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Abstract

Answer Set Programming (ASP) is a branch of Logic Programming particularly useful for representing

complex domains. Logic abduction, the reasoning strategy that deals with incomplete data, is tightly

related to ASP, and encodes incompleteness through abducibles. The goal of logic abduction is to find

the minimal set of abducibles (where minimality is usually considered in terms of set inclusion) that

explains a query. Recently, abductive reasoning has been introduced in the context of Probabilistic Logic

Programming, but no solutions are available for Probabilistic Answer Set Programming (PASP). In this

paper, we close this gap and propose an algorithm to perform abduction both in ASP and in PASP.
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1. Introduction

Abductive Logic Programming (ALP) [1, 2] is an extension of Logic Programming (LP) [3] that

copes with incomplete data: given a set of abducible facts and a set of integrity constraints, the

goal is to find the minimal set, where minimality is usually considered in terms of set inclusion,

that explains a given query. This minimal set is often called abductive explanation.

Answer Set Programming (ASP) [4] is a powerful formalism to encode complex problems,

where the possible solutions are represented as answer sets. In the first contribution of this

paper, we propose a simple yet effective algorithm to perform abduction in ASP.

One limitation of ASP (and Logic Programming in general) is that it cannot manage uncertain

data. Probabilistic Logic Programming (PLP) [5, 6] under the Distribution Semantics (DS) [7] is

a possible formalism to express uncertain information using a logic-based language. Recently,

the authors of [8] introduced the concept of probabilistic abductive explanation and proposed an

algorithm to perform abduction in PLP under the DS. A possible extension to ASP that manages

uncertainty is Probabilistic Answer Set Programming (PASP) under the Credal Semantics (CS) [9,

10]. With this semantics, the probability of a query is not a sharp value, but it is represented

by an interval, i.e., it has a lower and an upper probability bound. In a second contribution of

this paper, we propose an algorithm to perform abduction in PASP, where the goal is to find,

given a query, the minimal set of abducible facts that maximizes the joint lower probability of

the query and the integrity constraints.
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Overall, our contribution is two-fold: first, we provide an algorithm to compute abductive

explanations in ASP. Then, we introduce the concept of abductive reasoning in PASP under the

CS and propose an algorithm to compute probabilistic abductive explanations. To study the

applicability of our approach, we tested both algorithms on three different datasets. The results

show that abduction for ASP is orders of magnitude faster than for PASP.

The paper is structured as follows: Section 2 introduces the basic concepts of ASP, PLP, and

PASP under the CS. Section 3 describes our algorithm to perform abduction in ASP while our

proposal for PASP under the Credal Semantics is presented in 4. The two algorithms are tested

in Section 5, related work is discussed in Section 6, and Section 7 concludes the paper.

2. Background

2.1. Answer Set Programming

We assume the reader is already familiar with the basic notions of Logic Programming. For an

in-depth treatment of the subject, see [3]. ASP also considers aggregate atoms [11] of the form

g0 ◦0 #f{e1; ...; en} ◦1 g1 where g0 and g1 are constants or variables and are called guards, f is

an aggregate function symbol, and ◦0 and ◦1 are arithmetic comparison operators. Each ei is

an expression of the form t1, ..., tl : C where each ti is a term whose variables appear in C , a

conjunction of literals. For example, a possible aggregate is 1 < #count{X : f(X)} < 5. g0◦0
or ◦1g1 or both may be omitted.

A rule is of the form h1; ...;hn ← b1, ..., bm, where each hi is an atom and each bi is a literal.

h1; ...;hn is called the head and b1, ..., bm is called the body. We only consider safe rules, i.e.,

rules where each variable of a rule also appears in a positive literal in the body. If n = 0 (no

atoms in the head) and m > 0, the rule is called an integrity constraint. If n = 1 and m = 0, the

rule is called a fact, and represents what is known to hold. If a rule does not contain variables,

it is called ground. The set of groundings of a rule can be obtained by replacing its variables

with the constants that appear in the program in all possible ways. An answer set program is a

set of rules.

The Herbrand base (BP ) of an answer set program P is the set of all ground atoms that can

be constructed using the symbols in the program. An interpretation I for P is a subset of BP . I
satisfies a ground rule if at least one hi is true in I when every bi is true in I . A model is an

interpretation that satisfies all the groundings of all the rules of P . If we consider a ground

program Pg and an interpretation I , by removing from Pg the rules in which a bi is false in I
we obtain the reduct [12] of Pg with respect to I . An answer set for P is an interpretation I
such that I is a minimal model (in term of set inclusion) of the reduct of Pg . With AS(P ) we

denote the set of all the answer sets of P .

2.2. Probabilistic Logic Programming (PLP)

Probabilistic Logic Programming [5, 6] extends Logic Programming by incorporating prob-

abilities into facts or rules. If we consider, for instance, ProbLog [13], a probabilistic fact is

represented with Π :: f where Π ∈]0, 1] and f is a logical atom. The Distribution Semantics

(DS) [7] is at the heart of many PLP languages, such as ProbLog. Following the DS, an atomic



choice is represented with a tuple (f, θ, k) where k ∈ {0, 1}: k = 1 means that the grounding

fθ for f is selected; k = 0 indicates that it is not. A consistent set of atomic choices is called a

composite choice (identified with κ) and its probability can be computed as

P (κ) =
∏︂

(fi,θ,1)∈κ

Πi ·
∏︂

(fi,θ,0)∈κ

(1−Πi)

If a composite choice contains an atomic choice for every grounding of every probabilistic fact

then it is called a selection. A selection identifies a world, i.e., a logic program composed by the

rules of the program and the selected probabilistic facts (those for which k = 1). The probability

of a world w, P (w), is the probability of the correspondent selection. Finally, the probability of

a query q (a conjunction of ground atoms) is computed as

P (q) =
∑︂
w|=q

P (w)

Probabilistic facts are considered independent. For example, the following (propositional)

program

0.3::nosleep.
0.6::lowvitamins.
tired:- nosleep.
tired:- lowvitamins.

has 2 probabilistic facts: nosleep, that is true with probability 0.3, and lowvitamins, that

is true with probability 0.6. The program has 22 = 4 worlds; the query tired is true in 3

of them (those where at least one of the two probabilistic facts is true) and it has probability

0.3 · 0.6 + 0.3 · (1− 0.6) + (1− 0.3) · 0.6 = 0.72.

2.3. Probabilistic ASP under the Credal Semantics

The Distribution Semantics only considers probabilistic logic programs where every world has

a unique two-valued well-founded model [14]. This usually does not hold if we consider ASP

programs with probabilistic facts (PASP).

In this case, the Credal Semantics (CS) [9, 10] has been proposed as a possible underlying

semantics. Under this semantics, every query q has lower and upper probability bounds, denoted

respectively with P (q) and P (q). In addition to the worlds, the computation of the probability

for a query also requires considering the answer sets for each of them: if the query is true in

at least one answer set of a world w, P (w) contributes to the upper probability; if the query

is true in every answer set of a world w, P (w) contributes to the lower probability. Clearly,

P (q) ≤ P (q). However, every world must have at least one answer set. If we slightly modify

the previous program in

0.3::nosleep.
0.6::lowvitamins.
tired:- nosleep.
tired; nottired:- lowvitamins.



and still consider the query tired, the worlds where both probabilistic facts are true and

the worlds where nosleep is true and lowvitamins is false have only 1 answer set each,

{nosleep, tired, lowvitamins} and {nosleep, tired} respectively, and the query is

true in them, so we have a contribution of 0.3 · 0.6 + 0.3 · (1− 0.6) to the lower probability.

The world where lowvitamins is true and nosleep is false has 2 answer sets ({tired,
lowvitamins} and {nottired, lowvitamins}) and the query is true in only one of the

two, so we get a contribution of (1− 0.3) · 0.6 to the upper probability. In the world where both

probabilistic facts are false, the query is false as well so it does not contribute to the probability.

Overall, the probability lies in the range [0.3, 0.72].

3. Abductive Answer Set Programming

An abductive answer set program is composed of an answer set program and a set of ground

atoms called the abducibles, that do not appear in the head of any rule. More formally, given

an answer set program P , and a possibly empty set of abducibles (also called abducible facts)

A, the goal is to find the minimal set of abducibles ∆, called abductive explanation, such that a

query is present in at least one answer set. If there are multiple minimal sets, we call them the

abductive explanations. Here, minimality is intended in terms of set inclusion [15]. For example,

if both ∆
′

= {a} and ∆
′′

= {a,b} are explanations for a query q, only ∆
′

is considered as the

abductive explanation, since ∆
′′ ⊃ ∆

′
, and thus ∆

′′
is not minimal. We consider integrity

constraints (ICs) as normal answer set constraints. To better illustrate these concepts, consider

the following example.

Example 1 (Smoke). The program and the graph of Figure 1 describe a network with 5 people
(nodes) connected by a friendship relation (edges). The friendship relation exists if the corresponding
abducible (denoted by prepending the functor abducible to the terms e/2) is selected. Some
individuals smoke, some others do not. In particular, b and d smoke. A disjunctive rule states that
a person X can either smoke or not smoke given that she is a friend of someone (Y) who smokes.
The integrity constraint states that at least 80% of the people smoke. The goal is to compute the
abductive explanation(s) for the query smokes(c).

We propose an algorithm to perform abduction in ASP.

Every abducible fact abducible a is replaced by a choice rule of the form 0{a}1, stating

that a can be included or not in every answer set. To encode the query query, we add a

constraint :- not query. In this way, we impose that the query is true in every answer set. By

applying this transformation to the program shown in Figure 1a, we obtain a new program with

62 answer sets. Every answer set represents a possible explanation but only some of them (2)

are abductive explanations, i.e., minimal (in terms of set inclusion), for the query smokes(c):

{{e(b,c)},{e(d,e),e(e,c)}}.
To compute the abductive explanations, a first solution could consist in enumerating all the

answer sets and removing the dominated ones. However, the number of abductive explanations

is usually orders of magnitude smaller than the possible answer sets (in this example, there are

2 abductive explanations, while the total number of answer sets is 62). For this reason we adopt

an alternative approach. First, we compute the cautious consequences (intersection of all the



abducible e(a,b). abducible e(b,c).
abducible e(a,d). abducible e(d,e).
abducible e(e,c).

friend(X,Y):- e(X,Y).
friend(X,Y):- e(Y,X).

smokes(b). smokes(d).

smokes(X) ; nosmokes(X):-
friend(X,Y), smokes(Y).

:- #count{X:nosmokes(X)} = N,
#count{X:smokes(X)} = S,
10*S < 8*(N+S).

(a) Program.

a

b

c

d e

(b) Network of 5 people (nodes) con-

nected by a friendship relation

(edges).

Figure 1: Example of an abductive answer set program and its graph representation.

models) of the whole program, and project [16] them on the abducibles. For every abducible a
in the cautious consequences, we add a constraint :- a in the program, since these are present

in every answer set, so we can avoid generating a choice for them. After this process, we add an

additional rule with an argument that stores the number of abducibles selected in the computed

answer sets. For example, for the program shown in Example 1a, we add c(C):- #count{Y,X
: e(X,Y)} = C. After that, we iteratively generate answer sets and, at each step, we add a

constraint to the program that imposes that the number of abducibles in the generated answer

sets is N , where N ranges from 0 to the total number of abducibles in the program. We go

from 0 to N , so we can keep track of the dominated explanations. The answer sets obtained

at each iteration are the abductive explanations. In other words, we call multiple times the

solver to generate the answer sets and, at each call, we generate only the answer sets with a

fixed number of abducibles. Moreover, at each iteration, we also impose a constraint to avoid

the generation of answer sets that are supersets of the already computed ones. This process is

described in Algorithm 1: first, abducibles are converted as previously described (line 2). Then,

we compute the minimal set of abducible facts (line 3) and add each fact of this minimal set

into the program, as integrity constraint (line 5). The loop at line 9 handles the generation of

sets of abducibles of increasing size. The function AddConstraintSizeAndComputed adds

a constraint to the program to limit the number of abducibles and a constraint to remove the

already computed solutions. At the end of the loop, we check whether there are some solutions

that are not minimal with the function Least and return the abductive explanation for the

query.

To clarify the overall process, let us apply Algorithm 1 on the program of Example 1. There are

no cautious consequences projected on the abducibles, so no constraint is added to the program.

Then, we begin generating the answer sets, starting from 0 abducibles with the constraint :-
c(X), X != 0. This program is unsatisfiable, so no further constraints are added. In the



Algorithm 1 Function AbductionASP: computation of the abductive explanations for a query

query and an ASP program P .

1: function Abduction(query,P)

2: probFacts, abducibles,Pp ← ConvertProgram(P)

3: minSet ← ComputeMinimalSet(Pp ∪ {: - not query.})
4: for all f ∈ minSet do
5: Pp ← Pp ∪ {: - not a.}
6: end for
7: alreadyComputed ← ∅
8: abduciblesSet ← ∅
9: for i ∈ range(0, len(abducibles)) do

10: Pc
p ← AddConstraintSizeAndComputed(Pp , i , alreadyComputed )

11: Pqc
p ← Pc

p ∪ {: - not query.}
12: projectSet ← abducibles
13: AS ← ProjectSolutions(Pqc

p , projectSet ) ▷ Computation of the answer sets.

14: for all as ∈ AS do
15: abduciblesSet ← abduciblesSet ∪as
16: alreadyComputed ← alreadyComputed ∪as
17: end for
18: end for
19: abduciblesSet ← Least(abduciblesSet )

20: return abduciblesSet .elements
21: end function

case the program is satisfiable with answer sets of size 0, this means that there is no need to

keep searching for abductive explanations since the empty explanation is sufficient, and we

can stop the search. We now consider answer sets with 1 abducible, we remove the constraint

for 0 abducibles and replace it with :- c(X), X != 1. There is one answer set, and thus

an abductive explanation, {e(b,c)}, so a constraint of the form :- e(b,c) is added to the

program. In this way, in the next iterations, we do not generate answer sets that contain this

abducible, since it is already in a smaller explanation. That is, if a is an abductive explanation,

all the subsequent explanations that contain a will be dominated, so they can be ignored. At the

third iteration, we replace the constraint for 1 abducible with :- c(X), X != 2, while the

constraints on the already discovered abducibles are kept. We obtain a new solution, {e(d,e),
e(e,c)}, so we add a new constraint to the program :- e(d,e), e(e,c). We continue this

process until considering 5 abducibles (all). At the end, we get {{e(b,c)},{e(d,e) e(e,c)}}
as abductive explanations. By default, abducibles not included into the abductive explanations

are not selected. Note that, if we consider as minimality measure the number of abducibles in

an answer set, we can solve this task by simply setting an optimization problem where the goal

is to minimize the number of abducibles in the answer sets. That is, if we use, for example, the

ASP system clingo [17], we can add the two rules:

c(C):- C = #count{X,Y : e(X,Y)}.
#minimize{C : c(C)}.

and get, as result, the minimal sets in terms of cardinality (e(b,c)).

In the next section we show how to extend this abductive framework in the case of Probabilistic
Answer Set Programming.



4. Abductive Reasoning in Probabilistic Answer Set
Programming

A probabilistic integrity constraint [8] is of the form

Π← l1, . . . , ln

where Π ∈ ]0, 1] and each li is a literal (abducibles are allowed). Here, we also allow li to

be an aggregate atom. Probabilistic facts and probabilistic integrity constraints identify the

worlds, each of which may have multiple answer sets. We obtain a world by adding or not each

ground probabilistic fact and each grounding of each probabilistic integrity constraint. For the

grounding of the integrity constraints, we consider the standard concept of global and local

variable [11]. In particular, a global variable of a rule is such that it appears in at least one literal

not involved in aggregations. Variables only appearing in aggregates are called local. A ground

instance of a rule with aggregates is obtained by first replacing global variables and then local

variables with ground terms.

The probability of a world is given by the product of the atomic choices for the probabilistic

facts with a factor Πi for every probabilistic integrity constraint i selected and a factor (1−Πj)
for every probabilistic integrity constraint j not selected.

Definition 1 (Probabilistic abductive answer set program). An answer set program P , a
set of probabilistic facts F , a set of abduciblesA, and a (possibly empty) set of probabilistic integrity
constraints IC define a probabilistic abductive answer set program.

Given a probabilistic abductive answer set program, the lower joint probability of the query q
and the constraints IC given an explanation ∆ is the sum of the probabilities of the worlds w
where ∆ is an explanation for the query q, all the constraints are satisfied, and q is true in all

the answer sets. In formula:

P (q, IC | ∆) =
∑︂

w:∀m∈AS(Pw∪∆),m|=q,m̸|=ICPw

P (w)

where Pw is the abductive answer set program identified by a word w and ICPw is the set of

IC involved in Pw.

Finally, the goal of (cautious) abduction in probabilistic answer set programming is to find

the minimal set of abducibles ∆ ⊆ A such that P (q, IC | ∆) is maximized, i.e., solve

least(argmax∆ P (q, IC | ∆))

where, as in [8], the function least removes the sets that are not minimal. The main goal is to

maximize the lower joint probability so, even if there are, for example, two solutions ∆′ ⊂ ∆
′′

that yield respectively probabilities P∆′ < P∆′′ , we only consider ∆
′′

as abductive explanation

(despite being not minimal), since it gives the highest probability. Note that if a set ∆ maximizes

the lower joint probability, it may not maximize the upper joint probability. For example, if we

consider the program:



abducible a.
abducible b.
0.5::fa.
0.5::fb.
query:- a,fa.
query;notquery:- b,fb.

the abductive explanation for the query query is ∆ = {a} that yields a lower joint probability

of 0.5, while the set of abducibles that maximizes the lower upper probability is {a,b} that

yields an upper probability of 0.75. The goal of (brave) abduction in probabilistic answer set

programming can be defined in a similar way by considering the upper probability. However,

here we focus on cautious abduction and every time we write abduction in probabilistic answer

set programming we consider the goal of cautious abduction.

Example 2 (Probabilistic Smoke). Suppose now that the relationships are uncertain. To model
this, we add a probabilistic fact fe/2 for every abducible in Example 1. Moreover, we suppose
that the information provided by the integrity constraint is also uncertain, and has an associated
probability of 0.2. The program became:

abducible e(a,b). abducible e(b,c).
abducible e(a,d). abducible e(d,e).
abducible e(e,c).

0.5::fe(a,b). 0.5::fe(b,c). 0.5::fe(a,d).
0.5::fe(d,e). 0.5::fe(e,c).

friend(X,Y):- e(X,Y), fe(X,Y).
friend(X,Y):- e(Y,X), fe(Y,X).

smokes(b). smokes(d).

smokes(X) ; nosmokes(X):-
friend(X,Y), smokes(Y).

0.2:- #count{X:nosmokes(X)} = N,
#count{X:smokes(X)} = S,
10*S < 8*(N+S).

The goal is to compute the abductive explanation for the query smokes(c).

Probabilistic integrity constraints require a particular conversion. For every probabilistic IC

of the form p:- body we add a probabilistic fact p::f, a rule ic :- body, and two constraints

:- f, ic, and :- not f, not ic imposing respectively that, if the fact is selected, the

constraint must be true and, if the fact is not selected, the constraint must be false. This new

probabilistic fact is parsed as previously described.



To find the abductive explanations in PASP we modified the algorithm described in the

previous section. We cannot impose the constraint that removes an already found explanation

e since another explanation e
′ ⊃ e with a higher associated probability can exist. Moreover,

we cannot add the constraint :- not query, since we need to consider the lower probability,

and so ensure that the query is true in all the models for a world. Finally, we need to identify

the choices made for the abducibles at each iteration and compute the probability for each

world. If we consider Example 2 with the query smokes(c), the only probabilistic abductive

explanation is the set {e(b,c),e(d,e),e(e,c)} that gives a lower probability of 0.125. This

process is summarized in Algorithm 2: first, the probabilistic facts, and the probabilistic integrity

constraints are converted as previously explained (line 2). Then, we compute the minimal set of

probabilistic and abducible facts (line 3) and add each fact of this minimal set into the program, as

integrity constraint (line 5). The function AddConstraintSize adds a constraint to the program

to limit the number of abducibles. The functions ExtractAbdChoices and ExtractWorlds

respectively extracts the set of abducibles and the set of probabilistic facts for every answer

set. The function ComputeContribution computes the contribution to both lower and upper

probability [18] for every choice of abducibles and the function UpdateSet keeps track of the

best solutions found so far. At the end of the loop, we check whether there are some solutions

that are not minimal with the function Least and return the probabilistic abductive explanation

and the probability range for the query.

Algorithm 2 Function AbductionPASP: computation of the probabilistic abductive explana-

tions for a query query and a PASP program P .

1: function Abduction(query,P)

2: probFacts, abducibles,Pp ← ConvertProgram(P)

3: minSet ← ComputeMinimalSet(Pp ∪ {: - not query.})
4: for all f ∈ minSet do
5: Pp ← Pp ∪ {: - not a.}
6: end for
7: alreadyComputed ← ∅
8: abduciblesSet ← ∅
9: for i ∈ range(0, len(abducibles)) do

10: Pc
p ← AddConstraintSize(Pp , i )

11: Pqc
p ← Pc

p ∪{q: - query.,nq: - not query.}
12: projectSet ← probFacts ∪ abducibles ∪{q} ∪ {nq}
13: AS ← ProjectSolutions(Pqc

p , projectSet )

14: for all as ∈ AS do
15: wa ← ExtractAbdChoices(as) ▷ Identify choices for the abducibles

16: wp ← ExtractWorlds(wa) ▷ Extract worlds

17: contributionsList ← ComputeContribution(wp)

18: abduciblesSet ← UpdateSet(contributionsList )

19: end for
20: end for
21: abduciblesSet ← Least(abduciblesSet )

22: return abduciblesSet .lp, abduciblesSet .up, abduciblesSet .elements
23: end function



5. Experiments

To evaluate our approach, we ran the proposed algorithm on a computer with Intel
®

Xeon
®

E5-2630v3 running at 2.40 GHz with 16Gb of ram and a time limit of 8 hours. We used the ASP

solver clingo [17]. We tested three datasets, both for ASP and PASP
1
.

The first dataset, clauses, encodes a domain with an increasing number of abducibles ab/1,

a clause for every one of them and a constraint imposing that at least two abducibles should

be selected. The structure for the program of size 4 (where the size indicates the number of

abducibles) for ASP is the following:

abducible ab(1). abducible ab(2).
abducible ab(3). abducible ab(4).
qry:- ab(1). qry:- ab(2). qry:- ab(3). qry:- ab(4).
:- #count{X : a(X)} = C, C != 2.

The query is qry. For the PASP version we considered deterministic and probabilistic integrity

constraints. In the first case half of the ab/1 atoms are abducibles and half are probabilistic facts

with an associated probability of 0.5. In the second case, the IC has an associated probability of

0.5. In both cases, the integrity constraints only involves the number of abducibles that can

be selected. The remaining part of the program is the same. The goal of this experiment is to

test the inference time of the algorithm on programs with an increasing number of clauses that

must be considered for the computation of the (probabilistic) abductive explanation.

Results are shown in Figure 2. The execution times for PASP with deterministic and proba-

bilistic integrity constraints are similar, and, in both cases, we get a memory error for size 26.

Instead, the time required for the computation of abductive explanations in ASP is negligible

with respect to PASP.
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Figure 2: Inference times for the clauses experiments.

The second dataset, bird, encodes a small biological domain composed of birds. Each bird

can either fly or not fly, and there are at least 60% of birds that fly. An example of program of

size 4 (with 4 birds) is the following:

1

Source code and datasets available at: https://github.com/damianoazzolini/pasta.

https://github.com/damianoazzolini/pasta


bird(1). bird(2). bird(3). bird(4).
fly(X);nofly(X):- bird(X).
:- #count{X:fly(X),bird(X)} = FB,

#count{X:bird(X)} = B, 10*FB<6*B.

the query is fly(1).

For the ASP version, we considered an increasing number of bird/1 facts as abducibles. For

PASP with deterministic constraints 1/3 of the bird/1 facts are certain, 1/3 are probabilistic

with an associated probability of 0.5, and 1/3 are abducibles. For PASP with probabilistic

integrity constraints the split is the same, but the constraint imposing that 60% of birds fly has

an associated probability of 0.5.

Results are shown in Figure 3a. As expected, the introduction of a probabilistic integrity

constraint in the PASP program increases the execution time with respect to the same program

with a deterministic IC, since an additional probabilistic fact must be considered. As before, the

execution time to compute the abductive explanation in ASP is constant and almost negligible

up to size 50.
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Figure 3: Results for the bird and smoke experiments.

A third dataset, smoke, encodes a network where nodes represent people and edges represent

relationships. A person can either smoke or not smoke. Other people can either smoke or

not smoke if they are influenced by others. This benchmark has no integrity constraints. An

example program of size 4 is the following:

smokes(X) ; nosmokes(X) :- smokesFact(X).
smokes(X) ; nosmokes(X) :- smokes(Y), influences(X,Y).

smokesFact(1). smokesFact(2). smokesFact(3).
smokesFact(4). influences(0,1). influences(0,2).
influences(0,3). influences(1,3).

The goal is to compute the (probabilistic) abductive explanations for the query smokes(1).



For abduction in ASP, half of the smokesFact/1 facts are abducibles and half are certain.

Similarly, half of the influences/2 facts are abducibles and half are certain. For abduction in

PASP, half of the smokesFact/1 facts are probabilistic with an associated probability of 0.5

and half are certain, and half of the influences/2 facts are abducibles and half are certain.

The generation of influences/2 facts follow a Barabási-Albert model (we used the method

barabasi albert graph from the networkx [19] python package).

Results are shown in Figure 3b. The inference time trend in the two cases coincides with the

previous experiments.

The gap of execution time between abduction in ASP and PASP is too big to be analyzed.

Thus, we decided to run a separate experiment for abduction in ASP, with larger programs

for all the datasets. Results are shown in Figure 4. The bird and smoke datasets have similar

running time while the clauses one is the slowest among the three: this is probably because

each program has a significant number of abductive explanations: for example, the program of

size 10 has 45 while the program of size 360 has 64620 abductive explanations.
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Figure 4: Inference times for abduction in ASP with programs of different sizes for the 3 datasets.

6. Related Work

Abduction and Answer Set Programming are strongly related [20]. In [21] the authors propose

a specialized framework to perform abductive reasoning under the stable model semantics

by defining a special Tp operator. Differently from them, we leverage an existing ASP solver

(clingo) to perform abduction, and do not develop specialized operators. ABDUAL [22], later

refined in TABDUAL [23], is a framework that performs abduction in the context of well-funded

semantics with the capability to compute stable models. It is implemented in XSB Prolog [24]

and leverages common Logic Programming techniques such as tabling. Differently from them,

we use an ASP framework, easily supporting the whole ASP syntax. Recently, the authors

of [8] proposed an algorithm to perform abduction in probabilistic logic programs under the

Distribution Semantics. To the best of our knowledge, no existing frameworks can perform

abduction in Probabilistic Answer Set Programming under the Credal Semantics.



7. Conclusions

In this paper we proposed a new algorithm to perform abduction in Answer Set Programming

and Probabilistic Answer Set Programming under the Credal Semantics. For the former, the goal

is to find the minimal set, where minimality is defined in terms of set inclusion, of abducible

facts that explains a query, i.e., such that the query has at least one answer set. For the latter, the

goal is to find the minimal set which maximizes the lower joint probability of the query and the

constraints. Results on three datasets show that abduction for ASP is orders of magnitude faster

than for PASP, since the generation of all the worlds is not needed. As future work, we plan to

apply approximate inference [25] to speed up the computation in PASP. A further direction for

future work could consist in better exploring the relation between lower and upper probability

for abduction in PASP.
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[9] F. G. Cozman, D. D. Mauá, On the semantics and complexity of probabilistic logic programs,

J. Artif. Intell. Res. 60 (2017) 221–262. doi:10.1613/jair.5482.
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