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Abstract
Hyperspectral images (HSIs) have a wide field of view and rich spectral information, where each pixel represents a small area
of the earth’s surface. The pixel-level classification task of HSI has become one of the research hotspots in hyperspectral
image processing and analysis. More and more deep learning methods have been proposed in recent years, among which
convolutional neural network (CNN) is the most influential. However, it is difficult for CNN-based models to obtain the
global receptive field in HSI classification task. Besides, most of the self-supervised training methods are based on sample
reconstruction, and it is not easy to achieve effective use of unlabeled samples. In this paper, we propose a novel convolutional
embedding module, combined with the Transformer blocks, which successfully improves the context-awareness while
retaining the local feature extraction capability. Moreover, a new self-supervised task is designed to make more efficient use
of unlabeled data. Our proposed pre-training task only masks the central token and reconstructs the central pixel from a
learnable vector. It allows the model to capture the patterns between the central object and surrounding objects without
labels.
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1. Introduction
Hyperspectral images are generally composed of dozens
to hundreds of bands and have the characteristics of low
spatial resolution and high spectral resolution. The spec-
tral information provides the possibility to distinguish the
corresponding land covers, which has spawned various
research fields. Among them, pixel-level hyperspectral
image classification is the most concerned one in the
community. Its main task is to assign a class label to
each pixel, somewhat like semantic segmentation in the
computer vision (CV) field. Different from RGB image,
hyperspectral image is high-dimensional data. In order to
avoid the curse of dimensionality, principal component
analysis (PCA) [1] and independent component analysis
[2] are widely used for redundancy elimination.

So far, many hyperspectral image classification meth-
ods have been proposed, but deep learning methods have
taken the lead. According to the different techniques
used, it can be divided into traditional methods and deep
learning-based methods. In early research, people mostly
selected a single pixel and all its spectral information
as the training sample and rely on the traditional clas-
sifiers, such as logistic regression [3], decision tree [4],
random forest [5], and support vector machine (SVM)
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[6], to classify the ground objects through spectral in-
formation. However, the imaging distance of HSI is far
away, and there are many interference factors in this pro-
cess, so that the spectral curve of different surface objects
is not always easy to distinguish. This creates difficul-
ties for these methods to achieve good performance in
complex scenes. In recent years, deep learning methods
have gradually become popular, in which CNN-based
methods are dominant. Hu et al. [7] made a preliminary
attempt that several 1-D convolutional layers are stacked
to extract local spectral information, and many classical
data augmentation methods in CV have been introduced.
Roy et al. [8] combined 3D-CNN and 2D-CNN to achieve
hierarchical feature learning. In addition, other neural
networks have also achieved good performance. Zhou
et al. [9] designed a two-branch Long Short-Term Mem-
ory network (LSTM) to extract spectral information and
spatial information respectively. He et al. [10] proposed
a pure multilayer perceptron (MLP) network, proving
that the MLP network still has potential. Hong et al.
[11] designed a mini-batch graph neural network. It
is worth mentioning that the recently prevalent Trans-
former model has also been introduced. Hu et al. [12]
used 1-D convolution as an embedding layer combined
with Transformer Block. Hong et al. [13] analyzed the dif-
ference between Transformer and other classical neural
networks in detail and proposed a ViT-based Spectral-
Former for spectral information learning. Zhong et al.
[14] proposed a spatial–spectral Transformer network
and a model structure search framework. Dang et al. [15]
combined spectral-spatial attention module with densely
connected Transformer blocks. Besides, self-attention
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network is also used to address adversarial attacks that
may be encountered in hyperspectral classification tasks
[16].

However, limited by the size of the receptive field,
it is difficult for CNN models to capture the global re-
lationship. Meanwhile, deep learning models are data-
driven which means that more labeled data leads to better
model performance. But, obtaining such a large number
of labeled samples in practical applications is expensive.
How to effectively use unlabeled data has become an
urgent need. The self-supervised pre-training method in
HSI classification task is still stuck in the autoencoder-
based sample reconstruction [17]. This article proposes
a band-grouping-based 3D convolutional Transformer
(BG3DCT) and a new self-supervised task for model pre-
training. The main contributions are listed as follows:

• A novel band-grouping-based 3D convolutional
Transformer is designed for HSI classification.
We replace the commonly used linear embedding
module with a well-designed 3D convolutional
embedding module, combined with the spectral
segmentation strategy, to achieve efficient spatial-
spectral feature embedding in each sub-band.

• According to the characteristics of hyperspectral
data, a new pre-training task is proposed. In the
process of masking and reconstructing the cen-
ter pixel, the model’s ability to capture the rela-
tionship between the center pixel and surround-
ing pixels is improved. Compared to the overall
sample reconstruction task, center-masked pre-
training task is more efficient for the representa-
tion of center area in the pre-training stage.

• A series of comparative experiments and ablation
experiments demonstrate the effectiveness of our
proposed pre-training method and BG3DCT net-
work. In particular, our proposed pre-training
method can alleviate the instability of results
caused by random sampling in the limited train-
ing samples scenario.

The rest of this paper is organized as follows. Our
proposed method will be introduced in detail in section
II. The descriptions of the comparative experiments and
result analysis will be provided in section III, and section
IV presents the conclusions.

2. Methodology

2.1. BG3DCT Network
The BG3DCT network has three parts, the band-
grouping-based 3D convolutional embedding (BG3DCE)
module, Transformer encoder, and MLP head. The spe-
cific design is as follows.

Table 1
The Detail Description of BG3DCE Module

Layer Kernel Size Output Shape Groups Param

Input - (8, 13, 13, 10) - -
Conv3D-1 (3, 3, 3) (32, 11, 11, 8) 8 896

BatchNorm3d-1 - - - 64
Conv3D-2 (3, 3, 3) (32, 9, 9, 6) 8 3,488

BatchNorm3d-2 - - - 64
Reshape - (192, 9, 9) -
Conv2D (1,1) (128, 9, 9) 8 3,200
Reshape - (81, 128) - -

2.1.1. BG3DCE Module

Considering the differences between RGB images and
HSIs, the ViT network is not well compatible with hyper-
spectral image. When the training sample is limited, the
linear embedding module cannot sufficiently character-
ize the spatial-spectral features. Meanwhile, CNN-based
module is more adaptable to this situation, while also
being able to capture the local texture information. So
we design a band-grouping-based 3D convolutional em-
bedding module for HSI embedding. Firstly, we perform
PCA processing on the input samples and employ a spec-
tral partition strategy to divide the spectra into several
sub-bands of equal length. Because the spectral curves of
objects often have local differences, the extraction of 3D-
CNN on sub-band is more efficient than full-band. Then,
paralleled 3D convolution extraction are performed on
each sub-band twice, and the 3D batch normalization
operation is followed to unify the feature deviations gen-
erated from each sub-band. Finally, we concatenate the
features to maintain the relative positional relationship
between sub-bands and a lightweight 2D-CNN is used for
feature fusion and compression. In particular, paralleled
3D convolution operation have a simple implementation,
and the convolution function includes a grouped con-
volution option. The detailed description of BG3DCE
module is listed in table 1.

2.1.2. Transformer Encoder

The context-aware ability of CNN often needs to make
the model go deeper, but HSI data is limited, so it is dif-
ficult for us to stack modules as simply as the model in
CV task. In contrast, The multi-head attention module
can make up for the shortcomings of CNN here and ef-
fectively model the relationship between ground objects.
So, the combination of CNN and Transformer is comple-
mentary and powerful. A standard Transformer mainly
comprises position encoding, multi-head attention, and
feedforward layers. Since the convolution features con-
tains position information, the positional encoding is not



Figure 1: Architecture of the proposed band-grouping-based 3D convolutional Transformer for HSI classification.

Figure 2: Architecture of the proposed center-mask pre-training task.

used here, and the embedded spatial-spectral features
are directly input into the Transformer blocks. Finally,
we add an average pooling layer to achieve the global
representation and get the classification results through
a MLP layer.

2.2. Center-mask Pre-training Task
Today, most hyperspectral image classification meth-
ods are patch-based. The model’s input not only is the
spectral curve of the centre pixel but also contains its
neighbour region, which is generally a square area and
makes the input more distinctive. Inspired by the form
of the training sample, we propose the center-masked
pre-training task, which is similar to MAE [18] but our
method is easier to implement.

The flowchart of our proposed pre-training task is
shown in Fig. 2. The Encoder is a BG3DCT network
but removes the average pooling layer and MLP layer.
The decoder consists of two layers of standard Trans-
former encoders, which are only used in the pre-training
stage. Given an input sample X and center pixel vector
𝑣𝑐, the latent representation of the input sample is E (em-
bedded by the BG3DCE module). Unlike self-supervised
pre-training in the CV field, RGB images cannot directly
find areas that need to be focused on, but the neighbor-

hood areas of HSI samples serve for the central pixel. So,
our masking target can select the essential part in the
training sample, namely the center pixel. Therefore, we
replace the token in the middle of the sequence E with
a learnable vector. Then, the masked sequence is input
into the decoder, and the pixel-level reconstruction is per-
formed by a MLP head to obtain the reconstruction result
𝑣�̂� of the center pixel. The target of the center-masked
pre-training task is to reconstruct the centre pixel as effi-
ciently as possible so that the encoder can better learn the
relationship between the centre pixel and the neighbour
pixels without labels. The reconstruction target can be
formulated as:

𝑇 (𝑣𝑐, 𝑣�̂�) = min |𝑣𝑐 − 𝑣�̂�|2 (1)

where 𝑇 is the similarity function. In the deep learning
framework, function 𝑇 is equivalent to the mean squared
error (MSE) loss function.

3. Experiment
To fully evaluate our proposed pre-training method and
BG3DCT network, we conduct comparative and ablation
experiments on two public datasets, Salinas and Yellow
River Estuary (YRE). The detailed information and the



Table 2
Number of Training and Testing Samples on The Salinas
Dataset

Class Class Name Training Testing
1 Brocoli green weeds 1 5 2004
2 Brocoli green weeds 2 5 3721
3 Fallow 5 1971
4 Fallow rough plow 5 1389
5 Fallow smooth 5 2673
6 Stubble 5 3954
7 Celery 5 3574
8 Grapes untrained 5 11266
9 Soil vinyard develop 5 6198
10 Corn senesced green weeds 5 3273
11 Lettuce romaine 4wk 5 1063
12 Lettuce romaine 5wk 5 1922
13 Lettuce romaine 6wk 5 911
14 Lettuce romaine 7wk 5 1065
15 Vinyard untrained 5 7263
16 Vinyard vertical trellis 5 1802

Total 80 54129

partition of the training set and testing set are shown
in the table 2 and table 3, respectively. We use three
metrics to evaluate the classification results, overall accu-
racy (OA), classwise average accuracy (AA), and kappa
coefficient (𝜅). All the experiments are conducted on a
computer with an Intel Xeon Platinum 8260 CPU, 64-GB
RAM and an NVIDIA Tesla P100-16GB GPU. The model
structure and parameter settings of the comparison meth-
ods comply with open source codes or corresponding pa-
pers. For our proposed model, the patchsize is set to 13,
the spectral dimension is 80 after PCA, and the number
of sub-bands is 10. The embedding size of each token is
set to 128. The learning rate is set to 0.001, and Adam
is adopt as the gradient descent optimizer. Meanwhile,
all the experiments are repeated ten times to smooth out
errors caused by random sampling. The setting of the
center-masked pre-training is the same.

3.1. Datasets Description
3.1.1. Salinas Dataset

The salinas dataset, collected by the AVIRS sensor in the
Salinas Valley, USA, has an image size of 512 × 217 and a
spatial resolution of 3.7 meters. After noise band removal,
204 bands are remained. There are 16 kinds of ground
objects in the dataset, with 56,975 samples that can be
used for pixel-level classification.

3.1.2. YRE Dataset

YRE dataset is a large scene dataset captured by the
Gaofen-5 satellite in the yellow river estuary region of
Shandong Province, China. Its size is 1400 × 1400, and
the spatial resolution of each pixel is 30 meters, leaving

Table 3
Number of Training and Testing Samples on The YRE Dataset

Class Class Name Training Testing
1 Building 10 523
2 River 10 5366
3 Salt Marsh 10 4985
4 Shallow Sea 10 17540
5 Deep Sea 10 18667
6 Intertidal Saltwater Marsh 10 2333
7 Tidal Flat 10 1782
8 Pond 10 1777
9 Sorghum 10 636
10 Corn 10 1499
11 Lotus Root 10 2709
12 Aquaculture 10 8009
13 Rice 10 5498
14 Tamarix Chinensis 10 1210
15 Freshwater Herbaceous Marsh 10 1407
16 Suaeda Salsa 10 864
17 Spartina Alterniflora 10 570
18 Reed 10 1960
19 Floodplain 10 337
20 Locus 10 65

Total 200 77737

180 bands after removing noise bands. The surface ob-
jects are mainly wetland vegetation, there are 20 kinds
of objects, and the total number of labeled samples is
77,937.

3.2. Comparative Experiment
To demonstrate the superiority of our proposed method,
we select five state-of-the-art methods on two public
datasets, Salinas and YRE, including four CNN-based
methods and one classical Transformer network. They
are CNNHSI [19], FC3D [20], HybridSN [21], TwoCNN
[22], and Vision Transformer (ViT) [23]. Among them,
several methods based on 2D-CNN are distinguished in
the size of the convolution kernel and the structure de-
sign. CNNHSI stacks several 2-D Convolution layers with
1×1 kernel size. TwoCNN is a dual-branch CNN with a
2D-CNN and a 1D-CNN to extract spatial information
and spectral information, respectively. FC3D is a pure 3D-
CNN network, and HybridSN uses 3D convolution and
2D convolution successively for hierarchical feature ex-
traction. ViT divides the input samples into equal-sized
patches, obtains the embedded tokens through linear
embedding module, and then inputs them into the Trans-
former encoder.

The results of the comparative experiments are shown
in table 4 and table 5. Our method has obtained obvious
advantages and achieved the best or second-best results
in each class, reflecting our approach’s superiority and
robustness. Under the setting of training with limited
samples, CNNHSI achieves excellent classification results
due to its lightweight network structure. Limited by the
large model size, HybridSN, FC3D, and TwoCNN fail to



Table 4
Classification Accuracy (%) andKappaMeasure for The Salinas
Dataset

Class ViT HybridSN FC3D CNNHSI TwoCNN Ours
1 97.83 99.93 99.95 93.64 93.44 99.98
2 97.21 98.31 92.92 79.30 89.86 99.92
3 82.83 97.04 97.84 84.62 90.63 99.99
4 92.91 93.18 96.66 99.40 97.45 99.11
5 85.29 98.08 86.54 77.31 95.23 97.59
6 98.58 98.46 94.08 98.45 99.74 99.95
7 98.01 99.76 99.78 99.13 100.00 100.00
8 69.92 59.81 53.82 65.56 74.59 63.87
9 97.38 96.84 95.46 94.70 99.67 99.77
10 82.71 93.33 90.32 46.59 95.17 95.08
11 90.61 97.65 89.21 90.40 95.71 99.96
12 98.10 94.88 91.28 97.85 99.20 99.43
13 90.71 84.63 87.82 99.19 99.28 97.08
14 96.15 98.97 92.99 92.94 96.39 99.31
15 62.93 71.60 65.73 40.12 66.80 83.49
16 94.19 79.97 88.53 82.69 96.38 99.08

OA (%) 84.68 85.24 81.65 76.41 87.99 89.66
AA (%) 89.71 91.40 88.93 83.87 93.10 95.85
𝜅 83.01 83.70 79.78 73.74 86.65 88.54

Table 5
Classification Accuracy (%) and Kappa Measure for The YRE
Dataset

Class ViT HybridSN FC3D CNNHSI TwoCNN Ours
1 49.78 82.35 78.84 90.66 70.48 84.23
2 95.45 100.00 99.93 98.83 99.96 97.36
3 55.45 61.34 72.20 74.55 85.93 78.15
4 78.22 71.04 72.78 73.08 90.44 92.36
5 85.89 76.74 90.49 84.31 97.59 99.55
6 79.48 81.77 83.37 81.59 82.65 85.85
7 56.38 51.53 57.30 59.95 63.63 60.30
8 73.16 73.94 73.68 78.55 60.17 73.23
9 75.10 85.90 86.11 86.57 82.70 90.24
10 57.06 70.82 62.15 88.20 72.22 88.49
11 63.65 82.55 83.38 88.73 75.71 90.84
12 72.82 76.36 79.69 77.62 73.76 76.96
13 71.27 87.47 84.49 92.63 87.79 89.78
14 67.11 75.32 76.50 87.81 88.63 79.28
15 59.32 64.65 74.65 82.00 96.32 71.77
16 74.27 93.02 89.89 92.66 92.20 95.08
17 81.29 93.98 89.47 95.08 93.72 94.40
18 44.74 58.11 62.74 65.86 67.59 70.65
19 60.53 82.89 68.25 88.72 68.84 71.60
20 87.69 91.28 71.79 85.84 64.00 92.15

OA (%) 75.58 76.14 80.84 84.61 87.45 89.01
AA (%) 69.43 78.05 77.88 83.26 80.72 84.11
𝜅 71.87 72.96 78.09 82.30 85.48 87.29

obtain superior classification results. The performance
of the ViT model is not stable. When the distribution of
ground objects in the dataset is more complex, the linear
embedding module drags down the model performance.
Therefore, this proves the necessity of a well-designed
embedding layer for the Transformer network in HSI
classification. In addition, all the methods cannot dis-
criminate the Vinyard untrained class well, which may
be caused by the large variability of this land cover. It is a
problem we need to solve in the future. The classification
results of each method on the YRE dataset are similar
to the Salinas dataset. The YRE dataset is a large scene
dataset so that the classification task is more complicated.
Hence, the classification performance of each method

Table 6
Ablation Study Results Toward The Center-Masked Pre-
training Pretask on The salinas and YRE Datasets

Case
YRE Salinas

OA AA 𝜅 OA AA 𝜅
BG3DCT w/ pretrain 89.01 84.11 87.30 89.99 95.40 88.87
BG3DCT w/o pretrain 86.24 82.19 84.15 88.60 85.42 86.46

is slightly lower than that of the Salinas dataset. It is
worth mentioning that TwoCNN achieves good classifi-
cation results, which may benefit from its spectral feature
extraction branch.

3.3. Ablation Study
In this section, we only conduct ablation experiments
on our proposed pre-training task, considering that the
experimental results compared with the ViT model can
intuitively demonstrate the effectiveness of our proposed
BG3DCT module. The results are shown in table 6 that
the OA of the model finetuned on pre-trained model
outperforms the model without pre-training by 2.77%
and 1.33%, on the Salinas and YRE datasets, respectively.
This undoubtedly proves the superiority and robustness
of our pre-training task.

4. Conclusion
In this article, we creatively propose a band-grouping-
based convolutional embedding module to extract spatial-
spectral information in each sub-bands. The Transformer
module is used to model the global relationship between
surface objects. Additionally, for effective use of unla-
beled data, we design a new unsupervised pre-training
task for hyperspectral classification. Through the mask
and reconstruction process of the token generated from
the central area, the model can initialize the backbone
network without labeled data and provide a more stable
model performance. To fully evaluate our proposed meth-
ods, we conducted a series of comparative experiments
and ablation experiments on two public datasets, Salinas
and YRE. The experimental results prove the effective-
ness and superiority of our method.
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