
Epistemic Multiagent Reasoning with Collaborative
Robots
Davide Soldà1,2,*, Francesco Fabiano1,3,* and Agostino Dovier1,4

1Constraint and Logic Programming Lab, University of Udine, 33100 Udine, Italy. http:// clp.dimi.uniud.it/
2Embedding System unit of Fondazione Bruno Kessler, 38123 Trento, Italy
3Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
4Department of Mathematics, Computer Science and Physics, University of Udine, 33100 Udine, Italy

Abstract
Over the last few years, the fields of Artificial Intelligence, Robotics and IoT have gained a lot of attention.
This increasing interest has brought, among other things, to the development of autonomous multi-agent
systems where robotic entities may interact with each other. As for all the other autonomous settings,
also these systems require arbitration. Our work tries to address this problem by presenting a framework
that embeds both a classical and a multi-agent epistemic (epistemic, for brevity) planner in a robotic
control architecture. The idea is to combine the (i) classical and the (ii) epistemic solvers to model
efficiently the interaction with: the (i) physical world and the (ii) information flows, respectively. In
particular, the presented architecture starts by planning on the “epistemic level" refining then single-
agent world-altering actions thanks to the classical planner. To further optimize the solving process,
we also introduce the concept of macros in epistemic planning. Macros, in fact, have been successfully
employed in classical planning as they allow for opportune aggregations of actions that may lead to a
reduction of plans’ length. Finally, the overall framework is exemplified and validated with two Franka
Emika manipulators. This allowed us to empirically justify how the combination of the two planning
approaches (classical and epistemic), and the introduction of macros, reduce the computational time
required by the orchestrating phase.
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1. Introduction

In the recent years, the field of cognitive robotics experienced significant progress, both from
the academic (see [1] for a detailed survey) and the industrial, e.g. [2], [3], [4], point of view.
Even if most of current autonomous systems frameworks are designed for scenarios where only
a single entity interacts with the environment, also multi-agent settings are well studied [5], [6].
However, there is not focus on modeling robots beliefs in goals or action pre/post conditions.

In particular, we envisioned and developed e-PICO (EPIstemic Reasoner Collaborative
RObots): a planning framework that coordinates a set of autonomous agents. This setup is able
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to reason on complex multi-agent epistemic concepts while dealing with their computational
issues, that arise from the inherent complexity of epistemic reasoning. This is achieved by
combining techniques from the Multi-agent Epistemic Planning (MEP) field and the more
efficient classical planning approaches. Thanks to this combination our architecture can benefit
from the generality derived by MEP solvers and the efficiency of the classical ones. That is,
e-PICO consider both of an epistemic and a classical description of the planning problem and
combines the two solving techniques in a hierarchical way. As we will see later (Section 4) in
much greater detail, the architecture firstly solves the problem with a greater level of abstraction
using the epistemic solver. Then, the classical resolution process is used to refine the world-
altering actions suggested by the epistemic counterpart.

Finally, inspired by [7], we also propose the concept of macros in the MEP environment.
The use of macros helps in reducing the burden of the epistemic planning process, allowing
e-PICO to address multi-agent robotics planning scenarios. In fact, such domains present
several complications, e.g., the number of possible actions, that if not addressed correctly could
render the solving process unfeasible.

To the best of our knowledge, both i) the combination of the epistemic and a classical solving
processes to model a robotic environment with epistemic goals; and ii) the use of macros in the
multi-agent epistemic planning context are original contributions of this work.

2. Action Languages and Planning

The area of automated planning is one of the most prominent in Artificial Intelligence. This
branch studies how to devise tools that help us in deciding the best course of actions to
reach a given goal, an activity that is done continuously in our life. Automated planning,
therefore, represents one of the most interesting aspect of AI and, consequently, has been
vastly studied [8, 9, 10]. Even if we often need to make decisions based on our beliefs, about
the environments and about others’ beliefs, automated planners usually do not consider such
intricacy. In fact, most of the efforts in the planning community address domains where the
concept of beliefs and/or knowledge is not taken into account. Nonetheless, the growing interest
in AI is pushing researchers to steadily improve and to model more realistic scenarios. This
momentum brought, among other things, to the formalization of a far more compelling (w.r.t.
more classical approaches) form of planning, that is the so-called Epistemic Multi-Agent Planning
(MEP). This area of planning reasons within environments where the streams of “knowledge"
or “beliefs" need to be considered (see [11, 12] for a more detailed introduction to the topic).

2.1. Multi-Agent Epistemic Planning

Formalizing and reasoning on the idea of knowledge and beliefs has always been of great interest
among various research fields (e.g., philosophy, logics, and computer science). In particular,
in 1962, Hintikka proposed the first complete axiomatization of these concepts [13]. From
this initial effort stemmed the field of epistemic/doxastic logic which aims to formalize and
reason on information. While this area of research presents various challenges, it focused only
on capturing the knowledge relations in static domains. To represent even more interesting
and realistic scenarios Dynamic Epistemic Logic (DEL) was introduced; that is the logic of



reasoning on information flows in dynamic domains where agents can act and alter these
relations themselves.

DEL represents the foundation of Multi-Agent Epistemic Planning, the setting concerned with
finding the best series of action, that modifies the information flows, to reach goals that (might)
refer to agents’ knowledge/beliefs. In what follows, for brevity, we will use the term “knowledge”
to encapsulate both the notions of an agent’s knowledge and beliefs. In fact, these concepts are
captured by the same modal operator in DEL and their difference resides in structural properties
that the epistemic states respect (see [11] for more details). As it is not the objective of this paper
to completely present MEP, in what follows we will provide only some fundamental concepts
that are necessary to explain the contribution of this work. Far more complete introductions to
this topic may be found in [11, 14, 15].

Let us start by presenting the language of well-formed DEL formulae used to express agents’
knowledge. This is expressed as follows:

𝜙 ::= f | ¬𝜙 | 𝜙 ∧ 𝜓 | Bi𝜙 | C𝛼𝜙,

where f is a propositional atom called a fluent, i is an agent that belongs to the set of agents 𝒜𝒢
s.t. |𝒜𝒢| ≥ 1, 𝜙 and 𝜓 are belief formulae and ∅ ≠ 𝛼 ⊆ 𝒜𝒢. A fluent formula is a DEL formula
with no occurrences of modal operators. A belief formula is recursively defined as follows:

• A fluent formula is a belief formula;

• If 𝜙 is a belief formula and i ∈ 𝒜𝒢, then Bi𝜙 (“i knows/believes that 𝜙”) is a belief formula
where the modal operator B captures the concept of knowledge;

• If 𝜙1, 𝜙2 and 𝜙3 are belief formulae, then ¬𝜙3 and 𝜙1 op𝜙2 are belief formulae, where
op ∈ {∧,∨,⇒};

• If 𝜙 is a belief formula and ∅ ≠ 𝛼 ⊆ 𝒜𝒢 then C𝛼𝜙 is a belief formula where C𝛼 captures
the Common knowledge of the set of agents 𝛼.

The formula C𝛼𝜙 translates intuitively into the conjunction of the following belief formulae:

• every agent in 𝛼 knows 𝜙;

• every agent in 𝛼 knows that every agent in 𝛼 knows 𝜙;

• and so on ad infinitum.

The semantics of DEL formulae is traditionally expressed using pointed Kripke structures [16],
but also other representations are possible [17, 18]. We refer the interested reader to [11, 12, 17]
for a comprehensive introduction to how Kripke structures, or similar formalisms, are used to
capture the idea of an epistemic state and how the concept of entailment is defined.

Let us note that the epistemic action language that we will consider in our work implements
three types of action and three observability relations. These are standard concepts in the
epistemic planning community and, therefore, we will provide an intuitive description of those
addressing the interested reader to [14] for a complete description of this topic. In particular,
we assume that each agent can execute one of the following types of action:



• World-altering action (also called ontic): used to modify certain properties (i.e., fluents) of
the world.

• Sensing action: used by an agent to refine her beliefs about the world.

• Announcement action: used by an agent to affect the beliefs of other agents.

Moreover, each agent is associated to one of the following observability relations during an
action execution:

• Fully-observant: the agent is aware of the action execution and also knows the effect of
the action.

• Partially-observant: the agent is aware of the action execution without knowing the
effects of the action. Let us note that no agent can be partially observant of an ontic
action as it is impossible to decouple the witnessing of a world-altering action and the
witnessing of its effects.

• Oblivious: the agent is not even aware of the action execution.

Each type of action defines a transition function and alter an epistemic state in different
ways. Given the complexity of the topic and the space limitations we address the reader
to [14, 18, 19] for a formal definition of these, and others, update functions on diverse epistemic
state representations.

Finally, let us introduce the concept of MEP domain that, intuitively, contains the information
needed to describe a planning problem in a multi-agent epistemic setting.

Definition 2.1 (MEP Domain). A multi-agent epistemic planning domain is a tuple 𝒟 =
⟨ℱ ,𝒜𝒢,𝒜, 𝜙𝑖𝑛𝑖, 𝜙𝑔𝑜𝑎𝑙⟩, where ℱ , 𝒜𝒢, 𝒜 are the sets of fluents, agents, actions of 𝒟, respectively;
𝜙𝑖𝑛𝑖 and 𝜙𝑔𝑜𝑎𝑙 are DEL formulae that must be entailed by the initial and goal e-state, respectively.
The former e-state describes the domain’s initial configuration while the latter encodes the desired
one.

We refer to the elements of a domain 𝒟 with the parenthesis operator; e.g., the fluent set
of 𝒟 is denoted by 𝒟(ℱ). An action instance a⟨i⟩ ∈ 𝒟(𝒜ℐ) = 𝒟(𝒜)×𝒟(𝒜𝒢) identifies the
execution of action a by an agent i. Let 𝒟(𝒮) be the set of all possible e-states of the domain.
The transition function Φ : 𝒟(𝒜ℐ)×𝒟(𝒮) → 𝒟(𝒮) ∪ {∅} formalizes the semantics of action
instances (the result is the empty set if the action instance is not executable).

2.2. The 𝒜𝑉 language

In this section we briefly introduce the 𝒜𝑉 action description language, which has been designed
to be integrated into e-PICO. It essentially corresponds to language 𝒜, but some typed variables
have been introduced (see [20] as a reference for the nomenclature of planning languages).
Typed variables are merely used to write schemes describing finite sets of causal laws that are
formed according to the same pattern. Schemes are particularly useful in some application



domains, such as when an action that models an agent’s movement can be parameterized by a
variable that can be instantiated with a series of different positions.

In e-PICO the 𝒜𝑉 planning instances are translated into an Answer Set Programming ASP
instances. ASP is one the most prominent logic programming paradigms and it is particularly
useful in knowledge-intensive applications, see Gelfond and Lifschitz [21] for an introduction
to its semantic. Its use as a planning framework, has been deeply explained in [22]. For space
reasons we omit the correctness proof of the compiler from 𝒜𝑉 to ASP.

The choice of encoding the planning problems in ASP, already presented in [23], is justified
by the fact that ASP as a planning engine outperforms standard task planner for PDDL, where
i) domains are rich in fluents and ii) plans are usually short [24]. Such characteristics precisely
characterize how we want to use the classical planner in the robotics domain use case.

3. Collaborative Robots

3.1. Robot Operating System

Robot Operating System (ROS) is the standard de facto framework for developing robotic
applications. It consists of a communication framework for sending messages between processes.
The ROS integrated executable programs are instantiated as special processes, known as nodes,
and are organized in packages. A ROS package might contain ROS nodes, a ROS-independent
library, a dataset, configuration files, a third-party piece of software, or anything else that
logically constitutes a useful module. There are several packages which are directly provided by
ROS and which can be used by user-defined programs. One package that is particularly used in
this work is MoveIt!, which is widely used for motion planning and execution in the robotics
community.

3.2. The Robots Franka Emika

The framework here presented has been validated in a simple multi-agent scenario in which
two Franka Emika robots have been involved. Franka Emika is a robotic arm with 7 Degrees Of
Freedom (DOF) with torque sensors at each joint. It is also equipped with a gripper that allows
the automated “arm" to handle objects.

The client side of the Franka Control Interface is called libfranka. At a higher level we
find franka_ros, which is a ROS package that contains the description of the robot and the
end-effector in terms of kinematics, joint limits, visual surfaces and collision space, an hardware
abstraction of the robot for the ROS control framework based on the libfranka API, and a set
of services to expose the full libfranka API in the ROS ecosystem. Let us note that, although
the target robots are two Franka Emika, the architecture can be adapted to another collection of
manipulators with only minor changes.



4. The e-PICO System

4.1. Macros in Multi-Agent Epistemic Planning

As already mentioned, a significant contribution of this work is the formalization, and conse-
quent employment, of macros in the MEP setting. A macro, that can be informally described as
“an encapsulated sequences of elementary planning operators”, is formally defined as follows:

Definition 4.1 (Macro). Let 𝒟(i),𝒟(j) ∈ 𝒟(𝒜ℐ) be two action instances, and s ∈ 𝒟(𝒜𝒢) be an
e-state of a given a domain 𝒟. A macro mi,j ∈ 𝒟 representing the subsequent execution of j after i
can be defined as Φ(j,Φ(i, s)). Let us note that i) we assume that if action a is not executable in
a state s, then the result of the update Φ(a, s) is ⊥; and ii) the execution of any action a over ⊥
results in ⊥ as well.

The introduction of macros is justified by the fact that, often, patterns of actions performed
in sequence are repeated in the same domain. For example, it often happens that an ontic action
is followed by an announcement action, because an agent may want to communicate the results
of the former to another (oblivious) agent. For now, as pointed out in the Dagstuhl seminar [25],
there have been many proposals in the classification of epistemic actions. As pointed out above,
the community mostly agrees that the basic classification considers ontic, announcement and
sensing as possible categories. Among these three types of actions, only the ontic one has
some effect on the physical world. That is why we consider the renaming two, i.e., sensing and
announcement, as purely epistemic actions. Consequently, we say that a task is purely epistemic
if it involves only announcement or sensing actions, or a macro aggregating these two type. In
Listing 1 the function call is_pure_epistemic_task(task) checks exactly this property.

4.2. The Architecture

In this section, we describe the general architecture and functionality of the e-PICO system, that
is the main contribution of this work. e-PICO provides high-level knowledge representation
and planning capabilities to ROS-based autonomous robots via the action description languages
𝒜𝑉 (Section 2) and E-PDDL [26]. The main object of our framework is to provide a tool that
supports multi-agent epistemic planning in the robotics setting. This is accomplished through a
combination of MEP and classical planning solving techniques. In particular, e-PICO combines
these two strategies in a hierarchical way. To be more precise, our architecture firstly employs
multi-agent epistemic planning for generating tasks, then, at lower level, it exploits a classical
planner to break down tasks into simpler actions. Finally, e-PICO directly converts the results
of the planning processes into MoveIt! commands that can be then executed by the robots. Let
us note that we employ an hierarchical combination of the two solving techniques (i.e., classical
and epistemic) to avoid unfeasibility in the planning process for domains rich in fluents and
actions. The key idea is, in fact, to abstract most of the domain intricacy from the epistemic level
and handle it at the classical level, when it is possible, given its vastly superior performances.

Let us now explain in greater detail how the e-PICO system processes, solves and executes a
planning problem in the robotic environment. To better visualize the overall framework, we
present a graphical representation of it in Figure 1. First of all the master process reads the
domain descriptions, that contain the initial state description for both the MEP and classical



Figure 1: A class-based representation of the e-PICO system.

setting. At this point it is able to send messages to the actuator process regarding the objects that
need to be considered by the motion planner in order to avoid collisions. Once these messages
arrive to the actuator process, it adds them to the MoveIt! planning scene.

Then, it sends the epistemic planning instance, specified in E-PDDL [26], to an epistemic
planner, i.e., EFP [18], which is employed as a black box and returns the sequence of epistemic
tasks to be executed. After this first resolution, each task is properly processed following
Listing 1. The first step is to break down (to flat) macros, then we can reason on a sequence
of no macro tasks, hereinafter called simple tasks. Intuitively, a simple pure epistemic task
can be directly executed. Simple ontic tasks that alter the physical world will undergo further
processing. To break down ontic simple tasks into a sequence of classical actions, the master
process defines an instance of classical planning where the initial and the goal states are defined
to match the ontic simple task’s conditions and effects. Then, iteratively, the master process
sends the classical action tasks to the actuator process, which translate them into MoveIt!
commands, and makes finally the robots execute the movement.

Listing 1: pseudo-code for the main steps of e-PICO.

def p r o c e s s _ e _ p l a n ( l i s t < task > t a s k _ p l a n , c _ i n i t _ s t a t e c _ i n i t ) :
for t a s k in t a s k _ p l a n :

i f i s _ m a c r o _ t a s k ( t a s k ) :
s i m p l e _ t a s k _ p l a n = break_down_macro ( macro= t a s k )
for s i m p l e _ t a s k in s i m p l e _ t a s k _ p l a n :

c _ i n i t = p r o c e s s _ s i m p l e _ t a s k ( t , c _ i n i t )
e l s e :

c _ i n i t = p r o c e s s _ s i m p l e _ t a s k ( t a s k )



def p r o c e s s _ s i m p l e _ t a s k ( t a s k t , c _ i n i t _ s t a t e c _ i n i t ) :
# i n v a r i a n t : n o t i s _ m a c r o _ t a s k ( t )
i f i s _ e p i s t e m i c _ t a s k ( t a s k = t ) : # s e n s i n g o r announcement

e x e c u t e ( p u r e _ e p i s t e m i c _ t a s k = t )
e l s e :

c_p lan , c _ i n i t = s e n d _ t o _ c _ p l a n n e r ( o n t i c _ t a s k =t , i n i t i a l _ s t a t e =
c _ i n i t )

for c _ a c t i o n in c _ p l a n :
s e n d _ t o _ a c t u a t o r ( c _ a c t i o n )

return c _ i n i t

4.3. Modeling the Problem Instance

When we model a scenario as a planning problem in order to eventually effectively execute it,
we need to address the “anchoring” problem. I.e., we need to connect the model description
to the physical objects in the real world. Furthermore, in the e-PICO approach, the user also
needs to choose what should be modelled at the epistemic level and what at the classical one,
the latter in fact should provide low-level actions that are easy to interface with the MoveIt!
API. Let us take the process of grasping, executed by an automated arm, as an example. It is
composed of different phases: 𝑖) pre-grasping, in which the end-effector approaches the object to
be grasped with a given direction and orientation. 𝑖𝑖) actual grasping, in which the final joints
of the gripper close. Finally, 𝑖𝑖𝑖) post-grasping, in which the end-effector moves away from the
position in which it grasped the object in a given direction and orientation. During each of these
phases process we must make sure that the robotic arm does not collide with the objects in its
workspace. Therefore, MoveIt! is provided with information about location of fixed objects to
calculate a trajectory without collisions with fast algorithms, such as Rapidly-exploring Random
Tree. Furthermore, the aspects of pre-grasping and post-grasping are hidden in the planning
model, that sees the grasping action as atomic, the control of the three-phases of grasping has
been hard-coded in the actuator process.

4.4. Case study

We can now present an application of e-PICO in a two agents scenario. The diverse problem
instances contain several fluents and actions, as usual in the robotics domain.

The two agents involved are two robotic arms, called robot1 and robot2. In front of each
of them, three stacks of colored blocks lie on a table. Initially, the they do not know what blocks
they are able to manipulate (Figure 2a presents an example of initial state). To collect such
information, they can perform sensing actions to see which blocks they initially have in front of
them. Robots can also take a block (as depicted in Figure 2b) to then place it on the shared table,
as in Figure 2c. We assume that only once a robot has placed the block on the shared table, it
is able to communicate the color of such a block to the other arm. Examples in Figure 2 are
obtained using the RViz simulator [27] integrated in MoveIt!.

For the sake of readability, we will not report all the actions’ descriptions, rather we will
show only some meaningful examples. Initial state and the fluents encoding are not presented,
because they just follow the standard PDDL notation [28, 29]. Let us start, by showing an ontic



(a) Initial state. (b) A robot picking up a block from
its table.

(c) A robot placing a block on the
shared table.

Figure 2: Examples of the robotic test environment states. A video of the “real” execution with the
Panda Robots is available: http://clp.dimi.uniud.it/sw/

action in Listing 2. This action encodes the idea that if an agent beliefs that it is holding a block
of a certain color and the shared table is free, then, after the execution, the agent will occupy
the shared table with the aforementioned block (and will know about this). For a detailed
explanantion on the syntax of E-PDDL we address the reader to [26]

Listing 2: Example of ontic action.

(
: a c t i o n p i c k _ a n d _ p l a c e _ o n _ s h a r e d
: a c t _ t y p e o n t i c
:parameters ( ? ag ? ag2 − agent ? c ? c2 − c o l o r )
:precondi t ion ( and ( [ ? ag ] ( ho ld ? ag ? c ) ) ( not ( occup_by ? ag2 ? c2 ) ) )
: e f f e c t ( and ( occup_by ? ag ? c ) ( ho ld ? ag ? c ) )
: o b s e r v e r s ( ? ag )

)

Similarly, for instance, an annoucement action can be executed by the agent that has just
moved the block, announcing the newly verified property to the other arm.

Listing 3: Example of annoucement action.

(
: a c t i o n a n n o u n c e _ b l o c k _ o n _ b a r r i e r
: a c t _ t y p e a n n o u n c e m e n t
:parameters ( ? ag − agent )
:precondi t ion ( and ( occup_by ? ag ? c ) ( ho ld ? ag ? c ) ( [ ? ag ] ( occup_by ?

ag ? c ) ) ( [ ? ag ] ( ho ld ? ag ? c ) ) )
: e f f e c t ( and ( occup_by ? ag ? c ) ( ho ld ? ag ? c ) )
: o b s e r v e r s ( f o r a l l ( ? ag2 − agent ) ( ? ag2 ) )

)

http://clp.dimi.uniud.it/sw/


We can now apply the 4.1 definition to actions Listings 2 and 3 with the following macro as
result, see Listing 4.

Listing 4: Example of a macro aggregating an ontic and an announcing action.

(
: a c t i o n a nn ou n ce _ p i ck _ an d _p la c e_ o n_ sh a re d
: a c t _ t y p e o n t i c
:parameters ( ? ag ? ag2 − agent ? c ? c2 − c o l o r )
:precondi t ion ( and ( [ ? ag ] ( ho ld ? ag ? c ) ) ( not ( occup_by ? ag2 ? c2 ) ) )
: e f f e c t ( and ( occup_by ? ag ? c ) ( ho ld ? ag ? c ) )
: o b s e r v e r s ( f o r a l l ( ? ag2 − agent ) ( ? ag2 ) )

)

Let us now consider what happens to an epistemic ontic action that is refined by the classical
planner. Consider a configuration in which the a red block is stacked under a black block and
the epistemic ontic action suggests to move the red block on the shared table. The robot cannot
take directly the red block, but it should firstly move the black one at the top of another stack
and then take the red block to put it on the shared table. Therefore such an epistemic ontic task
may be translated into the following sequence of actions:

Listing 5: List of single-arm actions.

% p i c k t h e b l a c k b l o c k o v e r t h e r e d one from s t a c k 2 , p o s 1
p i c k ( b lack , red , 1 , 2 )

% p l a c e t h e b l a c k b l o c k o v e r t h e g r e e n one i n s t a c k 1 , p o s 2
p l a c e ( b l ack , green , 2 , 1 )

% p i c k t h e r e d b l o c k from s t a c k 2 , p o s 0
p i c k ( red , t a b l e , 0 , 2 )

% p l a c e t h e r e d b l o c k on t h e s h a r e d t a b l e
p u t _ o n _ b a r r i e r ( red )

5. Experimental results

To further asses and demonstrate the capabilities of the developed framework, we tested our
architecture on a wide spectrum of scenarios that stem from the configuration described in
Section 4.4. Experiments showed the positive impact of using macros in the MEP setting.
Furthermore, we were also able to prove the feasibility of the solving procedure in real-world
situations.

All the experiments have been conducted on Intel i7-8565U CPU at 1.80GHz and Ubuntu
18.04 OS. For each problem instance, a time limit of 110 seconds was applied. Clingo [30] was
used to solve the ASP encoding of 𝒜𝑉 , and EFP [18] to tackle the resolution of MEP problems.

First let us highlight how the use of macros can help in reducing the solving time, in Table 1.
Test-cases are obtained with a cross product between goal with an increasing difficulty and



with an increasing number of blocks inserted in the domain (rows and columns of Table 1
respectively). In particular, we have that:

𝛼: has the objective to let one agent know the color of at least one block initially located in
the table in front of the other robot;

𝛽: has same goal as of 𝛼 while also requesting that the shared table must be free at the end
of the plan;

𝛾: encodes the scenario where the goal is for a robot to know two different colors of blocks
initially placed in front of the other arm;

𝛿: shares the goal of 𝛾 with an “extra” condition imposing that the shared table must be free
when the planning process is concluded.

For the sake of readability we will make use of the following notations in Table 1:

• ND, that stands for Not Defined. This is used, for example, to indicate that instance 𝛾
cannot be performed with just one color as it required that a robot learns two different
colors while only one is available.

• TO stands for Time Out. As said before, after 110 seconds the planning procedure is
forcefully stopped if it could not find a solution.

From the domain it is evident that whenever an agent takes a block from the shared
table, to place it on top of one of its stacks, announcing that the table has been freed
right after is very convenient. This small sequence of actions constitutes the macro
announce_pick_and_place_on_shared. Finally, in Table 1, we compare the solving pro-
cess when this macro is not activated (“Macro no”) and when it is (“Macro yes”). In summary, it
is evident that macros improve considerably performance. Their use makes it possible to have
better scalability both in terms of number of fluents and of plan lengths.

1 Color 2 Colors 3 Colors 4 Colors

Macro no yes no yes no yes no yes

𝛼 0.019 0.004 1.200 0.080 5.192 1.382 104.000 25.889
𝛽 0.083 0.013 4.946 0.242 21.780 4.235 TO 85.144
𝛾 ND ND 18.663 1.427 TO 24.805 TO TO
𝛿 ND ND TO 4.827 TO 92.998 TO TO

Table 1
Time, in seconds, to find a goal, given an initial state. Each instance varies the number of available colors.
In boldface is highlighted the fastest solving process w.r.t. the activation of the pspb_and_announce
macro. Let us note that all the values were obtained by averaging the times of 5 iterations on the same
instance.

For the sake of completeness, let us now address the initial state generation. It is the first
step performed during the calculation of the espitemic plan. This process is empirically almost
independent of the use of macros, but it is affected by the number of fluents and actions used in



the planning model. To better exemplify this, let us report the average times needed to compute
the initial states, increasing the number of fluents, in our case the number of colored blocks:
1) for one color 0.003 s; 2) for two colors 0.031 s; 3) for three colors 0.126 s; and 4) for four
colors 2.117 s. As a consequence of this observation, it is a good rule of thumb, to limit the
number of fluents considered to the strict necessary required for the epistemic planning.

Finally, as a design choice we decided to run the classical planner at run-time, each time its
use is required to break down an ontic task in a sub-plan of classical actions. Justification for
this choice is provided by Table 2, in which, for each instance, the cumulative time required by
the 𝐴𝑉 solver and the times it was called are reported. Let us note that we did not report the
times required by the epistemic planner without the support of the classical one, i.e., the times
required by the solver if the domain was entirely described at the epistemic level. The reason is
that, without the assistance of the “breakdown” procedure, provided by the classical solver, the
solving time always reached the timeout.

1 Color 2 Colors 3 Colors 4 Colors

time calls time calls time calls time calls

𝛼 0.074 1 0.083 1 0.092 1 0.112 1
𝛽 0.157 2 0.172 2 0.177 2 0.202 2
𝛾 ND ND 0.250 3 0.267 3 TO TO
𝛿 ND ND 0.332 4 0.351 4 TO TO

Table 2
Cumulative time, in seconds, to break down ontic tasks into classical actions. The number of calls to the
classical planner is reported in the column “calls”.

6. Related Work and Conclusions

While the field of cognitive robotics has made significant progress over the last few years, there
are still some opening questions regarding how to integrated new AI components. Moreover,
multi-agent scenarios where the acting entities can perform low-level sensing and control tasks
are becoming more and more available both in the industrial and academic environments. And,
at the same time, epistemic planning is receiving a lot of interest.

In [31] and in [32] Capitanelli et al. propose a set of PDDL+ formulations that allows to
model the problem of manipulating articulated objects in a three-dimensional workspace with
a dual-arm robot. Instead, [7] address the same domains while encoding the planning problem
directly in ASP making a strong use of macros. Another similar tool that inspired our research
is the ROSoClingo [33] ROS package. This framework integrates Clingo [30] into the ROS
service and actionlib architecture, providing an high-level ASP-based interface to control
the behavior of a robot. While these works provided the foundation for our research and are
far more complete tools, they do not consider neither the information flows between agents,
nor their knowledge. This aspect is key in every multi-agent scenario, where reasoning on the
perspective of others should be taken into consideration.

That is why we proposed e-PICO, a framework that offers the possibility of modeling



multi-agent epistemic planning problems in robotics environments. This tool stems from the
aforementioned approaches and integrates the latest MEP techniques to tackle the planning
problems considering also the information flows. While integrating the epistemic aspect of
multi-agent domain is, in our opinion, of the utmost importance, it requires high computational
resources. That is why, e-PICO also introduces two methods to improve the planning times and
to have feasible solving processes: i) a hierarchical usage of epistemic and classical planners to
abstract and simplify the problems when considered by epistemic solvers; and ii) the employment
of macros in epistemic planning.
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