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Abstract 
Just-in-time software defect prediction technology is a defect prediction method that enables 

defect prediction of software change levels. The difficulties of learning classifiers from 

imbalanced data is demonstrated in a variety of real-world applications,especially in this era of 

big data, which has generated more classification tasks. Researchers have taken many existing 

JIT-SDP efforts to assume that the features of software releases remain costant over time. 

However, the researchers did not consider that JIT-SDP may be affected by the gradual 

evolution of class imbalance. Specifically, class imbalance (that is, the number of changes 

caused by defects is not adequately represented) has been changing over time, and the number 

of clean class changes and defect class changes may both increase or decrease, so here In this 

case, the existing JIT-SDP method becomes inapplicable. Taking these factors into 

consideration, we propose a new imbalanced classification framework, which aims to achieve 

data class balance by applying a new three-step smart pruning strategy, i.e., first undersampling 

the majority class, then undersampling the minority class. Oversampling is performed, since 

the minority class becomes the majority class after oversampling, as a result, the final stage is 

to intelligently undersample the minority group that eventually becomes the dominant group. 

Through these three steps, data balance is achieved before classification. Experiments show 

that this new framework is very computationally efficient, leading to better performance even 

under highly imbalanced distributions of clean and defective data. At the same time, our 

proposed framework can also be easily adapted to most existing learning methods to improve 

their performance on imbalanced data. 
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1. Introduction

It is well known that reducing the number of software defects is a challenging problem, and the 

process of software debugging requires high labor and material costs, especially when testing resources 

are limited and software teams are often under intense pressure to deliver quickly. Therefore, 

researchers have come up with many machine learning methods to predict if there are any flaws in the 

source code of software, these machine learning methods can allocate more attention to software 

components that may contain defects by rationally distributing testing and inspection efforts. Just-in-

Time (JIT) SDP is a special type of SDP method that, as soon as a software change occurs, identifies 

the change that caused the defect (ie Just-in-Time). 

In the current big data environment, most classifiers and learning techniques cannot handle the issue 

of class imbalance well. Therefore, the issue of class imbalance is also an important factor to be 

considered in instant defect prediction research. Among the traditional methods of dealing with 

imbalanced data, several common algorithms include upsampling oversample for the minority class and 

downsampling undersample for the majority class[1], and artificially synthesized minority class 
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proposed by Chawla et al.[2]Oversampling (SMOTE). Borderline SMOTE[3], ADASYN[4] (Adaptive 

Synthetic Sampling), and Majority Weighted Minority Oversampling (MWMOTE)[5] are some popular 

smart sampling strategies. 

A technique is used in our job,SSO-SMOTE-SSO is applied instead of oversampling rate boosting 

(ORB). The purpose of intelligently pruning training data is achieved by combining undersampling and 

oversampling in layers. The SSO algorithm is in charge of intelligent undersampling of majority class 

data (expressed in the first and third steps of the algorithm), while the SMOTE algorithm is in charge 

of minority class oversampling. Because it prunes both the majority and minority classes and keeps 

only sample information that is useful for the classification task, such a sequential combination provides 

an efficient solution to the class imbalance problem in the instant software defect prediction task. Our 

paper is organized as follows: Section II contains a literature survey related to related work, Section III 

has the precise procedures for the suggested strategy for dealing with imbalanced data, Section IV 

analyzes the experimental setup and result analysis, and the last section presents general conclusions 

are drawn. 

2. Related work 

In this section, we first briefly introduce the meaning and common evaluation metrics of instant 

defect prediction, then introduce class imbalance learning and validation delay in defect prediction, and 

finally introduce the methods involved in machine learning to solve class imbalance. 

2.1. JIT-SDP 

The software defect prediction technology mainly includes module-level, file-level and change-level 

defect prediction according to different prediction granularities. The change-level defect prediction 

aims at predicting whether the introduced code has defects when the developer submits the code. , so it 

is also called just-in-time defect prediction. Kim et al.[6] were the first to investigate JIT-SDP. They 

classified changes into clean and defective changes based on software change features such as adding 

and removing deltas, directory/file names, metrics complexity, and so on. Several other research has 

looked into the features of software changes that lead to defects and the underlying metrics (i.e., input 

characteristics) used to predict them, Shihab et al.[7] investigated dangerous(defect-causing) changes, 

including the day of the week[8] and time of day[9] when the change was committed. Lines of code 

had been introdduced, and flaws were touching files, they discovered (i.e. ratio of bug fixes to total 

changes touching files), number of bug reports associated with commits, and developer experience were 

the top indicators of risky changes. Kamei et al.[10] conducted one of the largest JIT-SDP studies. They 

used a number of factors gleaned from commits and bug reports, which are thought to be good markers 

of software modifications that result in problems. They demonstrated that the indicators they utilised in 

their research were highly predictive for both open source and commercial applications. As a result, we 

employ the same measures in this study. The general just-in-time software defect prediction model is 

shown in Figure 1. 

 
Figure 1: Just-in-time defect prediction frame-work in general 
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2.2. Verification Latency in JIT-in-SDP 

The fact that the labels of training samples may come later than their input features is referred to as 

validation latency. Tan et al.[11] discovered that neglecting validation delays results in unduly  

optimistic predictions of prediction performance, so they propose storing additional batches of training 

data over time and using all batches received to develop a JIT -SDP classifier. After a predetermind 

waiting time has elapsed, training examples are only available for building fresh batches. Their research 

did not look into how long it takes to identify problems in the real world, and their proposed solution 

assumes no change in class imbalance. Unlike their work, this study explores the impact of class 

imbalance evolution on the JIT-SDP classifier’s prediction performance over time, provides techniques 

to better handle class imbalance evolution, and investigates how long software changes normally take 

to be identified as generating the defect class. 

2.3. SDP Class Imbalance Learning 

Class imbalance refers to the fact that the number of instances from different classes is not the same, 

or even varies greatly. This is a common occurrence in a variety of real-world applications, such as in 

fraud detection (normal vs. fraudulent), medicine (healthy vs. sick), software changes (clean vs. 

defective). Mahmood et al.[12] showed that as the data became more imbalanced, the predictive 

performance of the SDP classifier (according to the Mathews correlation coefficient) became worse; 

Wang and Yao[13] did not Balanced learning techniques have been comprehensively studied, including 

resampling, threshold shifting, and ensemble; Bennin et al.[14] presented a synthetic oversampling 

approach based on genetic chromosome theory. Kamei et al.[15] studied the application of four 

resampling strategies for fault-prone module detection. However, these methods adopt a fixed 

resampling rate and consider the imbalance rate to be fixed over time, i.e., there is no need to 

contemplate the growth of a class imbalance. Specifically, rather of allowing the resampling rate to 

dynamically adjust to the current level of imbalance in the data, their parameter tuning procedure locks 

the resampling rate utilised across the dataset to a single value. Uneven distribution of data brings great 

difficulty to applying canonical learning algorithms on unbalanced data only. Although such problems 

have been extensively studied, the existing models' performance still needs to be enhanced. 

2.4. Machine Learning to Tackle Cla-ss Imbalance Evolution 

To cope with class imbalance evolution, Wang et al.[16] suggested two online class imbalance 

learning methods: enhanced undersampling online bagging UOB (Undersampling Online Bagging) and 

improved oversampling online bagging OOB (Oversampling Online Bagging) (Oversampling Online 

Bagging). These approaches keep track of the present rate of imbalance, i.e. the ratio of examples 

𝜌𝑐
(𝑡)

belonging to each class 𝑐 ∈ {0,1} as follows: 

𝜌𝑐
(𝑡)

= 𝜃′𝜌𝑐
(𝑡−1)

+ (1 − 𝜃′)(𝑦(𝑡) == 𝑐), (1) 

where t represents the current time step; each time step corresponds to the algorithm being presented 

with a new training example;(𝑦(𝑡) == 𝑐) represents if the training sample at time t is class c, it returns 

1, otherwise it returns 0; 0 ≪ 𝜃 ‘ ≤ 1, 𝜃 ‘ is a predefined parameter, which is emphasized for adjusting 

the latest data. A smaller 𝜃 ‘ is used for the current data, 𝜌𝑐
(𝑡)

 can reflect the change of the imbalance 

rate faster, but noise may have a greater impact. Tracking the evolution of class imbalances entails 

tracking (but not yet resolving) variations in imbalance rates. For the first time, this work investigates 

the class imbalance evolution learning method under the condition of JIT-SDP, based on UOB and 

OOB. 

3. Proposed Method 

In this section, SSO and SMOTE are the essential components of our suggested hybrid SSOMaj-

SMOTE-SSOMin. We present information regarding SSO, SMOTE, and the proposed variant three-
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step sampling approach, as well as the related pseudo-code introduction. 

3.1. Verification Latency Learning C-lassification Framework 

Because we have no way of knowing whether a new software change will produce a bug at the 

moment it is submitted, we consider that within Ω (wait time) days after the change submission, once 

the change is found to cause a defect, the change will be marked as causing a defect Defective class 

changes that would otherwise be marked as clean class changes. This waiting time Ω can be set by the 

software administrator. After many experiments, it is found that it is more appropriate to set the waiting 

time value to 90 days. This framework can also be applied to other classifiers. 

3.2. A Three-step intelligent prun-ing strategy:SSO-SMOTE-SSO 

To better address the problem of class imbalance, we use a three-step smart pruning technique to 

replace the ORB[17] algorithm. Inspired by the work on oversampling and undersampling methods for 

dealing with imbalanced classes, we try to stack several sampling methods in steps, i.e. perform a smart 

pruning process for imbalanced classes through specific consecutive three processes. : 1. First, use the 

sample subspace optimization algorithm (SSO) to undersample the majority class. SSO is a strategy for 

locating the most representative majority class samples through intelligent majority class 

undersampling, and then use these samples with the minority class. Class combination to provide 

distinguishing information between the two; 2. Oversample the minority class using the SMOTE 

algorithm. SMOTE's core strategy entails analysing minority class samples and artificially synthesising 

new samples based on the minority class samples, which are then added to the data set; 3. The SSO 

algorithm is used again to undersample the minority class after oversampling, so this strategy is called 

SSO-SMOTE-SSO. Figures 2 to 4 summarize the pseudocode of the three algorithms involed. 

 
Figure 2: Pseudo-code for SSO 

 
Figure 3: Pseudo-code for SMOTE 

 

 
Figure 4: Pseudo-code for SSO-SMOTE-SSO 
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4. Experiments & Analysis 

To analyse the performance of just-in-time (JIT) models, we employ two well-known software 

projects, QT and OPENSTACK. Developed by The Qt Company, Qt is a cross-platform application 

framework that allows individual developers and organizations to contribute. OPENSTACK is an open-

source cloud computing software platform that is delivered as an infrastructure-as-a-service, giving 

clients access to their resources. To obtain software changes that cause defect classes, we use Commit 

Guru[18], a tool that evaluates and delivers change-level analysis, which provides change-level 

indicators: (1) the size of the change; (2) what was the file changed; (3) the proliferation of changes; (4) 

the developers' experience in making the adjustments; (5) the reason for the changes. The datasets used 

in our work are simply summarised in Table I. Mc Intosh and Kamei [19] originally gathered and 

curated this dataset. After final processing, Table 1 shows the relevant information from the two project 

datasets, with the QT dataset having 23,912 commits and the OPENSTACK dataset having 22,757 

commits. 

Table 1 
Information of the dataset used in this work 

Dataset 
Timespan Commits Imbalance ratio 

Clean:defect start end clean defect total 

QT 06/2011 03/2014 20330 3582 23912 5.676:1 
OPENSTACK 01/2011 02/2014 16830 5927 22757 2.840:1 

 

In the research of immediate defect prediction, the AUC score is often used as the evaluation index 

of the model. AUC stands for Area under the Receiver Operating Characteristic Curve, and it refers to 

the area beneath the curve of the receiver operating characteristic (ROC), which is mainly used for 

Investigates performance on imbalanced class datasets, with values ranging from 0 to 1. The suggested 

approach is used to analyse the QT and OPENSTACK data sets, and the ROC curve's area under the 

curve (AUC) is given in Table 2. The results of multiple experiments show that for the treatment of 

class imbalance problems, SSO-SMOTE is used. - The effect obtained by SSO processing the dataset 

is more significant than that obtained by using only a single SMOTE method. 

Table 2 
Area Under Curve (AUC) from ROC curve analysis for various datasets 

Methods QT OPENSTACK 

SMOTE 0.742 0.758 
SSO-SMOTE-SSO 0.765 0.803 

5. Conclusion 

In this paper, we identify and predict approxi-mately 50,000 modifications from two open source 

projects using an innovative methodology that combines oversampling and undersampling methods to 

finish the processing of imbalance classes in on-the-fly software defect prediction.This study 

investigates the evolution of class imbalance in JIT-SDP, demonstrating that class imbalance is a 

significant issue in JIT-SDP by verifying the delay architecture, after that, a three-step intelligent 

sampling for class imbalance dataset was used. The method is used in a model that predicts software 

defects in real time, and the correction of unbalanced data is completed before the classification process, 

and the balanced data set is obtained to complete the defect prediction. In real datasets, the proposed 

mixed sampling strategy provides an effective solution to the imbalanced number of clean and faulty 

class changes (i.e. QT and OPENSTACK). Our future research will focus on how to handle class-

imbalanced data distributions more quickly and accurately to produce an on-the-fly software defect 

prediction model with shorter run times and more accurate prediction outputs. 
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