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Abstract
In this paper, we assess a weak-supervised approach that employs weak constraints in the form of class proportions to train
a neural network capable of performing pixel-wise classification for Earth Observation (EO) applications. The approach
combines self-supervised contrastive clustering and a constraint on cluster proportions in an online fashion allowing its
application in large-scale EO images. The methodology is based on the generation of simple augmented views of input image
tiles, and the use of a loss function that performs contrastive learning to achieve consistent results that are invariant to
these augmentations, and simultaneously follow the cluster proportions constraint. In many EO applications, information
about class proportions is available through expert knowledge or e.g., governmental census. This weak information about
class proportions allows training a classifier without information about the class at the pixel-level, alleviating the burden of
manual annotation. In this context, crop and geological mapping from EO data are two crucial applications in the search for
sustainable ways of resource management. We tested the approach upon optical and hyperspectral data achieving promising
results and proving the method’s applicability across different applications and data sources.
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1. Introduction
Self-supervised learning [1, 2, 3, 4] has recently emerged
as a powerful tool in computer vision applications.
Among the existing self-supervised methods, contrastive
learning can be considered the most promising one. This
type of approach is based on the generation of
augmented versions of the input image and the use of a
twin network that performs feature extraction that
combined with a loss function performs contrastive
learning to achieve consistent results between these
augmentations. The contrastive loss function is
expected to increase the similarity among the
augmentations of the same image while decreasing the
similarity from augmentations of different images. The

CDCEO 2022: 2nd Workshop on Complex Data Challenges in Earth
Observation, July 25, 2022, Vienna, Austria
$ lauracuerosa@gmail.com (L. E. C. L. Rosa);
darioaugusto@gmail.com (Dário A. B. Oliveira);
sam.thiele01@gmail.com (S. Thiele); p.ghamisi@gmail.com
(P. Ghamisi); r.gloaguen@hzdr.de (R. Gloaguen)
� 0000-0002-6284-9494 (L. E. C. L. Rosa); 0000-0002-0674-5332
(Dário A. B. Oliveira); 0000-0003-4169-0207 (S. Thiele);
0000-0003-1203-741X (P. Ghamisi); 0000-0002-4383-473X
(R. Gloaguen)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

main characteristic of these methods is the capability of
learning meaningful feature representations in an
unsupervised fashion. This capability has opened new
venues in other research fields beyond computer vision
such as Earth Observation (EO) applications. In this
context, crop and geological mapping from EO data are
two crucial applications to agricultural monitoring and
modern mining, where frequently limited or
non-existent training information is available.

Considering EO applications, self-supervised methods
have been employed with success including image
classification, object detection and semantic
segmentation [5, 6, 7, 8, 9]. Some of these works employ
geolocation and spatio-temporal information to learn a
more discriminative set of features for remote sensing
applications [5, 10]. Hyperspectral image classification
and clustering using contrastive learning have also been
the focus of recent publications [9, 8]. However, all the
approaches mentioned above need positive and negative
sample pairs to perform the contrastive loss, which is
computationally intensive.

One of the most important contrastive-learning
methods is the Swapping Assignments between Multiple
Views (SwAV) [2], which performs self-supervised and
clustering in an online fashion. The method employs an
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optimal transport (OT) solver to assign the image
feature vectors to cluster centroids by means of an
equipartition constraint that ensures that all samples
within a batch of images are equally assigned to the
predefined number of clusters.

An advantage of the SwAV method over the
previously proposed contrastive learning frameworks is
that the use of the OT solver with the equipartition
constraint allows disregarding pairwise comparisons.
Recently, weak information in the form of class
proportions was introduced as a constraint in SwAV to
train a classifier in a weakly-supervised fashion. The
method called Learning from Label Proportions with
Prototypical Contrastive Clustering (LLP-Co) [11]
disregards the equipartition constraint in the OT solver
by adding a cluster proportions constraint.

Using information about class proportions to train a
classifier has gained more attention in the last years
[12, 13, 14, 15]. Given a set of images, Learning from
Label Proportions (LLPs) approach focuses on learning
an instance-level classifier using as reference signal only
the class proportions observed in this set. In EO
applications, with a large amount of available data and
the unavailability of pixel-level annotations, the use of
priors like class proportions is an attractive solution. In
many real-life scenarios, these proportions can be
obtained by governmental census or even expert
knowledge. Examples of governmental agencies that
record statistics about agriculture, forestry, and natural
resources, among others, are the National Agricultural
Statistics Service of the United States Department of
Agriculture1, the Brazilian Institute of Geography and
Statistics (IBGE) in Brazil 2, Forest Research in the
United Kingdom3, and the European Statistics website 4.

This paper focuses on accessing the viability of using
contrastive learning combined with LLP to train a pixel-
wise classifier based only on prior information about
global class proportions for EO applications. We tested
the LLP-Co methodology upon two datasets, the first
focuses on crop type mapping using optical data and
the second on geological mapping using hyperspectral
data. This allows assessing the model’s applicability
across different applications and data sources. Hence,
the main contribution of this study is to propose a weak-
supervised deep clustering method that employs label
proportions as priors and can be easily applied to large-
scale EO data from different sources for significantly
different applications.

1https://www.nass.usda.gov/
2https://www.ibge.gov.br/
3https://www.forestresearch.gov.uk/tools-and-resources/

statistics/forestry-statistics/
4https://ec.europa.eu/eurostat

2. METHOD

2.1. LLP and Optimal Transport
In this work, we asses the LLP-Co approach in a scenario
where only to the global class proportions are available
to train the network. To implement LLP, the training
samples are split into𝑆 disjoint bags of image tiles, where
𝐵𝑖 is the 𝑖th bag, which consists of a set of 𝑠𝑖 randomly
cropped image tiles from the large scale input EO image.
Here, ℬ𝑖 = {(x𝑖,𝑗)}𝑠𝑖𝑗=1, where x𝑖,𝑗 is the image tile 𝑗
within the bag 𝑖. The final training set is then expressed
as 𝒯 = {(ℬ𝑖,w)}𝑆𝑖=1, where w is a vector of global
label proportions, which is the same for all bags 𝐵𝑖. In
a multi-class problem with 𝐾 classes, w ∈ ∆𝐾 and s.t.∑︀𝐾

𝑘=1 w
𝑘 = 1, where the w𝑘 element is the proportion

of tiles that belong to class 𝑘. In the methodology a
neural network acts as the feature extractor followed by
layer that delivers the class probabilities vector p̃𝑖,𝑗 =
𝑝𝜃(y|x𝑖,𝑗), where 𝜃 represents the network parameters
[16]. Then, the estimated global label proportions for
each bag is expressed as:

ŵ𝑖 =
1

𝑠𝑖

𝑠𝑖∑︁
𝑗=1

p̃𝑖,𝑗 ,

and to train the network a standard cross-entropy loss
function can be used

𝐿(�̂�, 𝑤) = − 1

𝑆

𝑆∑︁
𝑖=1

w log ŵ𝑖. (1)

The above equation is reformulated by encoding the
label proportions as a posterior distribution [1, 17, 11]

𝐿(𝑝, 𝑞) = − 1

𝑆

𝑆∑︁
𝑖=1

𝑠𝑖∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑞(𝑦𝑘|x𝑖,𝑗)

𝑠𝑖
log 𝑝𝜃(𝑦

𝑘|x𝑖,𝑗)

(2)
delivering the LLP optimization objective as:

min
(𝑝,𝑞)

𝐿(𝑞, 𝑝), s.t. ∀𝑦 : 𝑞(𝑦𝑘|·) ∈ [0, 1] (3)

𝑠𝑖∑︁
𝑗=1

𝑞(𝑦𝑘|x𝑖,𝑗) = w𝑘𝑠𝑖, (4)

where the global proportion constraint ensures that each
label 𝑘 contains overall w𝑘𝑠𝑖 samples. This equation is
an instance of the regularized optimal transport problem
and is solved using the Sinkhorn-Knopp algorithm [1, 17,
11]. Here P𝑦

𝑖,𝑗 = 𝑝𝜃(𝑦|x𝑖,𝑗)
1
𝑛𝑖

is the probabilities matrix
estimated by the network and Q𝑦

𝑖,𝑗 = 𝑞(𝑦|x𝑖,𝑗)
1
𝑛𝑖

is the
matrix of assigned probabilities for bag ℬ𝑖. In the LLP-Co
approach, Q𝑖 splits the samples within the bag following
the global label proportions. Then the objective function
as an OT solver is defined as

min
Q𝑖∈𝑈(w,a𝑖)

⟨Q𝑖,− logP𝑖⟩+ 𝜀ℎ(Q𝑖), (5)
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where 𝑈(w,a𝑖) is the matrix space of possible solutions
for the 𝑖-th bag,and a = (1/𝑛𝑖)1𝑛𝑖 is a normalizing
constraint [18].

2.2. Learning from Global Label
Proportions with Prototypical
Contrastive Clustering

LLP-Co [11] is a self-supervised contrastive method that
performs online clustering by means of a convolutional
neural network that delivers consistent cluster
assignments between augmentations of the same input.
At the same time, the cluster assignment must follow
certain cluster size constraints that are provided as weak
information. Given a user-defined number of views of
the same input image tile, the algorithm employs the OT
solver in Eq.5 to compute soft targets or codes. These
targets as then considered as true labels to calculate the
cross-entropy considering the network’s prediction for
other views. The methodology pipeline for two
augmented views and 𝐾 classes is the following. First
each image tile 𝑗 within a bag is transformed into two
augmented version fed to an encoder network that
extracts the features vectors z𝑡1𝑖,𝑗 , z

𝑡2
𝑖,𝑗 . These features

are then mapped to one of 𝐾 trainable prototypes V to
perform the code assignments for each view c𝑡1𝑖,𝑗 and
c𝑡2𝑖,𝑗 using the OT solver. From then on, a “swapped"
contrastive loss is applied to predict the assignment of
one feature from the code of the other. The optimization
process is then conducted by minimizing the loss for all
samples 𝑗 within bag 𝑖:

𝐿𝑠𝑤𝑎𝑝(z
𝑡1
𝑖,𝑗 , z

𝑡2
𝑖,𝑗) = ℓ(z𝑡1𝑖,𝑗 , c

𝑡2
𝑖,𝑗) + ℓ(z𝑡2𝑖,𝑗 , c

𝑡1
𝑖,𝑗), (6)

where each term is the cross-entropy loss between the
code and the probability obtained after applying a
softmax function on the dot product between the
features Z𝑖 and the prototypes V. For more information
about the LLP-Co method, see [11].

3. Datasets

3.1. Campo Verde dataset (CV)
The first study site is in Campo Verde, an agricultural
region located in Mato Grosso, at a latitude of 15°32′48”
south and a longitude of 55°10′08” west, Brazil (Fig. 1).
Campo Verde (CV) [19] is a public dataset 5 that
provides pre-processed SAR and Optical images between
October 2015 and July 2016. The major crops found in
the region are soybean, maize and cotton. Other crops
and non crops categries are beans, sorghum,

5The CV database is available from IEEE Dataport at https:
//ieee-dataport.org/documents/campo-verde-database.

Non-Commercial Crops (NCC), pasture, eucalyptus,
turfgrass, cerrado and soil. This work focuses in the
second seeding period for major crops maize and cotton
for months between March to July. The reference data
consisted of 608 parcels. Table 1 gives the percentages of
the overall area planted with major crops accordingly to
the annotated parcel, we use this information as the
global vector of class proportions for our experiments.

Figure 1: Overview map of Brazil, Mato Grosso state, and the
Compo Verde region were the images were acquired.

3.2. Corta Atalaya dataset (CA)
The second study area is located at Rio Tinto, Spain. Rio
Tinto is located 70 km north of Huelva in the Iberian
Pyrite Belt (IPB), a belt extending from southern Portugal
into southern Spain (Fig. 2). Our data was collected from
Corta Atalaya (CA), an open-pit mine with a size of 1200
× 900 m and a depth of ca. 350 m. This pit exposes
basaltic to intermediate volcanic rocks along the northern
part of the pit, and overlying felsic volcanic rocks, slate,
and conglomerate which are exposed in the western part
of the mine. We tested our approach using ground-based
hyperspectral imagery collected using a tripod-mounted
Specim AsiaFENIX sensor, which covers the visible-near
and short-wave infrared range. A labeled reference image
was created based on field mapping, fifty-seven hand
samples, and combined supervised classification followed
by manual interpretation of the hyperspectral data [20].
The lithologies interpreted at CA are as follows: oxidised,
massive sulphide, two varieties of chlorite, two sericitic
units, shale and purple shale. In this study, we grouped
the lithologies into two major categories, chlorite schist
and mineralised volcanics, in addition, weathered material
and vegetation were grouped in a category named others.
Table 1 gives the percentages of the overall area with
these two major lithologies accordingly to the labeled
reference image, we use this information as the global
vector of class proportions for our experiments. For more

https://ieee-dataport.org/documents/campo-verde-database
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information about the dataset, we refer the reader to [20].

Figure 2: Overview map of the Iberian Pyrite belt (a) with
locations of the main volcano-sedimentary units (green). The
geology of the Corta Atalaya and Cerro Colorado open pits is
also shown (b). Maps taken with permission from [20].

Table 1
Global class proportions (%) for each dataset accordingly to
the reference data. Cs standsd for chlorite schist andMv stands
for mineralised volcanics.

CV CA

Cotton Maize Others Cs Mv Others

45.3 35.8 18.9 38.7 57.7 3.6

4. Experiments

4.1. Experimental Protocol
Our experiments focused on the major categories found
in both datasets. To assess the methodology’s robustness
to different data sources, we employed optical data for
CV dataset and hyperspectral data for CA dataset. For
the CV dataset, we considered the cloud-free optical
image available for May 2016. For the CA dataset, we
stacked VNIR and SWIR data in a unique data cube. We
evaluated the LLP-Co method under a scenario that uses
global class proportions to identify the major categories
in the target regions. Unlike the traditional LLP training
schemes, which calculate the class proportion for each

bag of samples independently in a supervised way, our
proposal uses only weak information.

In our experiments, we used as prior information the
global proportions reported in Table 1. Given the bag size
𝑠𝑖, we defined the training bag ℬ𝑖 by randomly cropping
𝑠𝑖 image tiles from the large-scale images. The tiles were
cropped from the annotated area and we used the class of
the central pixel of the tile. As the bag size increases, the
class proportions within the bag converge to the global
class proportions found in the dataset, hence we adopted
a large bag size of 𝑛𝑖 = 2048 for both datasets.

4.2. Implementation Details
Considering the different data sources, we employed a
modified ResNet18 and ResNet10 as the backbone
architecture for CV and CA datasets, respectively. To
process the hyperspectral data cube in both spatial and
spectral domains with also added two 3D convolutional
layers at the beginning of the ResNet10 network for the
CA dataset. The ResNet architecture is then followed by
a projection head that projects the features to a
1024-dimensional space. We trained the models for 100
epochs using stochastic gradient descent with cosine
learning rate decay [21]. The image tiles size was set to
21× 21 for both datasets. For each dataset, we randomly
selected 200,000 image tiles on the fly to create the
random bags. The list of augmentations includes
random rotations, mirroring, and random resizing to
obtain two views. For the OT solver, we set the
hyper-parameters as in [11]. The number of clusters for
both models was set to the number of categories found
in the datasets. We quantitatively assessed the method
using three metrics: cluster accuracy (𝐴𝑐𝑐), macro
average F1-score (F1-score), and normalized mutual
information (NMI). Since we use the class proportion
information, we reported the classification metrics by
considering the cluster assigned by the network at
inference time. We also report the confusion matrices.

4.3. Baseline method
We adopted the original SwAV method with the
equipartition constraint as the baseline method. This
constraint ensure that samples are equally partitioned
among the clusters, and for a good performance the
authors recommend a number of cluster at least three
times higher than the expected number of categories. In
preliminary experiment we found that 30 cluster
delivered a good performance for CV dataset, while 10
cluster delivered an acceptable performance for CA
dataset. The backbone network for SwAV is the same as
the LLP-Co backbone network for each dataset. To
evaluate the model we used the feature z generated by
the backbone network followed by a 𝑘-means clustering.
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Figure 3: Maps of the class output CV and CA datasets. Crop types for CV dataset: maize, cotton, others. Lithologies
for CA dataset: chlorite schist , mineralised volcanics, others.

An Hungarian match [22] between the true categories
and the 𝑘-means result delivered the final accuracy.

5. Results
Table 2 shows the performance for both datasets in
terms of 𝐴𝑐𝑐, F1-score, and NMI. The model
performance reported competitive results, achieving
accuracies of 94.1% and 91.6% for the CV and CA
datasets, respectively. Similar performance was
observed in terms of F1-score for CV dataset with 93.8%.
In contrast, for CA dataset, a lower value was observed
with 76.9% of F1-score due principally to class others.
The cluster quality metrics NMI reported values of 0.76
and 0.66 for CV and CA, respectively. Considering these
metrics, the CV dataset reported better results than CA
dataset. This may be due to the different types of
application and data since geological mapping from
hyperspectral data is a more challenging task due to
significant confounding data variance and often subtle
distinctions between the features of interest.

Comparing LLP-Co with the baseline model, we
observe that, as expected, the inclusion of priors into the
training process was crucial for a good classification
performance. LLP-Co outperformed SwAV by ∼20% and
∼30% in terms of accuracy for the CV and CA datasets,
respectively. Similar improvement was observed for the
F1-score, achieving an enhancement of ∼27% and ∼30%
for CV and CA datasets, respectively.

Table 3 presents the confusion matrices. As expected,
the per-class accuracy achieved high performance for

Table 2
Test performance for the CV and CA datasets.

Metric
LLP-Co SwAV

CV CA CV CA

𝐴𝑐𝑐 94.1% 91.6% 74.4% 61.0%
F1-score 93.8% 76.9% 66.0% 47.5%
NMI 0.76 0.66 0.50% 0.38

the major categories, with values above 91% for both
datasets. However, in CA dataset, 48% of class others
was misclassified as chlorite schist, demonstrating the
challenge of this task. Another possible explanation of
this drop in performance can be related to the
distribution of the classes, since considering a more
balanced vector of class proportions (like in CV dataset
with w = (45.3, 35.8, 18.9)) but significantly different
among the classes, delivers much better performance,
allowing the model to learn a more discriminative and
relevant set of features. In contrast, for a highly
unbalanced vector of proportions, the model will favor
the majority classes, as we observed for the CA dataset.

Finally, Fig. 3 presents the classification maps for each
dataset. Here we can observe classification errors
between class maize and the other two classes for CV
dataset, and class mineralised volcanics with class others
for CA dataset. In addition, it is worth pointing out the
quality of the predictions for both datasets, where no
salt-and-pepper effect was observed.



Table 3
LLP-Co confusion matrices for the CV and CA datasets for
major categories and class others.

Predicted
CV Maize Cotton Others

Tr
ue

Maize 91% 5% 4%
Cotton 2% 96% 2%
Others 2% 3% 95%

Predicted
CA Cs Mv Others

Tr
ue

Cs 94% 5% 1%
Mv 2% 93% 5%

Others 48% 0% 52%

6. Conclusions
This work evaluates a recently proposed
weak-supervised method that combines contrastive
learning with class proportions constraints to train a
classifier without the need for labels at the pixel level in
the context of Earth Observation (EO) applications. The
approach was able to archive reasonable accuracy values
across different tasks and data sources, proving its
robustness and applicability to large-scale EO data.
Overall accuracy of 90% was reported for crop and
geological mapping applications considering the major
categories found in the target regions. The approach
also failed to identify classes with very small
proportions. Several ways of dealing with this problem
such as weighted cross-entropy or focal loss can be also
implemented into our method. The success of the
methodology opens a new path in the use of weak
information to help alleviate the burden of manual
annotation in EO.
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