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Abstract
The AllDifferent constraint is a fundamental tool in Constraint Programming. It naturally arises in
many problems, from puzzles to scheduling and routing applications. Such popularity has prompted
an extensive literature on filtering and propagation for this constraint. Motivated by the benefits that
GPUs offer to other branches of AI, this paper investigates the use of GPUs to accelerate filtering and
propagation. In particular, we present an efficient parallelization of the AllDifferent constraint on GPU;
we analyze different design and implementation choices and evaluates the performance of the resulting
system on medium to large instances of the Travelling Salesman Problem with encouraging results.
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1. Introduction

Constraint programming (CP) is a declarative paradigm to modeling and solving combinatorial
problems. Users model a problem using a set of variables, each of them provided with a set of
possible values (the domain of the variable), and a set of constraints that characterize the feasible
solutions. Dedicated constraint solvers are used to process the problem models and identify
solutions. Thanks to the MiniZinc Challenge [1], an annual competition among solvers, the
constraint programming language MiniZinc [2] has emerged as a de-facto standard modeling
language for the CP community.

Traditional constraint solvers work by alternating two stages: non-deterministic variables
assignment and constraint propagation. Once a value has been assigned to a variable, constraint
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propagation eliminates all values from domains of other variables that are incompatible in any
solution with the assignment that has just been made. Alternative assignments are typically
explored through backtracking.

The effectiveness of constraint propagation is heavily dependent on how the problem is
modeled. For example, it is frequently possible to model the same problem using either a
collection of elementary (e.g., binary or ternary) constraints or a single constraint involving
many variables (i.e., a global constraint). Global constraints have the advantage of capturing
a complex relationship between many variables, typically allowing a more extensive level of
propagation. The impact of propagation on the structure of the search tree explored by a
constraint solver can be significant—indeed, the propagation of global constraints is the subject
of many studies and optimizations [3].

The AllDifferent constraint, which requires all variables in the constraint to be assigned
a distinct value, naturally arises in many problems, from puzzles to scheduling and routing
applications. Such popularity has prompted extensive studies on the propagation of this global
constraint. There are different algorithms to propagate the AllDifferent constraint, each with a
different trade-off between propagation strength and computational cost [4]. The most popular
approach is the one by Régin [5].

Recently, branches of AI like Machine Learning have obtained huge benefits from the use
of GPUs to speed up their tasks. Relatively more limited work has been done in exploring the
use of GPUs for logic-based AI, e.g., [6] for SAT, [7] for ASP, and [8] for CP. For additional
references, please see the recent surveys on parallelism in constraint and logic programming
[9, 10, 11].

In this paper, we present a GPU-accelerated propagator for the AllDifferent constraint and
its implementation within a simple constraint solver compatible with the MiniZinc language.
Our contributions are: an analysis of Regin’s algorithm to identify which parts are amenable
of parallelization using a GPU; the comparison of alternative parallelization approaches; the
integration of both the MiniZinc support and our GPU-accelerator propagator in a lightweight
constraint solver [12]; and a comparison between the standard propagator and our GPU-
accelerated version. Results on medium to large instances of the Travelling Salesman Problem
demonstrate encouraging speedup.

The rest of the paper is organized as follows: Section 2 gives an introduction to CP, the Regin’s
algorithm for AllDifferent and the use of GPU for general computation. Section 3 describes the
parallelization process, the implementation details of the final algorithm, and the integration in
a constraint solver. In Section 4, we describe the benchmarks used to test the GPU-accelerated
propagators and their results. Finally, Section 5 summarizes the paper and gives some directions
for future works.

2. Background

2.1. Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) can be described by a triple 𝑃 = ⟨𝒱,𝒟, 𝒞⟩, where
𝒱 = {𝑉1, . . . , 𝑉𝑛} is a finite set of variables, 𝒟 = {𝒟1, . . . ,𝒟𝑛} is a finite set of sets, called
domains, and 𝒞 is a set of constraints on the variables 𝒱 . The domain 𝒟𝑖 captures the allowable



values for the variable 𝑉𝑖. Every constraint 𝑐 ∈ 𝒞 is defined over a subset 𝑣𝑎𝑟(𝑐) ⊆ 𝒱 . Assume
𝑣𝑎𝑟(𝑐) = {𝑉𝑖1 , . . . , 𝑉𝑖𝑚}, then 𝑐 is a relation on 𝒟𝑖1 × · · · ×𝒟𝑖𝑚 , namely 𝑐 ⊆ 𝒟𝑖1 × · · · ×𝒟𝑖𝑚 .
A solution is an assignment 𝜎 : 𝒱 −→ 𝒟1 ∪ · · · ∪ 𝒟𝑛 such that:

∙ for 𝑖 = 1, . . . , 𝑛 : 𝜎(𝑉𝑖) ∈ 𝒟𝑖 and
∙ for all 𝑐 in 𝒞, if 𝑣𝑎𝑟(𝑐) = {𝑉𝑖1 , . . . , 𝑉𝑖𝑚}, then ⟨𝜎(𝑉𝑖1), . . . , 𝜎(𝑉𝑖𝑚)⟩ ∈ 𝑐.

In this paper, we focus on CSPs on finite domains, i.e., each 𝒟𝑖 is a finite set. Whenever clear
from the context, we will use syntactic sugars for commonly understood constraints (e.g.,
𝑉3 < 2𝑉5). We will use the term global constraint to refer to constraints that define relationships
between a non-fixed number of variables.

Given a CSP 𝑃 , a constraint solver looks for one or more solutions of 𝑃 . A typical solver
alternates two types of processes in the search for solutions: (1) constraint propagation and
(2) non-deterministic choices. The latter step is used to select the next variable to be assigned
and to select non-deterministically a value to be given to the variable (drawn from its current
domain). Constraint propagation makes use of the constraints to remove from the domains of
the variables values that can be proved not to belong to a solution. The choice of the variable is
typically fast compared to the cost of constraint propagation.

During constraint propagation, constraints are placed in a queue for processing — i.e., to
filter the domains of the variables involved in the constraints. A general property one could
consider during propagation is hyper-arc consistency [3]. An 𝑚-ary constraint 𝑐 on the variables
𝑣𝑎𝑟(𝑐) = {𝑉𝑖1 , . . . , 𝑉𝑖𝑚} is hyper arc consistent (HAC) if for all 𝑗 = 1, . . . ,𝑚 it holds that:

(∀𝑎𝑗 ∈ 𝒟𝑖𝑗 )(∃𝑎1 ∈ 𝒟𝑖1) · · · (∃𝑎𝑖−1 ∈ 𝒟𝑖𝑗−1)
(∃𝑎𝑖+1 ∈ 𝒟𝑖𝑗+1) · · · (∃𝑎𝑚 ∈ 𝒟𝑖𝑚)(⟨𝑎1, . . . , 𝑎𝑚⟩ ∈ 𝑐)

A CSP is hyper-arc consistent if all constraints in 𝒞 are HAC. In case of binary constraints (i.e.,
𝑚 = 2) the HAC property reduces to arc consistency.

The complexity of naive algorithms for obtaining HAC is exponential in 𝑚. It is also common
practice to simplify constraints involving many variables into collections of constraints involving
a smaller number of variables (e.g., 2 or 3). For example, a constraint like 𝑋+2𝑌 +3𝑈 < 4𝑉 +𝑍
can be translated to 𝐴 < 𝐵,𝐴 = 𝑋 + 𝐶,𝐶 = 2𝑌 + 3𝑈,𝐵 = 4𝑉 + 𝑍 . However, this type of
translations may lead to a reduced filtering capability during constraint propagation, since the
HAC property is guaranteed only for the simple constraints. In the example above, a built-in
constraint capable of handling sums of linear terms can be more efficient. We can first rewrite
the constraint as 𝑋 + 2𝑌 + 3𝑈 − 4𝑉 − 𝑍 < 0 and then use the scalar product to write it
equivalently as: [𝑋,𝑌, 𝑈, 𝑉, 𝑍] · [1, 2, 3,−4,−1] < 0.

The constraint programming literature has explored a number of dedicated algorithms to
handle propagation for specific types of constraints. In this work, we focus on the global
constraint AllDifferent.

2.2. AllDifferent

The AllDifferent global constraint deals with a list of variables (of any length) and aims at
ensuring that all of them are assigned pairwise different values in the solution. Even though
AllDifferent(𝑥1, . . . , 𝑥𝑛) admits exactly the same set of solutions as the set of binary constraints



{𝑥𝑖 ̸= 𝑥𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}, arc consistency applied to the individual binary constraints delivers
a weaker filtering of the domains than considering the original global constraint (see, e.g., [4]).

Régin’s well-known algorithm [5] for AllDifferent is based on a bipartite graph representation
of the constraint that matches variables with values. In general, a bipartite graph 𝐺(𝑁1∪𝑁2, 𝐸),
is defined over two disjoint sets of vertices 𝑁1 and 𝑁2 and 𝐸 ⊆ {{𝑢, 𝑣} : 𝑢 ∈ 𝑁1, 𝑣 ∈ 𝑁2}
are undirected edges. A matching of a bipartite graph is a set of edges 𝑀 ⊆ 𝐸 such that no two
distinct edges share a vertex. A maximum matching is a maximum cardinality matching. The
Hopcroft–Karp algorithm [13] for computing a maximum matching in a bipartite graph has
𝑂(

√
𝑛 · |𝐸|) running time, while the Ford–Fulkerson algorithm, which reduces the problem to

a maximum flow, has time complexity 𝑂(𝑛 · |𝐸|) [14], where 𝑛 = |𝑁1|+ |𝑁2|.
A directed graph (digraph) 𝐺(𝑁,𝐴) pairs a set of vertices 𝑁 with a set of arcs 𝐴 ⊆ 𝑁×𝑁 , i.e.,

a set of directed edges. A path 𝑥0, 𝑥1, . . . , 𝑥𝑚 is a sequence of vertices such that (𝑥𝑖, 𝑥𝑖+1) ∈ 𝐴
for 𝑖 = 0, . . . ,𝑚− 1. If 𝑥𝑚 = 𝑥0 the path is called a cycle. A Strongly Connected Component
(SCC) 𝑀 of 𝐺 is a maximal subset of 𝑁 such that, for all pairs 𝑢, 𝑣 ∈ 𝑀 , there is a path
𝑢 = 𝑥0, 𝑥1, . . . , 𝑥𝑚 = 𝑣. It follows that there are no cycles with edges between different SCCs.
The set of SCCs forms a partition of the vertices of the digraph. Tarjan’s algorithm can be used
to efficiently compute the SCCs of any digraph in 𝑂(|𝑁 |+ |𝐴|) time [15].

Before discussing the GPU-based implementation, it is perhaps useful to briefly review the
steps adopted in the propagation for the AllDifferent constraint. In particular, consider the
constraint applied to 𝑛 variables, i.e.

AllDifferent(𝑥1, . . . , 𝑥𝑛)

Consider the following preliminary definitions. Given a bipartite graph 𝐺(𝑁1 ∪𝑁2, 𝐸) and
a matching 𝑀 of 𝐺, the residual graph from 𝐺 and 𝑀 is a directed graph 𝑅(𝑁𝑅, 𝐴𝑅) built as
follows (see Figure 1):

1. The matching 𝑀 is used to define the set of arcs 𝐴1 that directs the edges of 𝐸

𝐴1 = {(𝑥, 𝑑) : 𝑥 ∈ 𝑁1, 𝑑 ∈ 𝑁2, {𝑥, 𝑑} ∈ 𝐸 ∖𝑀} ∪
{(𝑑, 𝑥) : 𝑥 ∈ 𝑁1, 𝑑 ∈ 𝑁2, {𝑥, 𝑑} ∈ 𝑀}

Namely, for each matching edge, there is an arc from value to variable and for each
non-matching edge, the arc is directed from variable to value.

2. A new sink node 𝑡 ̸∈ 𝑁1 ∪𝑁2 is added and 𝑁𝑅 = 𝑁1 ∪𝑁2 ∪ {𝑡}.
3. The matching 𝑀 is used to define the set of arcs between 𝑡 and the nodes in 𝑁2

𝐴2 = {(𝑑, 𝑡) : 𝑑 ∈ 𝑁2, (∄𝑥 ∈ 𝑁1)({𝑑, 𝑥} ∈ 𝑀)} ∪
{(𝑡, 𝑑) : 𝑑 ∈ 𝑁2, (∃𝑥 ∈ 𝑁1)({𝑑, 𝑥} ∈ 𝑀}

4. Finally, the set of arcs 𝐴𝑅 is defined as 𝐴𝑅 = 𝐴1 ∪𝐴2

Let us now review the algorithm to propagate AllDifferent(𝑥1, . . . , 𝑥𝑛). The algorithm con-
structs a bipartite graph 𝐺 = (𝑁1 ∪𝑁2, 𝐸) where:

• 𝑁1 = {𝑥1, . . . , 𝑥𝑛},



(a) (b) (c)

Figure 1: Quick overview of Regin’s algorithm on 𝑥1, 𝑥2, 𝑥3, 𝑥4 where 𝐷1 = {1, 2}, 𝐷2 = {1, 2, 3},
𝐷3 = {3}, 𝐷4 = {3, 4, 5}. In (a) is highlighted the maximum match of step 1. In (b) is pictured the
residual graph of step 3. In (c) are highlighted the SCCs of step 4, each with a different color, and in red
the arcs considered in step 5.

• 𝑁2 =
⋃︀

𝑖∈1..𝑛𝒟𝑖, where 𝒟𝑖 is the domain of the variable 𝑥𝑖, and

• 𝐸 = {{𝑥𝑖, 𝑑} | 𝑖 ∈ 1..𝑛 ∧ 𝑑 ∈ 𝒟𝑖}

The algorithms proceeds as follows (see also Figure 1)

1. Find a maximum matching 𝑀 for 𝐺(𝑁1 ∪𝑁2, 𝐸).
2. If |𝑀 | < 𝑛, then the constraint is unsatisfiable
3. Otherwise, construct the residual digraph 𝑅(𝑁𝑅, 𝐴𝑅) from 𝐺 and 𝑀 .
4. Compute the strongly connected components of 𝑅.
5. For every variable 𝑥𝑖, remove from its domains all the values 𝑑 such that there exists an

arc (𝑥𝑖, 𝑑) ∈ 𝐴𝑅 or (𝑑, 𝑥𝑖) ∈ 𝐴𝑅 that is not in 𝑀 and connects two distinct SCCs.

In our implementation we use the Hopcroft-Karp’s algorithm for step 1, with a time complexity
𝑂(

√︀
|𝑁1|+ |𝑁2| · |𝐸|). Step 2 has complexity 𝑂(1) since is just a check. Step 3 has complexity

𝑂(|𝑁1|+|𝑁2|+|𝐸|) as described below. In step 4 we use the Tarjan’s algorithm with complexity
𝑂(|𝑁1| + |𝑁2| + |𝐴|). Finally, step 5 has time complexity 𝑂(|𝐴|) since it scans all the arcs.
In practice, the computational time can be reduced using several optimizations [16]. Our
implementation mitigates the cost of step 1 using an incremental approach as is traditionally
done.

Correctness of the procedure follows from a theorem by Berge that characterize the edges
that belongs to some but not to all maximum matchings by just analyzing a single maximum
matching [17].

2.3. GPGPU with CUDA

General-Purpose computing on Graphics Processing Units (GPGPU) is the use of a Graphics
Processing Unit (GPU) to speed up computations traditionally handled by the Central Processing



Figure 2: Simplified GPU architecture

Unit (CPU). NVIDIA introduced the Compute Unified Device Architecture (CUDA), a general-
purpose programming library that allows programmers to ignore the underlying graphical
concepts in favor of high-performance computing concepts [18]. CUDA has been successfully
used to accelerate computations in a variety of domains, such as physics, bioinformatics, and
machine learning [19].

The architecture of a GPU (Figure 2) includes a main memory (DRAM), typically off-chip and
used as global memory, an L2 cache, and an array of Streaming Multiprocessors (SM). Each SM
contains a small amount of on-chip fast memory, used as L1 cache or scratchpad memory (the
Shared memory), and several CUDA cores, responsible for the actual execution of instructions.
The architecture is designed to enable rapid context switching of lightweight threads.

The underlying conceptual model for parallelism supported by CUDA is Single-Instruction
Multiple-Thread (SIMT), (variant of SIMD) where the same instruction is executed by different
threads, while data and operands may differ from thread to thread. A CUDA program includes
parts meant for execution on the CPU (the host) and parts meant for parallel execution on
the GPU (the device). Typically, the host code transfers data to the device memory (DRAM in
Fig. 2), starts parallel computations on the device, and retrieves the results from device memory.
The CUDA library supports interaction, synchronization, and communication between host
and device. Each device computation is described as a collection of concurrent threads, each
executing the same function (called a kernel, in CUDA terminology). Each thread is executed by
a CUDA core; these threads are hierarchically organized in blocks of threads, assigned to SMs.
The threads in a block assigned to an SM execute the same instruction on different data. In
case of control flow divergence among the threads within a block, their execution is serialized.
Device global memory is accessible by all threads, whereas threads of the same block may access
the high-throughput shared memory.

3. Design and Implementation

In this section we explore the development of a constraint solver which supports parallel
propagation of AllDifferent on GPUs.

The first step in this process consists of selecting an existing constraint solver suitable to



host a GPU-enabled AllDifferent. Initially, we had a look at the fastest solvers compatible with
the MiniZinc language and, thus, we selected OR-Tools [20], JaCoP [21], and Gecode [22]
respectively Gold and Silver medal of the last MiniZinc challenge [23]. We realized soon that
their efficiency is also due to several optimizations that makes the code difficult to modify.

Our choice converged on MiniCP [12], a lightweight solver specifically designed to enable
research and exploration of diverse search and propagation methodologies. MiniCP provides
a comprehensive documentation and a clean design. In particular, our research builds on
MiniCPP [24], a C++ implementation of MiniCP, suitable to host C++ CUDA kernels. With
minor optimizations, MiniCPP provides a performance that is comparable to that of other solvers
(e.g., JaCoP) for several classes of problems.

To use MiniCPP as a base solver, it was necessary to implement the support for the MiniZinc
language, using the FlatZinc skeleton parser provided by Gecode, and implement all the standard
integer and Boolean constraints. Moreover, we created the necessary definitions to allow the
MiniZinc compiler to recognize the MiniCPP’s native AllDifferent as a global constraint, thus
avoiding its decomposition in a collection of binary constraints.

The following subsection describes the implementation of the parallel version of the
AllDifferent filtering algorithm on GPU and how it has been integrated in the solver. We enabled
the FlatZinc parser to recognize the annotation ::gpu to instruct the solver to propagate the
annotated constraint using the GPU algorithm in place of the standard CPU algorithm.

3.1. Parallelization

The key components of the filtering algorithm for AllDifferent propagation are (1) the computa-
tion of a Maximum Matching in a bipartite graph (MM) and (2) the computation of the Strongly
Connected Components (SCC) of a directed graph (see Section 2.2).

Before discussing the parallelization process we introduce some preliminary definitions.
Breadth-First Search (BFS) is a graph traversal algorithm that explores the graph’s vertices in the
order of their distance from a source vertex 𝑠. Given a graph 𝐺 = (𝑉,𝐸) and a source vertex
𝑠 ∈ 𝑉 , BFS systematically traverses the edges in such a way that all vertices at distance 𝑘 from
𝑠 are discovered before any vertices at distance 𝑘 + 1. By BFS is possible to find all the 𝑣 ∈ 𝑉
reachable from 𝑠. In case of digraph, the forward reachability of a vertex 𝑠 is defined as the set
of nodes 𝐹 such that exists a path from 𝑠 to any 𝑣 ∈ 𝐹 . Similarly the backward reachability of
a vertex 𝑠 is the set of nodes 𝐵 such that for any 𝑣 ∈ 𝐵 exists a path from 𝑣 to 𝑠. Forward /
backward reachability can be expressed as a binary matrix where the element at coordinates
(𝑖, 𝑗) is 1 if and only if vertex 𝑖 reaches / is reachable from vertex 𝑗.

Computing a Maximum Matching on an GPU. There are several approaches to solving
such problems on GPU. For maximum matching there are implementations based on the
auction [25], push-relabel [26], and the BFS [27] algorithms.
The auction algorithm works as an auction where persons compete for objects by raising their
prices. It alternates bidding and assignment phases until all the person have been assigned
to an object. The bidding and assignment phases are offloaded on the GPU, where bids and
assignments are computed in parallel.
The push-relabel approach solves the maximum matching reducing it to a flow problem. The



initial bipartite graph 𝐺 = (𝑁1 ∪ 𝑁2, 𝐸) is modified by adding two nodes 𝑠 and 𝑡, the first
connected to all the 𝑛 ∈ 𝑁1 and the second reached by all the 𝑛 ∈ 𝑁2. The resulting graph is
seen as a flow network such that:

• through an edge can pass 0 or 1 unit of flow
• the node 𝑠 produces 𝑁1 units of flow and the node 𝑡 can receive 𝑁1 units of flow
• the sum of the ingoing flow in a node must be equal to the sum of the outgoing flows

The problem is to find which edges to use to move the maximum amount of flow from 𝑠 to 𝑡.
The push-relabel algorithm alternates push operations where flow is pushed through an edge,
and relabel operation to mark the nodes with an excess of ingoing flow. Such alternation is
repeated until no nodes, except 𝑡, have an excess of ingoing flow. The push and relabel phases
are offloaded to the GPU where each node is processed in parallel.
The BFS algorithms are based on the Hopcroft-Karp algorithm and make use of a GPU-
accelerated parallel BFS to find the augmenting paths in place of the standard Depth First
Search.

We started our study with a push-relabel algorithm based on [26]. We choose it because its
more studied than the other approaches and it does not assume the existence of a matching.
Despite our optimization efforts, offloading the calculation of MM on the GPU does not pay off:
the algorithm does not scale [28] and is slower than on the CPU since the solvers can quickly
calculate MM incrementally [16]. Moreover, for large instances, the cost of MM is negligible
compared with the cost of SCCs. In the end, the computation of the maximum matching was
kept on the CPU.

Strongly Connected Components on a GPU. For SCCs, the majority of the GPU implemen-
tations [29, 30] ultimately make use of forward/backward reachability [31]. The literature about
SCCs on GPU considers enormous sparse graphs with millions of nodes. The trend is to use, as a
fundamental step, a parallel BFS to calculate forward/backward reachability. This scenario does
not fit our context where (1) a major constraint leads to a dense graph of hundreds/thousands
of nodes and (2) we aim for low latency and BFS notoriously suffers from load imbalance [32].
The first observation direct us to calculate SCCs using forward reachability as follows.

Let 𝐴 be the adjacency (binary) matrix of the graph, namely 𝐴(𝑖, 𝑗) = 1 iff there is an edge
between node 𝑖 and node 𝑗. Then:

1. Compute the forward reachability matrix 𝐹 from 𝐴.
2. Transpose 𝐹 to obtain the backward reachability matrix 𝐵.
3. Create a matrix 𝐶 such that 𝐶(𝑖, 𝑗) = 𝐹 (𝑖, 𝑗) ·𝐵(𝑖, 𝑗). That is, 𝐶(𝑖, 𝑗) = 1 if and only if

there is a cycle containing node 𝑖 and node 𝑗.
4. The identifier of the SCC of the node 𝑖 is the minimum 𝑗 such that 𝐶(𝑖, 𝑗) = 1.

The second observation made us look for alternatives to BFS. Let 𝐺(𝑉,𝐸) be a graph, the
standard algorithms to calculate the reachability matrix are:

• Matrix multiplication, with complexity 𝑂(|𝑉 |2.8𝑙𝑜𝑔2(|𝑉 |)) [33].
• Warshall algorithm, with complexity 𝑂(|𝑉 |3) [34].

We explored the parallelization of both of these approaches (see Section 3.2) and chose Warshall
algorithm.



3.2. Implementation Details

Data transfer. To begin with, we had to decide which data to transfer to the GPU. We
opted to transfer the residual graph as a binary adjacency matrix. Preliminary tests showed
that it is better than transferring only the domains and the match necessary to generate the
graph’s adjacency matrix. This is because, in our case, most of the transmission’s cost is in the
initialization phase than in the actual data transfer. Moreover, the build of the adjacency matrix
requires many sparse memory accesses, and the CPU is sensibly faster than the GPU for such
tasks.

Matrix representation. We choose to represent the adjacency matrix as a bit matrix for its
several benefits. It enables the use of bitwise operations, it can be initialized by dumping the
domains’ internal representation, and it minimizes the amount of data to transfer. In preliminary
tests, we also explored the use of other representations suited for hardware accelerated matrix
multiplication (i.e., Tensor Core), and for sparse matrices. In both cases, the matrix multiplication
performs worst than an ad-hoc matrix multiplication encoded by us using bitwise operations. In
the first case, the penalty come from the more general algorithm and dealing with floating-point
numbers, while in the second case it comes from the fast increasing density of the matrices and
dealing with integer numbers.

Matrix multiplication. After the choice of the representation, we focused on matrix multi-
plication. We tested two of the state-of-the-art GPU linear algebra libraries, namely cuBLAS
[35] and cuBool [36]. The performances were, at best, matching the classic algorithm on CPU.

Due to these poor results, we focused on binary matrix multiplication on GPU. There are
efficient implementations for multi-GPUs matrix multiplication [37] and to speedup Binarized
Neural Network [38], but their code is tailored to their use case. Thus, we decided to implement
binary matrix multiplication from scratch. We used a few known techniques in the design:

• tiled matrix multiplication to optimize cache usage
• data arrangement to optimize memory access, and
• bitwise operation to speed up the computation

The result was a simple but efficient binary matrix multiplication, with performances slightly
worst than [37] for squared matrices of a few thousand rows.

Warshall. Then, we focused on the Warshall algorithm. Despite sharing a similar nested
loops structure with the matrix multiplication, its nesting order is stricter and does not allows
the same optimizations. The majority of the GPU implementations that use an adjacency matrix
representation [39, 40] are based on a blocked version of the Warshall algorithm from [41].
Such an algorithm was developed to maximize the CPU’s cache utilization, and it is particularly
efficient to exploit the GPU’s shared memory. As the Warshall algorithm, this blocked version
starts from an adjacency matrix of size 𝑛×𝑛 and iteratively updates it to obtain the reachability
matrix. It begins by dividing the matrix in tiles of size 𝑡× 𝑡 and then performing 𝑛/𝑡 steps. Each
step 𝑠 is made of three phases (see Figure 3), each one updating a specific set of tiles according
to their dependency:



(a) (b) (c)

Figure 3: Illustration of the 4-th step of the blocked Warshall algorithm on a matrix divided in 25 tiles.
The tiles updated in each phase are highlighted in yellow, while the tiles already processed are colored
in green. Tiles dependencies are illustrated in with red arrows.

Phase 1 : This phase consider the 𝑠-th tile of the main diagonal, named 𝐷, and update it using
the equation 𝐷(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) ∨ (𝐷(𝑖, 𝑘)) ∧𝐷(𝑘, 𝑗)) for 0 ≤ 𝑘 < 𝑡.

Phase 2 : This phase consider the tiles of the 𝑠-th row and 𝑠-th column excluding the 𝐷
tile. A generic tile of the 𝑠-th row, named R, is updated using the equation 𝑅(𝑖, 𝑗) =
𝑅(𝑖, 𝑗) ∨ (𝐷(𝑖, 𝑘)) ∧𝑅(𝑘, 𝑗)). A tile of the 𝑠-th column, named C, is updated using the
equation 𝐶(𝑖, 𝑗) = 𝐶(𝑖, 𝑗) ∨ (𝐶(𝑖, 𝑘)) ∧𝐷(𝑘, 𝑗)).

Phase 3 : This phase consider all the remaining tiles. The equation to update a generic tile 𝑇
in position (𝑟, 𝑐) is 𝑇 (𝑖, 𝑗) = 𝑇 (𝑖, 𝑘)∨ (𝑅(𝑖, 𝑘))∧𝐶(𝑘, 𝑗)) where 𝑅 is the tile in position
(𝑟, 𝑠) an 𝐶 is the tile in position (𝑠, 𝑐).

Each tile within a phase can be updated independently, allowing parallelization of phases 2 and
3. These independent updates map well into the GPU computational model, where each tile
of size 𝑡 × 𝑡 is managed by a block of 𝑡 threads. In this way, the 𝑖-th thread updates the 𝑖-th
row of the tile considering every 0 ≤ 𝑘 < 𝑡. We paid particular attention to optimizing phase
3 since it involves most of the tiles. Unlike phase 2, where the update of the 𝑖-th row 𝑅(𝑖, *)
depends on the 𝑘-th row 𝑅(𝑘, *), in phase 3, the update of the 𝑖-th row 𝑇 (𝑖, *) does not depends
on other lines of the tile. This fact makes possible to avoid threads synchronization, sensibly
reducing the computational time. Preliminary benchmarks show that the most convenient
tile size is 𝑡 = 128. Such dimension allows reading each row in one memory access as one
uint4 (32*4 bit) and manipulating it by two 64-bit operations. Preliminary comparisons with
the matrix multiplication approach reported similar performance. However, in such tests, the
matrix multiplication approach performed only a few of the 𝑙𝑜𝑔2(|𝑉 |) iterations. In the end, we
chose as our approach the blocked Warshall algorithm because its runs in a slightly less amount
of time as a good case of the matrix multiplication approach.

Initial tests highlight that offloading the computation on GPU is not convenient when the
bipartite graphs are small (i.e. |𝑉 | ≤ 200). For these cases we created a single procedure that
performs steps 1, 4 without performing steps 2, 3.



4. Results and Analysis

It is expected that a GPU implementation would provide benefits on instances that are sufficiently
large, as the setup overhead would otherwise overshadow the benefits of the parallel execution.
We chose as benchmark the Travelling Salesman Problem (TSP) because it can be simply
modeled using a Circuit constraint, that internally makes use of the AllDifferent constraint,
there is an established set of large benchmarks [42], and it is a fundamental problem for routing
applications.

We select about 80 instances from the TSPLib with 100 to 10,000 cities and convert them
into the MiniZinc format. We solve them using the MiniCP’s native AllDifferent propagator as
well as our GPU-accelerated propagator. All benchmarks have a timeout of 10 minutes and are
executed on a system equipped with an Intel Core i7-10700K, 32GB of DDR4 RAM, and GeForce
RTX 3080 running Ubuntu 21.04 and CUDA 11.4.
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Figure 4: Results of the TSPLib benchmarks. On the horizontal axis there are the instances sorted by
increasing size. The vertical values indicate the speedup of the GPU in terms of explored nodes.

Figure 4 illustrates the results of the benchmarks. The speedup is calculated as ratio between
the GPU search speed and the CPU search speed. The search speed is the number of visited
nodes over the search time. As expected from preliminary tests, the benefits of our approach
start to be visible when a constraint involves several hundreds of variables. The plot shows an
increasing speedup as the size of the instance increases, except for the largest instance. Such
behavior is due to the large time between two GPU-accelerated propagations, reducing the
opportunities to speed up the computation. To verify such explanation we increased the timeout
to 30 minutes and obtained a speedup of approximately 7 times.

5. Conclusion and Future Works

Motivated by the benefits that GPUs offer in terms of computational power, we designed and
implemented a GPU-accelerated propagator for the AllDifferent constraint. We described the



process of developing such a propagator, which challenges we encountered, and the motivations
behind the main implementation choices. The propagator has been integrated into an existing
solver. We tested our implementation on medium to large instances of the Travelling Salesman
Problem and obtained speedups up to 7 times in terms of explored nodes. Unlike other parallel
approaches, our method is immediately usable since modern PCs often have a GPU.

There are many ways to extend and improve this work: implementing on GPU propagators
for other global constraints, exploring their usage in Constraint-Based Local Search, etc. Our
next step will be focusing on problems containing multiple AllDifferent constraints. In such
cases it is possible to process the AllDifferent constraints in parallel. This promises significant
speedups even for small to medium problems, where the GPU propagation is still less efficient
than the CPU version.
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