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Abstract
This paper presents a framework based on natural language processing and first-order logic, which
implicitly simulate the human brain features of selecting properly information related to a query from
a knowledge base (abductive pre-stage), before to infer new knowledge from such a selection acting
as deductive database. Such features are used with the aim of instantiating cognitive chatbots, able of
human-like fashioned reasoning, supported by a module which automatically transforms polar and
wh-questions into one or more likely assertions, in order to infer Boolean values or snippets with
variable length as factoid answer from a conceptual knowledge base. The latter is splitted into two layers,
representing both long- and short-term memory, and the transition of information between the two
layers is achieved leveraging both a greedy algorithm and the engine’s features of a NoSQL database,
with promising timing performance than respect using one layer. Furthermore, such chatbots don’t need
any scripts updates or code refactory when new knowledge has to income, but just the knowledge itself
in natural language.
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1. Introduction

Nowadays, the momentousness which tech giants like Google, Meta (former Facebook), Mi-
crosoft, IBM and Amazon are giving to chatbots, is a strong indicator that this technology
will play a significant role in the future. Among applications leveraging Natural Language
Processing (NLP), those related to chatbots systems are growing very fast and present a wide
range of choices depending on the usage, each with different complexity levels, expressive
powers and integration capabilities. At the present, if you want to know trending movies in
your area, you could use the Fandango Bot1; or, if you want to get NBA highlights and updates,
you could use NBA’s bot2, and so forth. On the other hand, the way towards a human-like
fashioned reasoning chatbot is quite long and challenging. Such an ideal agent-chatbot, in addi-
tion to having deductive, abductive and inductive capabilities, should be able of commonsense
categorization, even making usage of the so-called Frames [1] and Scripts [2], and so on. In
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order to achieve that, the cognitive disciplines involving has become a mandatory step in the
overall process of such agent’s modelling, together with knowledge of the linguistic science.
In this work, which is somehow the evolution of [3] where we showed the effectiveness

of a similar approach in the case of automation commands provided in natural language, we
present a framework called AD-Caspar based on NLP and First-Order Logic (FOL), as baseline
platform for implementing scalable and flexible cognitive chatbots with both goal-oriented and
conversational features. A first overview of such an architecture has been presented here [4].
The first prototype of AD-Caspar is not yet provided with tools to build complex dialog systems,
but differently from other platforms, in order to handle additional question-answer couples, the
user has to provide just the related sentences in natural language, without the need of updating
the chatbot code at design-time. After the agent has parsed every sentence, a FOL representation
ot them is asserted in its conceptual KB, which will be able to act as a deductive database [5].
AD-Caspar inherits most of its features directly from its predecessor, namely Caspar [6], whose
name stands for: Cognitive Architecture System Planned and Reactive. Caspar was designed to
build goal-oriented agents (vocal assistants) with enhanced deductive capabilites, working on
Internet of Things (IoT) scenarios. The additional features introduced in AD-Caspar, where
AD- stands for: Abductive Deductive, are the usage of abduction as pre-stage of deduction, in
order to make inferences only on a narrow set of query-related clauses, plus the application of
question-answering techniques to deal with wh-questions and give back factoid answers (single
nouns or snippets) in the best cases; otherwise, optionally, only a relevance-based output will
be returned.
This paper is structured as follows: Section 2 is about the related literature of the typical

approaches of chatbot applications; Section 3 shows in detail all the architecture’s components
and underlying modules, referring sometimes the reader to legacy-related literature for the sake
of shortness; Section 4 shows how AD-Caspar deals with polar and wh-questions; Section 5 is
about a case-study where it is shown a typical instance of a Telegram chatbot, working on small
KBs; Section 6 summarizes the content of the paper and provides our conclusions, together
with some future work perspective.

A Python prototype implementation of AD-Caspar is also provided for research purposes in
a Github repository3.

2. Related Work

In the plethora of known chatbot systems, first of all stand out the ones participating to the
Loebner Prize Competition4. Typical sentences to prove Loebner price candidates effectiveness
do not require particular logical inference, but mainly the ability to possible gloss, convincingly,
as a human being would. Some chatbots make usage also of language tricks, such as monologues,
not repeating itself, identify gibberish, play knock-knock jokes, etc. But despite such features,
these chatbots can hardly aspire to be somehow useful for the task of decision-making, but just
to fool their interlocutor. This is because of the historical approach of such a technology, which
always aimed, before all, at passing the well-known Turing Test [7] as intelligence evaluation

3http://www.github.com/fabiuslongo/ad-caspar
4https://www.ocf.berkeley.edu/~arihuang/academic/research/loebner.html
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criterion, event though the reader can find copious literature on this theme about which it is
insufficient in such a task.

The first distinction between the chatbot platforms divides them into two bigmacro-categories:
goal-oriented and conversational. The former is the most frequent kind, often designed for
business platforms support, assisting users on tasks like buying goods or execute commands
in domotic environments. In this case, it is crucial to extract from an utterance the intentions
together with all related parameters, then to execute the wanted operation, providing also a
proper feedback to the user. As for conversational ones, they are mainly focused on having
a conversation, giving the user the feeling to communicate with a sentient being, returning
back reasonable answers optionally taking into account discussions topics and past interactions.
One of the most common platforms for building conversational chatbot is AIML5 (Artificial
Intelligence Markup Language), based on words pattern-matching defined at design-time; in
the last decade it has become a standard for its flexibility to create conversation. In [8], AIML
and Chatscript6 are compared and mentioned as the two widespread opensource frameworks
for building chatbots. On the other hand, AIML chatbots are difficult to scale if patterns are
manually built, they have great limitations on information extraction capabilities and they are
not suitable for task oriented chatbots. Other kinds of chatbots are based on deep learning
techniques [9], making usage of huge corpus of examples of conversations to train a generative
model that, given an input, is able to generate answers with arguable levels of accuracy.
In general, all chatbots are not easily scalable without writing additional code or repeating

the training of a model with fresh datasets. As for the latter, unfortunately neural networks
(in particular, the ones used in deep learning applications) suffer from the problem known as
catastrophic interference: a process where new knowledge overwrites, rather than integrates,
previous knowledge. At this regard, the usage of neural models working at semantic tier as
dependency parsers, in order to build logical models of utterances in natural language, prevents
much more such a drawback.

3. The Architecture

As outlined in the introduction, the proposed architecture, namely AD-Caspar, derives directly
from its predecessor Caspar, but, differently from the latter, has been endowed with important
features which permit to handle better large KBs and achieve abduction at the same time. The
KB is divided into two distinct groups operating separately (orange boxes in Figure 1), which we
will distinguish as Beliefs KB and Clauses KB: the former is managed by the Belief-Desire-Intention
framework Phidias [10], and contains beliefs which support all framework operations, even
those related with interaction with environment; the latter contains conceptual information
on which we want the agent to make logical inference. Moreover, the Clauses KB is splitted
into two different layers: Low Clauses KB and High Clauses KB. The whole knowledge is stored
in the low layer, but the logical inference is achieved in the high one, whose clauses will be
the most relevant for the query in exam, taking into account a specific confidence threshold
which will be discussed ahead. The two KBs can be seen, somehow, as the two types of human

5http://www.aiml.foundation/
6https://github.com/ChatScript/ChatScript
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Figure 1: A sempliflied functional scheme of AD-Caspar.

being memory: the so called procedural memory or implicit memory [11], made of thoughts
directly linked to concrete and physical entities; the conceptual memory, based on cognitive
processes of comparative evaluation. Nevertheless, the two layers of the Clauses KB can be
seen as Short-Term Memory (High Clauses KB) and Long-Term Memory (Low Clauses KB). As
well as in human being, in this architecture, Beliefs KB and Clauses KB can interact with each
other in a reactive decision-making process (meta-reasoning).

A simplified functional scheme of AD-Caspar is depicted in Figure 1, with each component
highlighted with a distinct colour. Specifically, the Chat Environment (red box in Figure 1)
is responsible of interfacing the agent with all required to establish a communication with a
chatbot system. When a question is detected, the text is sent to another module called QA Shifter
(gray box in Figure 1), whose details are reported in Section 4, with the task of transforming
a question into one or more likely assertions as possible answers to such a question. The
Translation Service (yellow box in Figure 1) is the component responsible of translating a natural
language sentence, by leveraging a dependency parser [12] and a production rules system, into
in a neo-Davidsonian FOL expression. The latter inherits the shape from the event-based formal
representation of Davidson [13], with every term t as follows:

t:= x | L:POS(t1) | L:POS(t1, t2, t3) | L:POS(t1, t2),

where x is a variable bound either to a universal or to an existential quantifier, L a WordNet [14]
Synset (selected with a disambiguation process taking in account of the context) or a lemma,
POS a Part-of-Speech (POS) tag, and t1, t2, t3 other terms (recursively defined). Implication
symbols are also admitted, when a group of predicates subordinate the remaining ones. The
outcome of the Translation Service, for a basic verbal phrase, will be as follows:

synset1:POS1(e1, x1, x2) ∧ synset2:POS2(x1) ∧ synset3:POS3(x2),



where synset1 and POS1 are related to a verb, while synset2, POS2, synset3, POS3 to nouns.
Additional possible predicates corresponding to other grammatical elements (adjectives, adverbs
and prepositions), will share the same variable of predicates which are referred to. Before
being sent to the next module, the above formula will be furtherly translated as follows7, by
suppressing the first argument e1 from the predicate with label synset1:POS1:

synset1:POS1(synset2:POS2(x1), synset3:POS3(x2)).

The rationale behind such a notation choice is explained next: a definite clause is either atomic
or an implication whose antecedent is a conjunction of positive literals and whose consequent
is a single positive literal. Because of such restrictions, in order to make clauses suitable for
inference with the Backward-Chaining algorithm (which requires a KB made of definite clauses),
we must be able to encapsulate all their information properly. The strategy followed is to create
composite terms, taking into account of the POS and applying the following hierarchy to every
noun expression as follows:

IN(JJ(NN(NNP(x))), t), (1)

where IN is a preposition label, JJ an adjective label, NP and NNP are noun and proper noun
labels, x is a bound variable and t a predicate.
As for the verbal phrases, the nesting hierarchy will be the following:

ADV(IN(VB(t1, t2), t3)),

where ADV is an adverb label, IN a preposition label, VB a verb label, and t1, t2, t3 are predicates;
the nesting hierarchy of ADV and IN can also be swapped; in the case of imperative or intransitive
verb, instead of respectively t1 or t2, the arguments of VB will be left void. As we can see, a
preposition (IN) might be related either to a noun or a verb. For a detailed description of
the Translation Service, since such component is utterly inherited from Caspar, the reader
is referred to [6]. The Cognitive Reasoner (blue box in Figure 1) enables the architecture with
reasoning and meta-reasoning capabilities. Differently from the correspondent component in
Caspar, each assertion is made on both High and Low Clauses KB. Since the High Clauses KB is
a volatile memory, it will be emptied after the agent is restarted, but at the same time is the one
where first the deduction is attempted; then, after a possible unsuccessful reasoning, the Low
Clauses KB will be used to populate the High one with fresh nested definite clauses, having a
specific number of features compliant with a wanted threshold described ahead in Section 4.
After the High Clauses KB is being populated, the deductive reasoning is re-attempted.

4. Question Answering

This section shows how the proposed architecture is able to deal with question-answering.
The Low Clauses KB has a very important role in such a task, because it supports abduction
as pre-stage of deduction and it is the source from which the High Clauses KB is populated,
in order to make logical inference. Each record in the Low Clauses KB is stored in a NoSQL

7After such a step the POS can be either removed from the formula as in Figure 6 and Figure 7, or not to keep a
shallow label tipization as in Figure 4.



database and it is made of three fields related to a specific sentence in natural language. Each
field is defined as follows:

- Nested Definite Clause: definite clause made possibly of composite predicates.
- Features Vector: vector of labels of the above definite clause.
- Sentence: the sentence in natural language.

For instance, let the sentence to be stored be:

Barack Obama became president of United States in 2009.

In this case, the record in the Low Clauses KB will be as follows:

- In(Become(Barack_Obama(x1), Of(President(x2), United_States(x3))), 2009(x4))

- [In, Become, Barack_Obama, Of, President, United_States, 2009]

- Barack Obama became president of United States in 2009

The abductive strategy of getting useful clauses from the Low Clauses KB, takes into account a
metric Confidence𝑐 defined as follows:

𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒𝑐 =
|⋂(𝐹𝑒𝑎𝑡𝑠𝑞, 𝐹 𝑒𝑎𝑡𝑠𝑐)|

|𝐹 𝑒𝑎𝑡𝑠𝑞|
(2)

where Feats𝑞 is the features vector extracted from the query, and Feats𝑐 is the features vector of a
generic record stored in the Low Clauses KB. A typical access to the Low Clauses KB creates the
sorted list of all features occurrences, together with the related clauses, then the most relevant
clauses will be copied in the High Clauses KB.

Algorithm 1 aggregate_clauses_greedy(clause, aggregated, threshold)
Input: (i) clause: a definite clause, (ii) aggregated : a set of definite clauses (empty in the first call), (iii) threshold : the

minimum confidence threshold
Output: a set of definite clauses.
1: ft ←− extract_features(clause);
2: aggr ←− get_relevant_clauses_from_db(ft);
3: foreach record in aggr do
4: occurrencies_found ←− record.features_occurrencies
5: confidence ←− occurrencies_found / size(ft)
6: foreach cls in record.clauses do
7: if cls not in aggregated and confidence ≥ threshold then do
8: aggregated.append(cls);
9: aggregate_clauses_greedy(cls, aggregated, threshold);
10: return aggregated

Such an operation is accomplished via the aggregate_clauses_greedy algorithm shown in
Algorithm 1. The latter, with a greedy heuristic, takes in input the query clause, the set aggregated
and the wanted limitation of confidence threshold for abduction; as output, it gives back the set
aggregated of clauses from the db that are going to be copied in the High Clauses KB, taking in
account of the wanted distance (2) from the query.



Table 1
A simple instance of clauses related features.

Clauses Features
cls1 [a, x, z, y]
cls2 [a, b]
cls3 [a, b, x, y]
cls4 [a, b, c, d]
cls5 [a, b, c, w]

4.1. Algorithm

First, at line 1 of Algorithm 1, aggregate_clauses_greedy extracts all clause features; at line
2, it creates a list of tuples in descending order (by the first field) containing an integer value
and a lists of clauses having in common such value as number of common features with clause.
More in detail, considering the Table 1, having a query cls𝑞 with features vector [a, b, c],
the function get_relevant_clauses_from_db will create a list made of the following two
tuples, by excluding those with only one feature in common, since in such a domain a minimal
meaningful verbal phrase8 is made at least of two entities (verb plus subject):

(3, [cls4, cls5])
(2, [cls2, cls3])

The rationale behind such function’s output is that the first value of each tuple is the size of the
intersection between the features of the query and the features of Table 1 (feature_occurencies in
Algorithm 1), while the second value (clauses in Algorithm 1) is a vector containing the clauses
themselves having in common such an intersection size. At line 4, the first value of each tuple
is extracted and used in line 5 to calculate the confidence (2). In the loop at line 6, all clauses
having the same features occurrences are considered, and at line 7 the algorithm checks whether
the clause has an admitted confidence level and it is not already in aggregated. In this case, the
clause will be appended to the aggregated list. At line 9, there is a recursive call taking in input
cls (the current clause which is being processed) instead of clause, the updated aggregated and
the threshold of the same procedure call. Finally, at line 10, the list aggregated is returned.
Although there can be more strategies to implement the function at line 2 of Algorithm

1, for this work’s prototype the desired result has been achieved by leveraging the Mongodb
aggregation operator, in a single fast and efficient database operation shown in Figure 2. The
latter is a pipeline of four different operations: the first, at line 4, is the processing of all possible
sizes of intersections between features fields in the db and the features of the query clause. At
line 6 all clauses with the common value of such a size are grouped in tuples. At line 7 such
tuples are sorted by the intersection size. Finally, at line 8 the output is limited to the two most
significant tuples. Nonetheless, we can affirm the algorithm is sound, accomplishing its job in
at most:

𝑂(𝑡 ∗ 𝑠2)

8For instance a reflective verbal phrase as: Roy runs.



�
1 aggr = db.clauses.aggregate([
2 {"$project": {
3 "value": 1,
4 "intersection": {"$size": {"$setIntersection": ["$features", features]}}
5 }},
6 {"$group": {"_id": "$intersection", "group": {"$push": "$value"}}},
7 {"$sort": {"_id": -1}},
8 {"$limit": 2}
9 ])
� �

Figure 2: The Python Mongodb aggregate operator implementing the function
get_relevant_clauses_from_db at line 2 of Algorithm 1.

with 0 <t <1 as the confidence threshold and s the size of the Low Clauses KB.

4.2. Polar Questions

Polar questions in the shape of nominal assertion (excepting for the question mark at the
end) are transformed into nested definite clauses and treated as query as they are, while those
beginning with an auxiliary term, for instance:

Has Margot said the truth about her life?

which can be distinguished by means of the following dependency:

aux(said, Has)

will be treated by removing the auxiliary and considering the remaining text (without the ending
question mark) as source to be converted into a clause-query.

4.3. Wh-Questions

Differently from polar questions, for dealing with wh-question we have to transform a question
into one or more assertions that can be expected as likely answer, then to query the agent with
them. To achieve that, after an analysis of several types of questions for each category9, by
leveraging the dependencies of the questions, we found it useful to divide the sentences text
into specific chunks as it follows:

[PRE_AUX][AUX][POST_AUX][ROOT][POST_ROOT][COMPL_ROOT]

The delimiter indexes between every chunk are given starting from the AUX and ROOT dependen-
cies positions in the sentence. The remaining chunks are extracted on the basis of the latters.
For the likely answers composition, the module QA Shifter has the task of recombining the
question chunks in a different permutation, depending on the idiom in exam, considering also
the wh-question type. Such an operation, which is strictly language specific, is accomplished
thanks to an ad-hoc production rule system which takes in account of languages diversity. For
instance, let the question in exam be:

9Who, What, Where, When, How.



Who could be Biden?

In this case, the chunks sequence will be as follows:

[PRE_AUX][could][POST_AUX][be][Biden][COMPL_ROOT]

where only AUX, ROOT and POST_ROOT are populated, while the other chunks are empty. In
this case a specific production rule of the QA Shifter will recombine all chunks in a different
sequence, by adding also another specific word in order to compose a likely assertion as follows:

[PRE_AUX][POST_AUX][Biden][could][be][COMPL_ROOT][Dummy]

At this point, joining all the words in such a sequence, the candidate sentence as likely assertion
to used as query, might be the following one:

Biden could be Dummy.

The meaning of the keyword Dummy will be clarified shortly. In all verbal phrases where ROOT
is a copular10 verb (like be), the verb has the same properties of the identity function. Then, in
the case of the above sentence, we can consider also the following candidate sentence:

Dummy could be Biden.

All wh-questions for their own nature require a factoid answer, made of one or more words
(snippet); so, in the presence of the question: Who is Biden? as answer we expect something
like:

Biden is something. (3)

But something surely is not what we are looking for as information, but the elected president of
United States or something similar. This means that, within the FOL expression of the query,
something in (3) must be represented by a mere variable. In light of this, instead of something,
this architecture uses the keyword Dummy: the rationale of this choice is that, during the
creation of a FOL expression containing such a word, the Translation Service will impose the
extra POS DM to Dummy, whose parsing is not expected to be used to build a nested definite
clause, thus it will be discarded. At the end of this process, as FOL expression of the query we’ll
have the following literal:

Be(Biden(x1), x2), (4)

which means that, if the High Clauses KB contains the representation of Biden is the president
of America, namely:

Be(Biden(x1), Of(President(x2), America(x3))),

querying with the (4) by using the Backward-Chaining algorithm, the latter will return back as
result a unifying substitution with the previous clause as follows:

10A copular verb is a special kind of verb used to join an adjective or noun complement to a subject. Common
examples are: be (is, am, are, was, were), appear, seem, look, sound, smell, taste, feel, become, and get. A copular
verb expresses either that the subject and its complement denote the same thing or that the subject has the property
denoted by its complement.



Figure 3: Starting a Telegram chat session with an instance of AD-Caspar (left) and querying it with
who and when questions (right).

{v_41: x1, x2: Of(President(v_42), America(v_43))},

which contains, in correspondence of the variable x2, the logic representation of the snippet:
president of America as possible and correct answer. Furthermore, starting from the lemmas
composing the only answer-literal within the substitution, with a simple operation on a string, it
is possible to extract the minimum snippet from the original sentence containing such lemmas.

5. Case-study

In this section, a simple Python prototype of a Telegram chatbot based on the AD-Caspar ar-
chitecture is shown, focusing on how it deals with each type of interaction with the user.

5.1. Starting, Asserting and Querying the chatbot

As the agent is running, to start a new session the user has to provide the keyword hello, to
make the agent come out from its idle state, then feed or enquiry the chatbot with the wanted
information.
In Figure 4 it is shown the content of both High and Low Clauses KB in the case of new

assertions, after the events of Figure 3 (left), by means the AD-Caspar native commands hkb()
and lkb(). In Figure 3 (right) we can see how the chatbot is queried with wh-questions, giving
back as result a substitution from the High Clauses KB (From HKB: True) containing a literal,
which is a logic representation of a snippet-result in natural language. Regarding the substitution
of the variable x5, e.g., the literal is the representation of the snippet Barack Obama, whose
words are concatenated together their POS.

After the chatbot reboot, as we can see for instance in Figure 5 (left), the result is extracted
from Low Clauses KB (From LKB: True) taking into account the confidence threshold (0.6



�
1
2 eShell: main > hkb()
3
4 In_IN(Become_VBD(Barack_NNP_Obama_NNP(x1), Of_IN(President_NN(x2), United_NNP_States_NNP(x3))), N2009_CD(x4))
5
6 1 clauses in High Knowledge Base
7
8 eShell: main > lkb()
9
10 In_IN(Become_VBD(Barack_NNP_Obama_NNP(x1), Of_IN(President_NN(x2), United_NNP_States_NNP(x3))), N2009_CD(x4))
11 ['In_IN', 'Become_VBD', 'Barack_NNP_Obama_NNP', 'Of_IN', 'President_NN', 'United_NNP_States_NNP', 'N2009_CD']
12 Barack Obama became the president of United States in 2009.
13
14 1 clauses in Low Knowledge Base
� �

Figure 4: AD-Caspar High and Low Clauses KB changes, after assertions.

Figure 5: On the left, querying the chatbot with who and when questions, after the rebooting and the
Low Clauses KB was fed. On the right, abductive results with confidence threshold equal to 0.6, after
querying with when questions.

in this case), because High Clauses KB is still empty (From HKB: False). Such a threshold,
depending on the domain, can be changed by modifying the value of a specific parameter. In the
bot closed-world assumption, the agent can give back only answers unifying with the content
of its own knowledge, otherwise it will return False. Optionally, by setting another parameter
in a configuration file, the closest results can be shown together with their confidence (Figure 5
right).

5.2. Runtime Evaluation

In the scope of chatbot applications, the issue of responsiveness is worth of attention, because
the user should have the feeling, somehow, of relating to a sentient being providing reasonable



�
1 Be(Nono(x1), Hostile(Nation(x2)))
2 Be(Colonel_West(x1), American(x2))
3 Be(Missile(x1), Weapon(x2))
4 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3))
5 To(Sell(American(x1), Weapon(x2)), Hostile(Nation(x3))) ==> Be(American(x4), Criminal(x5))
� �

Figure 6: AD-Caspar High Clauses after five assertions related to the Colonel West KB.

response times. In light of above, to address such an issue, since a chatbot relays on the internet,
its real-time performances depends firstly on the bandwidth and secondly on the chatbot engine.
Since the bandwidth is the more volatile parameter between the two, because it depends on
physical features, protocols and temporally congestion, in this work we decided to focus only
on the engine performances considering a widespread specific hardware. For this reason, in
order to achieve a runtime evaluation of the engine, an instance of AD-Caspar was tested,
whose timings in seconds are shown in Table 2. The hardware the chatbot has been tested on is
the Intel i7-8550U 1.80Ghz with 8GB RAM. The first column Knowledge Base of Table 2 refers
to three distinct KBs, each with different size, containing the clauses in Figure 7. Such clauses
are asserted starting from the five sentences related to the Colonel West case, namely:

- Colonel West is American.
- Nono is a hostile nation.
- missiles are weapons.
- Colonel West sells missiles to Nono.
- When an American sells weapons to a hostile nation, that American is a criminal.

whose corresponding FOL notation, seen before in Section 3 (see also Figure 6), is not sufficient
to infer that Colonel West is a criminal.
For this reason, together with each sentence related clause, AD-Caspar adopts a specific
expansion of the KB, inherited from Caspar, which leverages the so-defined assignment rules
and clause conceptual generalizations. For the sake of shortness we will not report the details
of such an expansion, for which the reader is referred to [6]. Anyway, such an expansion
improves the chances of successful reasoning, by increasing the clauses from 5 in Figure 6 up
to 25 in Figure 7. The first column in Table 2 is about three distinct KBs: the first, namely
West25, contains exactly such 25 clauses; West104 and West303 contain either such clauses, but
respectively plus 79 and plus 278 random unrelated clauses. The column HKB of Table 2 refers
to five computation timings for each of the KBs, considering only the High Clauses KB and the
query: Colonel West is a criminal. We remind that an instance of AD-Caspar attempts firstly
to achieve a reasoning making usage of only the High Clauses KB, as in the case of Caspar,
otherwise it will get likely candidates from the Low Clauses KB, considering their relevance to
the query according to a specific threshold confidence (2). The third column LKB+HKB of Table
2 shows timings in the case the High Clauses KB is initially empty, thus both High Clauses
KB and Low Clauses KB are involved. Focusing on the third column, it appear clear timings
in general are lesser than the second column, excepting for the values in first rows, which
comprises the Mongodb access time and the filling of the High Clauses KB with clauses coming



�
1 Be(Nono(x1), Nation(x2))
2 Be(Nono(x1), Hostile(Nation(x2)))
3 Nono(x) ==> Nation(x)
4 Nono(x) ==> Hostile(Nation(x))
5 Be(Colonel_West(x1), American(x2))
6 Colonel_West(x) ==> American(x))
7 Be(Missile(x1), Weapon(x2))
8 Missile(x) ==> Weapon(x)
9 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(American(v_0), Missile(x4))
10 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(American(x3), Weapon(v_1))
11 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(Colonel_West(x1), Weapon(v_2))
12 Sell(Colonel_West(x1), Missile(x2))
13 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(x1), Missile(x2)), Nation(v_4))
14 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_5), Missile(v_6)), Nation(v_4))
15 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_7), Weapon(v_8)), Nation(v_4))
16 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_9), Weapon(v_10)), Nation(v_4))
17 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(x1), Missile(x2)), Hostile(Nation(v_11))
18 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_12), Missile(v_13)), Hostile(Nation(v_11))
19 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_14), Weapon(v_15)), Hostile(Nation(v_11))
20 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_16), Weapon(v_17)), Hostile(Nation(v_11))
21 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_18), Missile(v_19)), Nono(x3))
22 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_22), Weapon(v_23)), Nono(x3))
23 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_26), Weapon(v_27)), Nono(x3))
24 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3))
25 To(Sell(American(x1), Weapon(x2)), Hostile(Nation(x3))) ==> Be(American(x4), Criminal(x5))
� �

Figure 7: AD-Caspar Colonel West KB in Figure 6 after its expansion.

from the Low one, via the aggregate_clauses_greedy in Algorithm 1. The other values in
the third column are lower than in the second one because the reasoning is achieved over a
lesser number of clauses (19) for each distinct KB. The average timings in the bottom row show
how the first rows’ value is amortized, by compensating the loss, due to the gain achieved from
reasoning on a fewer number of clauses than respect the initial content of all KBs in exam
(West25, West104 and West303). Intuitively it is expected such bias to be increased for larger KBs,
which demonstrates the effectiveness of such approach for two distinct tasks: firstly, to deal
with larger KBs considering only the most relevant clauses in the reasoning process; secondly,
to permit at the same time abduction as pre-stage of deduction, in order to give back closer
results also in presence of non-successful reasoning.

6. Conclusions and Future works

In this paper, a framework based on natural language processing and first-order logic, with the
aim of instantiating cognitive chatbots able of abductive-deductive reasoning, was presented. By
the means of its module Translation Service, AD-Caspar parses sentences in natural language
in order to populate its KBs with beliefs or nested definite clauses endowed of rich semantic.
Moreover, the module QA Shifter is able to reshape wh-questions into likely assertions one
can expect as answer, thanks to a production rule system leveraging a dependency parser. The
combination of Translation Service and QA Shifter makes the Telegram Bot proposed in this
work easily scalable on the knowledge we want it to deal with, because the user has to provide



Table 2
Real-time cognitive performances (in seconds) of a Telegram chatbot engine based on AD-Caspar, in
the case of successful reasoning with KBs of different sizes.

Knowledge Base HKB LKB+HKB
0,377 0,469

West25 0,378 0,353 (19/25)
0,437 0,385 (19/25)
0,374 0,366 (19/25)
0,355 0,399 (19/25)
0,423 0,426

West104 0,362 0,327 (19/104)
0,342 0,327 (19/104)
0,353 0,388 (19/104)
0,731 0,323 (19/104)
0,407 0,463

West303 0,421 0,357 (19/303)
0,377 0,333 (19/303)
0,461 0,368 (19/303)
0,443 0,387 (19/303)

Overall AVG 0,416 0,378

only the new sentences in natural language at runtime, like in a common conversation. As
future work, we plan to include a module for the design of enhanced dialog systems, taking in
account of contexts and history, and also integrate a module for Argumentation.
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