CEUR-WS.org/Vol-3207/paperl0.pdf

Radar-Based Volumetric Precipitation Nowcasting: A 3D
Convolutional Neural Network with U-Net Architecture

Peter Pavlik™?, Viera Rozinajova®’ and Anna Bou Ezzeddine?

!Faculty of Information Technology, Brno University of Technology, Bozetéchova 1/2, Brno-Kralovo Pole, 612 00, Czechia
2Kempelen Institute of Intelligent Technologies, Mlynské Nivy II. 18890/5, Bratislava, 821 09, Slovakia
3Slovak Centre for Research of Artificial Intelligence - slovak.Al Slovakia

Abstract

In recent years - like in many other domains — deep learning models have found their place in the domain of precipitation
nowcasting. Many of these models are based on the U-Net architecture, which was originally developed for biomedical
segmentation, but is also useful for the generation of short-term forecasts and therefore applicable in the weather nowcasting
domain. The existing U-Net-based models use sequential radar data mapped into a 2-dimensional Cartesian grid as input and
output. We propose to incorporate a third - vertical - dimension to better predict precipitation phenomena such as convective
rainfall and present our results here. We compare the nowcasting performance of two comparable U-Net models trained on
two-dimensional and three-dimensional radar observation data. We show that using volumetric data results in a small, but

significant reduction in prediction error.
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1. Introduction

Accurate precipitation nowcasting is important for plan-
ning various human activities and tasks such as agri-
culture, construction building or winter road mainte-
nance. Nowcasting is defined by the World Meteoro-
logical Agency as forecasting with local detail, by any
method, over a period from the present to six hours
ahead, including a detailed description of the present
weather [1].

In practice, simpler - and therefore faster - models out-
perform complex Numerical Weather Prediction (NWP)
models at the task of precipitation nowcasting because
NWP models cannot consider the latest observations due
to their long inference time. The highly sophisticated
NWP models usually need hours to produce their fore-
casts and so they are not able to take into consideration
the latest data observations. Even a simple model that
can quickly output a prediction will outperform the NWP
models at the task of precipitation nowcasting simply by
the fact that it can consider the present data. Nowcast-
ing models can work in conjunction with NWP models
and use their long-term forecasts as additional inputs to
further refine their nowcasts [1].

Precipitation nowcasting is usually performed using
temporal extrapolation of past data from weather radar
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systems because it requires highly accurate and con-
stantly updated data about precipitation fields, i.e. the
location of storms, wind, fog, snow etc. Weather radar
systems are essential for nowcasting because they di-
rectly observe precipitation particles with an update rate
of a few minutes [1]. See Figure 1 for an example of a
radar precipitation map.

In the last few years, deep learning precipitation now-
casting approaches, such as convolutional neural net-
works (CNN), started to gain attention. From the initial
ConvLSTM model [2], through encoder-decoder U-Net
architectures [3, 4], to the recently-introduced GAN-
based approaches [5, 6], the CNN models proved to
consistently outperform the operational state-of-the-art
methods in the domain [6].

Most precipitation nowcasting models only use the
radar data mapped to a 2D Cartesian grid, aggregating
the vertical dimension, even though the raw output of
weather radar systems consists of multiple measurements
at different elevation angles and polar coordinates that
capture the precipitation phenomena in 3-dimensional
space around the radar.

We propose using volumetric data from multiple alti-
tudes to give the model as much data about the observa-
tion as possible. Providing information about the vertical
motion of precipitation particles, as well as their vertical
extension, could potentially be valuable for the model, as
they are an important factor in predicting the behavior
of convective storms [7].

We compare two models - a reference U-Net architec-
ture based on existing research [3, 4] and an alternative
with 2D convolutional layers replaced by 3D convolution.
We evaluate their performance in the task of predicting
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Figure 1: A single radar echo observation. The shown re-
flectivity values represent reflectivity captured at 2 km above
radar (CAPPI). The reflectivity map is overlaid over a satel-
lite image of the appropriate area centered on the Maly Ja-
vornik radar station generated using Google Earth Engine [8].
Landsat-8 image courtesy of the U.S. Geological Survey.

a single constant-altitude radar reflectivity observation
30 minutes into the future.

Our experiments show that providing volumetric data
from multiple altitude levels results in small, but statisti-
cally significant reduction of prediction error.

2. Related Work

Many automated nowcasting systems that employ var-
ious inputs and computation approaches are in use to-
day [9, 10, 11, 12, 13]. These systems are generally based
on extrapolating past observed rainfall data forwards in
time. They typically estimate the future advection based
on motion observed in the most recent radar images us-
ing cross-correlation or optical flow techniques [1].

Some nowecasting systems use the cell tracking ap-
proach. They firstly identify storms in the radar scan
and then locate the corresponding object in the consecu-
tive scans to track its motion. Cell tracking is useful for
tracking severe storms and is useful for generating early
warnings [1].

The shortcoming of these advection nowcasting meth-
ods is the assumption that the observed precipitation
field will not change, only move elsewhere. Therefore,
they lack the capability to predict beginning of new pre-
cipitation phenomena such as convective initiation (start
of a storm triggered by rising moist warm air) or the
decaying of the storm at the end of its lifecycle [1, 14].

In the past years, data-driven approaches using deep
learning to construct precipitation nowcasting models
to mitigate these limitations have started to gain atten-
tion [2, 3, 6].

The first deep learning approach applied to the task of
precipitation nowcasting was a ConvLSTM model pre-
sented in [2] that outperformed the operational optical-
flow-based ROVER nowcasting system. Experiments
with other CNN architectures started, such as a Con-
vGRU model from [15] or a U-Net-based architecture
introduced in [16]. The U-Net architectures, originally de-
veloped for segmentation of medical images [17], proved
to be quite popular with models such as RainNet[3] and
SmaAt-U-Net[4] further exploring this approach.

The previously mentioned neural network regression
models trying to nowcast the future state of precipita-
tion fields were affected by blurring. When using tra-
ditional gridpoint-based verification statistics such as
Mean Squared Error (MSE) as the training loss function,
we face the so-called “double penalty problem”. A fore-
cast of a precipitation feature that is correct in terms of
intensity, size, and timing, but incorrect concerning loca-
tion, results in very large mean square error [18]. This
causes the model to produce blurry outputs to mitigate
the penalisation caused by spatially incorrect precipita-
tion features.

The blurry predictions pose one of the biggest chal-
lenges for anyone trying to develop a nowcasting model
based on machine learning as such predictions have diffi-
culties predicting extreme events due to the smoothing.
Recently, this problem started to be addressed by training
models using the Generative Adversarial Network (GAN)
approach, the most prominent being DGMR[6]. They
introduced a GAN framework[19] to solve the problem
of blurry predictions present in other deep learning pre-
cipitation nowcasting models such as RainNet. Model
is trained using a combination of two discriminators in-
spired by existing research in video generation and a
regularization term that comprise the loss function. The
first discriminator, spatial, discourages blurry predictions
while the second one, temporal, discourages jumpy pre-
dictions. The regularization term penalizes deviations
between the observed radar sequences and the model
prediction. The DGMR model can be currently consid-
ered the state-of-the-art in the precipitation nowcasting
domain.

2.1. Motivation for Volumetric
Nowcasting

The application of deep learning models for precipitation
nowcasting is the focus of many research works. How-
ever, the vast majority of the models use 2-dimensional
aggregate radar products and thus throw away any infor-
mation which can be gained from processing the vertical
structure of precipitation objects captured by the radar.

When reviewing the existing works in the precipi-
tation nowcasting domain, we identified a need to ex-
plore the effect of working with 3-dimensional volumetric



radar data. By processing the data into a 2D aggregated
map, we lose all information about the vertical structure
of the precipitation particles detected by the radar. The
model trained in this way cannot consider the vertical
movement of particles caused by updraft or downdraft
and predict the future precipitation accordingly.

Compared to 2-dimensional precipitation nowcasting,
volumetric models are much less prevalent. One such
model was presented in [20], where a ConvLSTM model
was used to predict future radar reflectivity. The model
input shape is 18x18x20 (18x18 km with 1 km resolution,
10 km above at 500 m resolution) provided at multiple
time steps, each one is processed by a 3D-CNN first,
then passed on to ConvLSTM sequential network. The
output is a classification for the central region of 6 x 6 km
predicting whether the reflectivity in the next 30 and 60
minutes will exceed a set threshold. The final result is
a binary map with resolution of 6 x 6 km. The problem
with this approach is that the model cannot consider any
fast moving precipitation particles, since it cannot see
more than 6 km past its target region. Also, the target
region size of 6 x 6 km can hardly be considered a high
spatial resolution, which is one of the defining traits of
nowecasting.

One other work worth mentioning is a 3D-CNN+GAN
hybrid model from [5]. This model is quite sophisticated.
It uses the GAN-based approach to predict plausible data
and a weighted MSE loss function to give more impor-
tance to high reflectivity values, resulting in better ability
to predict extreme precipitation events and reduce out-
put blurring. However, the third data dimension is not
actually the altitude above radar we want to consider,
but time - i.e. the past observations are not as separate
channels, but form a 3D volume. Nevertheless, the model
drives the development of 3D-CNN models for precipita-
tion nowcasting.

3. Radar Reflectivity Dataset

To explore the effect of volumetric precipitation now-
casting, we collaborated with the Slovak Meteorological
Institute that provided us a dataset of roughly 3.5 years
of reflectivity data from Maly Javornik weather radar
station. The data is captured in 5 minute intervals. The
dataset consists of 355 761 separate observations in the
ODIM HDF5 format.

The radar captures the precipitation particles in the
air by measuring returned radar wave power (echo) after
hitting precipitation particles. This value is called reflec-
tivity, measured in logarithmic dimensionless units called
decibels (dBZ). The data consists of reflectivity values
at the so-called reflectivity gates in multiple elevation
angles distributed around the radar station and encoded
in polar coordinates. See Figure 2 for a vertical slice of a
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Figure 2: Vertical slice of a single radar reflectivity observa-
tion at a set azimuth. The separate “rays” at different elevation
angles are identifiable.

single radar observation.

Since the convolutional neural network models cannot
process the data in polar coordinates, we need to convert
them into Cartesian maps. We processed the data using
the Py-ART Python library [21]. The radar echo obser-
vations are typically aggregated into precipitation maps
in two forms. The first one is Constant Altitude Plan
Position Indicator (CAPPI), which displays reflectivity
gate values at certain altitude slice above radar. The other
is CMAX, which aggregates the vertical dimension and
displays the maximum value in the vertical column for
each data point. If a 3D volume is created from multiple
CAPPI maps at different altitude levels, the product is
called MCAPPL

The reflectivity maps can be converted to rainfall rate
maps using the Marshall-Palmer Z-R relationship[22]:

Z = 200R"0 (1)

where Z is the reflectivity factor and R is the rainfall
rate in mm/h.

3.1. Training data selection

The dataset requires filtering before training since the ma-
jority of the observations are of clear skies with nothing
to learn from. Most of the observations from the dataset
therefore have no value for training the model and could
even negatively affect the training by biasing the outputs
toward clear sky prediction, while we are mostly inter-
ested in non-trivial cases with high precipitation. We
filtered the images as follows:

1. Create a CAPPI radar reflectivity map at 2 km
altitude above radar at 1 x 1 km resolution and
select a center slice of size 336 x 336 km.

2. Convert reflectivity to rainfall rate according to
Marshall-Palmer Z-R relationship (1).

3. Compute the ratio of rainy to clear pixels (thresh-
old 0.05 mm/5 min or 0.6 mm/h - corresponds to
slight rain).



4. If the rainfall map contains at least 20% of rainy
pixels and 11 previous observations are available,
add it to the target observation set.

Each selected target observation was included in the
training dataset, along with a set number of previous ob-
servations to serve as inputs and non-target intermediary
outputs. For our models, we decided to use 6 observa-
tions as input and 6 as output, effectively predicting the
precipitation half an hour in advance based on the last
half hour of data. This means that for each target obser-
vation, we also needed to include 11 leading observations
in the dataset. This process returned 9 018 suitable tar-
get images which together with the necessary leading
images represent 3.18% of the original dataset.

It should be noted that the data converted to rainfall
described above was not used for training, only for fil-
tering the target observations based on the ratio of rainy
pixels. The actual training data used reflectivity directly
for both 2D images and 3D volumes. The 2D dataset
was a collection of CAPPI radar reflectivity maps at 2 km
altitude above radar. A 3D dataset was a collection of
CAPPI radar reflectivity maps at 8 altitude levels above
radar, from 500 m.a.r to 4000 m.a.r. The extent of the
data was set to 336 x 336 km centered on the radar sta-
tion with spatial resolution of 1 x 1 km for both 2D and
3D data, resulting in images of size 336 x 336 pixels and
8 x 336 x 336 voxels respectively for a single observation.

4. Model Architectures

To compare the impact of adding a vertical dimension as
fairly as possible, we chose a basic U-Net architecture in-
spired by models developed in [3, 4] as a reference model.
As U-Net is a fully convolutional neural network, convert-
ing it to process volumetric data is a trivial task - mostly
just a matter of replacing 2D convolutional layers with
3D convolutions. Besides this, the model only required
replacing 2D max-pooling layers in the encoder for 3D
max-pooling and bilinear upsample in the decoder for
trilinear. See Figure 3 for the specific number of channels
and kernel sizes at each layer of the model. Both were
implemented using the PyTorch library [23].

The conversion of the model from 2D to 3D convo-
lutions was mostly straightforward and resulted in in-
creasing the number of trainable parameters 3-fold from
roughly 17 to 52 million. The three-fold increase is based
on the fact that the model uses convolution kernels of
size 3 at every convolutional layer, therefore each kernel
has 27 (3 x 3 x 3) instead of 9 (3 x 3) weights (disregarding
bias and multiple channels). Other architectural parame-
ters of the model such as number of kernels at each layer
were kept the same for the comparison between these
models to be fair and dependent solely on the provided

Set No. of obs. % of original
Full Dataset 355761 100
Target Observations 9018 2.53
Target + Lead Obs. 11310 3.18
Training Set Targets 6515 1.83
Validation Set Targets 1150 0.32
Test Set Targets 1353 0.38

Table 1

The observation count of the full dataset, the subset selected
for training according to the training data selection described
in Section 3.1 and the sizes of train, test, validation splits.

data as much as possible. The GPU processing time (dis-
regarding the time to move the data to memory) was not
affected, with both models needing around 6 ms of GPU
time to generate a single output on our hardware.

4.1. Training and Evaluation

To train and evaluate the models, the training dataset
was split into training, validation and test subsets in
chronological order. The last 15% of target observations
were selected for the test set, the rest was chosen for
training. Out of these, the last 15% of target observations
were again selected for validation and the rest was used
as training samples. See Table 1 for the exact number of
observations in each set.

Adam optimizer was used for training the model. To
find the optimal training model hyperparameters - start-
ing learning rate, optimizer learning rate scheduler pa-
rameters and gradient clipping threshold - we utilized the
Bayesian sweep search provided by Weights & Biases[24].
We trained 20 models with 2D CNN architecture and 5
with 3D CNN architecture. The best performing model of
each architecture variant was selected for performance
evaluation. See Table 2 for all the possible hyperparam-
eter values and the best performing ones for both 2D
and 3D models. Early stopping after 15 non-improving
epochs was utilized.

Choosing the right metric to evaluate the performance
of precipitation nowcasting models is not simple. The
correct method depends on a model’s use-case and no
single composite measure is currently able to objectively
evaluate performance of precipitation nowcasting mod-
els [1]. While we outlined the shortcomings of using
MSE to evaluate precipitation nowcasting models above
in Section 2, we are using MSE as the loss function and the
primary evaluation metric despite the double penaliza-
tion effect that occurs since it is still the most commonly
used metric in this domain. Additionally, to provide more
insight into model performance, we are also computing
mean model accuracy, precision, recall and F1 scores on
binarized precipitation maps using a threshold value of
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Figure 3: Diagram of the used U-Net model encoder-decoder architectures and the feed-forward process for both the 2D and
3D variant of the model. Each rectangle represents a multi-channel feature map with the number of channels shown above (or
below in the decoder part). The spatial resolution of the feature maps at each level is shown at the left side of the diagram
(the vertical dimension size of the 3D model is in brackets). Each arrow represents an operation with the data, see legend at
the bottom right. The kernels of the double convolution operation are of size 3 x 3 or 3 x 3 x 3, the kernels of the final single
convolution operation are of size 1 x 1 or 1 x 1 x 1 and the kernels of the max pooling operation are of size 2 x 2 or 1 x 2 x 2 for
2D and 3D models respectively. All the convolutional layers used the ReLU activation function.

Hyperparameter 2D U-Net 3D U-Net

Batch size 32 4

Learning rate 5x107°,7.5x107°,1x107%,25x107%,5x 107"  5x107°,7.5x107°,1x1074,25x 107%,5x 107
Opt. LRS Factor 0.5, 0.7, 0.9 0.5, 0.7, 0.9

Opt. LRS Patience  3,5,7 3,5,7

Grad. Clip. Thres.  0.2,1,5 02,1,5

Table 2

The hyperparameters values searched through during the training of the models using the Weights & Biases bayesian search.
The values used for training the best performing models are in bold. The batch size used was the highest possible based on our
GPU memory limit. The optimizer learning rate scheduler parameters are functionally meaningless, as both of the models
achieved the best performance before the optimizer was triggered to lower the learning rate. Gradient clipping was added to

prevent exploding gradient behavior occurring sometimes when a large starting learning rate was selected.

20 dBZ (corresponding to light rain) to differentiate be-
tween rain and no rain areas. This way, we can evaluate
only the shape of precipitation features and disregard
the intensity, which can serve as another valuable metric.
Our experiments have shown that higher threshold val-
ues corresponding to extreme precipitation events show
larger differences between model metrics during evalua-
tion, however the informative value would be lower due
to such events occurring only in the small minority of
the test set observations.

5. 2D vs. 3D: A Comparison

The impact of providing a vertical dimension to the model
was evaluated by comparing the error rate when predict-
ing a single reflectivity map at constant altitude above
radar. We trained the 2D model to output the next CAPPI
radar reflectivity maps at 2 km above radar 30 minutes

into the future based on past radar reflectivity maps at
the same altitude. Subsequently, we trained a 3D model
to predict equivalent 3D reflectivity maps at 8 altitude
levels based on recent volumetric observation data. To
evaluate which model is better at precipitation nowcast-
ing, we evaluate the prediction error on a single CAPPI
map at 2 km above radar from the target observation
(nowcast 30 minutes in the future). This can be done
because one slice of the output volume of the 3D model
matches the altitude level the 2D model was trained on
(2000 m.a.r.).

A simple euclidean persistence was used as a bench-
mark. This benchmark method simply copies the last
input observation as the prediction output. Despite the
method being trivial, the precipitation data is highly de-
pendent on previous observations and so it provides a
good performance benchmark. Using this benchmark,
we can also evaluate the rate of change in the data and
therefore see how “difficult” it is to make an accurate



Model MSE | MAE |  Accuracy T  Precision? Recallt F17
Persistence 55.4110 4.7534 0.8307 0.6529 0.6426 0.6457
2D U-Net 22.6510 3.2623 0.8969 0.8257 0.7282 0.7696
3D U-Net 22.0340 3.2124  0.9000 0.8022 0.7833 0.7894

Table 3

Comparison of model results on the test set for each of the chosen metric scores. The | symbol means it is a lower-is-better
score, while the T symbolizes a higher-is-better score. The best result for each score is bolded.

Persistence

Target (t+30 min)

2D-CNN model 3D-CNN model

Figure 4: A visual comparison of nowcasts produced by the
models for a random observation from the test set. Upper left
image shows the target observation at 2 km CAPPI. Upper
right is the benchmark persistence nowcast. Bottom left is
the reference 2D-CNN U-Net model nowcast. Bottom right
is the corresponding slice of our 3D-CNN volumetric U-Net
model nowcast. While both U-Net models show the expected
blurring, the volumetric model is affected less, with larger
areas of high reflectivity (shown in dark red). This is desirable,
as the model is better at predicting extreme events.

prediction for each sample.

The results in Table 3 show that the best 3D-CNN
U-Net model slightly outperformed the best 2D-CNN
counterpart. On average, the 3D model achieved lower
prediction error on the test set, in both MSE and MAE
metrics. The improvement is small, but statistically sig-
nificant (paired t-test at 0.99 confidence level on test set
MSE scores rejected the null hypothesis that the means
of 2D and 3D model error scores are the same, p-value
is very close to zero). The area-based metrics also show
small improvements, with accuracy and F1 scores being
slightly higher. Based on considerably higher recall and
lower precision, we can assume the 3D model predicts
larger precipitation bodies on average. See Figure 4 for a
visual comparison of the model outputs.

6. Conclusion

Our research shows that providing additional informa-
tion from multiple altitude levels has the potential to
increase the nowcasting accuracy, as compared to the
currently standard approach of using only 2-dimensional
precipitation maps. The improvements in error metrics,
while not groundbreaking, were statistically significant
and show that providing more data is worth it, if we can
afford the increase in model complexity and training time.
Even a small reduction in prediction error can be bene-
ficial in many applications and our preliminary results
show that volumetric nowcasting can have a positive
impact.

Additionally, volumetric nowcasts undoubtedly pro-
vide more value to the operators of these nowcasting
systems. Reflectivity at different altitudes affects the true
rainfall rate on the ground in different ways, which can-
not be taken into account from simple 2-dimensional
precipitation nowcasts. 3-dimensional predictions of fu-
ture reflectivity observations can serve as a more valuable
input to the consecutive models mapping the observed
reflectivity to actual the rainfall rate on the ground.

While the field of precipitation nowcasting using neu-
ral networks is not new, there are still more uncertainties
regarding best practices that should be comprehensively
explored and compared. There are several open questions
to answer, e.g.: Is it better to train the model directly on
the captured reflectivity data or the data converted to
rainfall rate? How many previous observations should
be provided to the model? How to convert radar obser-
vations to actual rainfall on the ground as accurately as
possible? These are just some of the interesting problems
that need to be explored in the future.
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