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Abstract
Efficient and accurate landslide detection is of great significance for an emergency response to geological disasters. However,
detecting landslides from remote sensing images faces two challenges: small objects and class imbalance, and distribution
inconsistency. In this paper, the progressive label refinement-based distribution adaptation for the landslide detection
framework was proposed. The scale promotion, Lovasz loss, and online hard example mining strategy are adopted to alleviate
the class imbalance, and the separated normalization and pseudo label refinement were proposed to encode the statistical
inconsistency for reducing the distribution differences between the training and validation/testing data. The proposed
framework has a significant potential for the large-scale global typical natural disaster monitoring rapidly from multi-sensor
remote sensing imagery and ranking first place in the validation (F1-score=80.41%) and test leaderboard (F1-score=74.54%) in
the LandSlide4Sense competition.
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1. Introduction
Landslide is a worldwide destructive natural phe-
nomenon, usually following an earthquake or heavy rain-
fall, where thousands of small to medium-sized ground
movements occur [1]. Landslides bring serious harm
to society and the economy. Remote sensing technol-
ogy offers the possibility of rapid and large-area land
cover monitoring [2, 3], and the detection of globally
distributed landslides from multi-source, multi-spectral
remote sensing images using machine learning and com-
puter vision algorithms facilitates rapid response and
management of landslide-generated disasters.

In the early stage of the research, the methods for
identifying landslides from remote sensing images were
mostly semi-automatic two-stage methods: extracting
discriminative features of landslides through expert
knowledge firstly, and then using SVM or RF for clas-
sification [4]. Although using expert knowledge to con-
struct discriminative features is transparent and flexible,
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it is laborious, time-consuming, and subjective [5]. Deep
learning-based methods make fully automated one-stage
landslide extraction possible, and these methods are well-
reviewed in [5]. However, most of these methods were
validated in small local regions, and the performance
of these models applied directly to a new region in an
emergency is unclear. To promote the development of
the landslide detection field, the LandSlide4Sense com-
petition was held and a large landslide dataset, which
was collected from diverse geographical regions, is pub-
licly available to help develop a new landslide detection
algorithm [5]. Landslides detection from large remote
sensing imagery will encounter the following two prob-
lems: 1) Small objects and class imbalance and 2)
Distribution inconsistency.

As shown in Figure.1, small objects and class imbalance
are the first challenges of landslide detection. In the real
scene, the landslide will have some small branches or
the landslide itself is relatively small in area, and as a
result, there will be a serious imbalance in the number
of pixels between the landslide and the background, as
shown in the Figure.1(b) where the number of pixels in
the background is 49 times that of the landslide in the
training set. Small objects and class imbalance will lead
to the problem of lower recall scores.

As shown in Figure.2, distribution inconsistency is the
second challenge of landslide detection. The mean and
standard deviation values of the training, validation, and
testing sets are counted band-by-band and displayed in
the Figure.2, where the histogram is the mean and the
error bars are the standard deviation. Because landslide
remote sensing images are collected from diverse geo-
graphical regions, there are significant inconsistencies in
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(a) Sentinel-2 imagery with
landslide

(b) Ratio of the number of pix-
els

Figure 1: Small objects and class imbalance problem in land-
slide detection. The ratio is the number of landslide pixels
to the number of background pixels in the LandSlide4Sense
training set.

Figure 2: Distribution inconsistency between the training set
and validation set. The histogram is the mean of the data and
the error bars are the standard deviation of the data.

the means and standard deviation values of the training
and validation/test sets, which pose a great challenge to
the generality of the landslide detection algorithm.

This paper proposes a progressive label refinement
based on a distribution adaptation landslide detection
framework to overcome the above problems. The pro-
posed framework achieves F1-score=74.54% in the test
leaderboard of the LandSlide4Scence challenge.

2. Method
To address the two challenges above, this paper proposed
the progressive label refinement framework for domain
statistics adaptation, including data preprocessing, model
ensemble, model training, model inference, and pseudo
label refinement. The overview of the proposed algo-
rithm is shown in Figure. 3.

2.1. Data Preprocessing
Because the small landslide areas account for few pixels
and represent weak features, we take scale promotion

to resize the original images (128 × 128 pixels) into 512
× 512 pixels. Besides, random flip, rotation, and color
perturbation are adopted for data augmentation. As we
stacked multi-spectral, DEM, and Slope data as inputs,
the color perturbation is only applied to spectral data.

As the training and validation (testing) data have in-
consistent statistics, the mean values of the pixel values
of the data in the source and target domains are signifi-
cantly different. Separated normalization is proposed to
reduce the statistical difference between two domains,
which takes different mean and standard deviation values
to normalize the data in the source and target domains,
respectively. The mean and standard deviation values
were calculated from train and validation/test sets, respec-
tively. Separate normalization is similar to cross-sensor
normalization [3], but the domain-specific statistical nor-
malization is performed in the input of the model.

2.2. Model Ensemble and Model Training
Several advanced networks are selected for the ensem-
bling, including Swin-Transformer [6], EfficientNetV2 [7]
and SegFormer [8]. The SegFormer adopts multilayer per-
ceptron (MLP) for the decoder and the other networks
adopt U-Decoder for resolution restoring. SegFormer uti-
lizes self-attention operations to fit landslides of variant
shapes as well as the MLP to enhance the difficult sample
features.

To further increase the generalization capability of
the model across different domains, the batch normaliza-
tions in the network are replaced with the cross-sensor
normalizations 1 to automatically encode the statistical
inconsistency during the training [3].

As for model optimization, Lovasz loss [9] and on-
line hard example mining strategy were adopted to ad-
dress the class imbalance problem, and Soft-cross entropy
loss [10] was adopted to counteract the negative effects
of noisy labels in the pseudo labels.

2.3. Model Inference and Progressive
Label Refinement

In the inference phase of the model, the average of the
probability values output by the above three models is
taken as the final inference result.

To further align the distributions of the two domains,
the progressive label refinement is designed to improve
the pseudo-labels. Based on the model prediction, the
pseudo labels can be generated from the best models in
the 𝑖𝑡ℎ round, using the threshold of 0.7. As for the 𝑖+1𝑡ℎ
round, the source samples come from the train set and the
target samples are test images with pseudo labels. The

1https://github.com/Junjue-Wang/LoveCS
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Figure 3: Progressive label refinement-based distribution adaptation for landslide detection.

pseudo-label generation and domain-adaptation training
perform iteratively, progressively refining the test labels.

3. Challenge Results
The data used in LandSlide4Scence [5] are collected from
diverse geographical regions, which consists of training,
validation, and test sets containing 3799, 245, and 800
image patches, respectively. Each image patch is a com-
posite of 14 bands that include: multi-spectral data from
Sentinel-2 (B1-B12), slope data from ALOS PALSAR, and
DEM from ALOS PALSAR. All bands in the competition
dataset are resized to the resolution of about 10m per
pixel. The image patches have the size of 128×128 pixels
and are labeled pixel-wise. We set batch size as 16 and
each model was trained for 20𝑘 steps.

The last round refinement results on the validation
leaderboard are shown in Table 1. Compared with the
baseline, separate normalization significantly improved
the accuracy. The selected advanced networks were re-
fined with several rounds and we ensemble them to ob-
tain the highest F1-sorce=80.41%.

The results from the best models serve as a baseline and
achieve F1-sorce=73.07% on the test leaderboard. Similar
to the validation development, the label refinement was
continuously performed on the test set. The test results
in Table. 2 show that the performances of the models are
progressively improved as the round increases. Round3
obtains the best result F1-sorce=74.54%.

Table 1
Results on the validation leaderboard. SN: Separated Normal-
ization. SLO: Soft cross entropy loss+Lovasz loss+OHEM. SP:
Scale promotion.

Strategy
Refinement SN SLO SP Model F1(%)

x1. ResNet 63.52
✓ x1. ResNet 72.71
✓ ✓ x1. ResNet 73.20

Round1 ✓ ✓

x1. ResNet 75.29
x2.5 ResNet 75.98
x2.5 EfV2. 76.24
x2.5 SegFormer 76.57
x2.5 Swin. 76.78

Round2 ✓ ✓ x4
SegFormer 78.38
Swin. 77.98

Round3 ✓ ✓ x4
EfV2. 79.37
SegFormer 79.91

Round4 ✓ ✓ x4

EfV2. 80.06
HRNet-OCR 80.17
SegFormer 80.11
Swin. 80.34
Ensemble 80.41

4. Conclusion
By analyzing the Landslide4Sense dataset, we conclude
two challenges in landslide detection including (1) small
objects and class imbalance; (2) distribution inconsis-
tency. Hence, the progressive label refinement-based dis-



Table 2
Results on the test leaderboard

Rfinement Model F1(%)
Baseline Ensemble 73.07
Round1 Ensemble 73.62
Round2 Ensemble 74.03
Round3 Ensemble 74.54

tribution adaptation for landslide detection framework
was proposed. Through multiple rounds of pseudo-label
optimization and separately normalization, the perfor-
mance of the model continues to improve. Our solu-
tion ranked first place on the Landslide4Sense challenge.
In the future, we will extend the framework into multi-
temporal images for landslide monitoring.
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