journal of the
ACM 7 (1960) 201–215.

[11] J. W. Freeman, Improvements to Propositional Satisfiability Search Algorithms, Ph.D. thesis,
University of Pennsylvania, 1995.

[12] R. G. Jeroslow, J. Wang, Solving propositional satisfiability problems, Annals of Mathe-
matics and Artificial Intelligence 1 (1990) 167–187.

[13] M. Buro, H. Kleine Büning, Report on a SAT competition, Bulletin of EATCS 49 (1992).
[14] J. P. Marques-Silva, The impact of branching heuristics in propositional satisfiability

algorithms, in: Portuguese Conference on Artificial Intelligence, Springer, 1999, pp. 62–74.
[15] J. P. Marques-Silva, K. A. Sakallah, GRASP — a new search algorithm for satisfiability, in:

The Best of ICCAD, Springer, 2003, pp. 73–89.
[16] S. Rao, SAT-Solver-DPLL, github.com/sukrutrao/SAT-Solver-DPLL. Last accessed in 2022.
[17] M. Heule, A. Biere, Microsat, github.com/arminbiere/microsat. Last accessed in 2022.
[18] L. Ryan, Efficient Algorithms for Clause-Learning SAT Solvers, Master’s thesis, Simon

Fraser University, 2004.
[19] H. Hoos, SATLIB - benchmark problems, www.cs.ubc.ca/~hoos/SATLIB/benchm.html,

2022.
[20] M. Heule, M. Järvisalo, M. Suda, M. Iser, T. Balyo, N. Froleyks, SAT Competition 2021,

satcompetition.github.io/2021, 2021.
[21] O. Kullmann, Investigating the behaviour of a SAT solver on random formulas, Technical

Report CSR 23-2002, University of Wales Swansea, Swansea Wales, UK, 2002
[22] C. M. Li, et al., Look-ahead versus look-back for satisfiability problems, in: International

http://ceur-ws.org/Vol-857/paper_f06.pdf
github.com/sukrutrao/SAT-Solver-DPLL
github.com/arminbiere/microsat
www.cs.ubc.ca/~hoos/SATLIB/benchm.html
satcompetition.github.io/2021


Conference on Principles and Practice of Constraint Programming, Springer, 1997, pp.
341–355.

[23] O. Dubois, G. Dequen, A backbone-search heuristic for efficient solving of hard 3-SAT
formulae, in: IJCAI, volume 1, 2001, pp. 248–253.

[24] G. Gupta, E. Pontelli, K. A. M. Ali, M. Carlsson, M. V. Hermenegildo, Parallel execution
of Prolog programs: a survey, ACM Trans. Program. Lang. Syst. 23 (2001) 472–602.

[25] A. Dovier, A. Formisano, G. Gupta, M. V. Hermenegildo, E. Pontelli, R. Rocha, Parallel
logic programming: A sequel, Theory and Practice of Logic Programming (2022) 1–69.
doi:10.1017/s1471068422000059.

[26] A. Dovier, A. Formisano, E. Pontelli, F. Vella, A GPU implementation of the ASP computa-
tion, in: M. Gavanelli, J. H. Reppy (Eds.), PADL 2016, volume 9585 of Lecture Notes in
Computer Science, Springer, 2016, pp. 30–47.

[27] A. Dovier, A. Formisano, E. Pontelli, F. Vella, Parallel Execution of the ASP Computation,
in: M. De Vos, T. Eiter, Y. Lierler, F. Toni (Eds.), Tech.Comm. of ICLP 2015, volume 1433,
CEUR-WS.org, 2015.

[28] A. Dovier, A. Formisano, E. Pontelli, F. Tardivo, {CUDA}: Set constraints on GPUs,
Rendiconti dell’Istituto di Matematica dell’Università di Trieste 24 (2021).

[29] F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, E. Pontelli, Exploring the Use of
GPUs in Constraint Solving, in: M. Flatt, H. Guo (Eds.), Proc. of PADL 2014, vol-
ume 8324 of Lecture Notes in Computer Science, Springer, San Diego, CA, USA, 2014,
pp. 152–167. URL: http://dx.doi.org/10.1007/978-3-319-04132-2_11. doi:10.1007/
978-3-319-04132-2_11.

[30] F. Tardivo, A. Dovier, A. Formisano, L. Michel, E. Pontelli, Constraints propagation on
GPU: A case study for AllDifferent, in: R. Calegari, G. Ciatto, A. Omicini (Eds.), Proc.
of the 37th Italian Conference on Computational Logic (CILC 2022), CEUR Workshop
Proceedings, CEUR-WS.org, 2022.

http://dx.doi.org/10.1017/s1471068422000059
http://dx.doi.org/10.1007/978-3-319-04132-2_11
http://dx.doi.org/10.1007/978-3-319-04132-2_11
http://dx.doi.org/10.1007/978-3-319-04132-2_11

	1 Introduction
	2 Background
	2.1 SAT Solving
	2.2 Look-ahead Heuristics
	2.3 GPU and CUDA

	3 GPU-enhanced Look-ahead Heuristics
	4 Experimental Results
	5 Concluding Remarks

