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Abstract
Image-based retrieval in large Earth observation archives is difficult, because one needs to navigate across thousands of
candidate matches only with the proposition image as a guide. By using text as a query language, the retrieval system gains
in usability, but at the same time faces difficulties due to the diversity of visual signals that cannot be summarized by a short
caption only. For this reason, as a matching-based task, cross-modal text-image retrieval often suffers from information
asymmetry between texts and images. To address this challenge, we propose a Knowledge-aware Cross-modal Retrieval
(KCR) method for remote sensing text-image retrieval. By mining relevant information from an external knowledge graph,
KCR enriches the text scope available in the search query and alleviates the information gaps between texts and images for
better matching. Experimental results on two commonly used remote sensing text-image retrieval benchmarks show that the
proposed knowledge-aware method outperforms state-of-the-art methods.
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1. Introduction
Recent advances in satellite data acquisition and stor-
age have led to a rapid development of remote sensing
image archives. To explore them, image retrieval has
received increasing attention [1, 2]. However, retrieving
images using example images would limit the versatil-
ity of the retrieval system, since with the query image
only, one cannot specify which elements are essential
for the query or what the retrieval objective is. As a
solution, text-image retrieval [3, 4] has been introduced
to explicit the retrieval targets in a semantic way. Text-
image retrieval aims at recalling an image based on a
text or, in reverse, retrieving a text according to an im-
age. As a bridge between vision and language research,
it provides a possibility to explore the growing amount
of cross-modal remote sensing data.

When regarding text as the query, the prospective re-
trieval system gains in usability among cross-modal data,
but at the same time faces the problem of information
asymmetry between texts and images [5]. When dealing
with very high-resolution remote sensing images, the
image content can be very diverse, hence it is difficult
to be comprehensively summarized by the natural lan-
guage, especially by a short caption. On one hand, human
captions can only describe the image from one or a few
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specific aspects, focusing on the most dominant informa-
tion. For example, one image could receive the following
caption text: There is a lake. Nevertheless, there might be
trees and mountains around the lake which are ignored
by humans or caption generators. In addition, different
people will describe the image from subjective perspec-
tives, resulting in a variety of text information for a single
image, which may confuse the matching model. There-
fore, strategies to handle lacunary captions, nuances and
synonyms are needed for the task, and a balance between
objectivity and completeness must be achieved.

Knowledge graphs [6] present relationships and prox-
imities among concepts through graph structures. By pro-
viding the experience and commonsense from human un-
derstanding, knowledge graphs have been recognized as
effective prior knowledge in many vision-and-language
research [7, 8] to reveal commonsense and alleviate am-
biguities. In this paper, we propose a Knowledge-aware
Cross-modal Retrieval (KCR) method for remote sensing
text-image retrieval. With the help of external Knowl-
edge Graphs, KCR extends the text scope to obtain a more
robust text representation. More specifically, based on
the objects mentioned in a sentence as starting points,
KCR proposes to mine the expanded nodes and edges in a
knowledge graph and embeds them as features to enrich
those extracted from the text content alone. As such,
KCR integrates commonsense knowledge and leads to
competitive performance on two commonly used remote
sensing text-image retrieval benchmarks.
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Figure 1: The proposed KCR method. KCR consists of three main components: an image encoder with self-attention block, a
knowledge-aware text encoder and a similarity measurement module. During the training process, the parameters of ResNet
(except the final FC layer) and Sentence BERT are fixed.

2. Related Work
Due to the emergence of multi-modal remote sensing
data, vision-language research, such as image captioning
[9], visual question answering [10], and cross-modal re-
trieval [4] has attracted increasing attention [11]. Recent
advances in remote sensing text-image retrieval mainly
focused on: 1) learning a more representative image fea-
ture by fusing local and global image feature [12] or
features from different feature extractors [4]. 2) learning
a distinguishable joint embedding space by fusing the
cross-modal features and leveraging a ranking-based loss
function [4]. Departing from previous efforts that based
the retrieval on the image characteristic and the caption
only, we propose to enrich the latter with a knowledge
graph that would extend the text content and alleviate
ambiguities for a more robust text representation.

Consisting of various nodes as concepts, knowledge
graphs encode commonsense knowledge about the world
[6, 13, 14]. By exploring the knowledge graphs, vision-
and-language research has been promoted due to the
priors for visual understanding [7, 8]. In remote sens-
ing research, Li et al. [15] constructed a remote sensing
knowledge graph to support zero-shot remote sensing
image scene classification. Their efforts in exploiting a re-
mote sensing knowledge graph to image understanding
focused on using graph embedding as an overall represen-
tation of an image. Different from this work, the proposed
KCR explores the fine-grained object-level connections
between nodes in the graph and words in sentences.

3. Knowledge-aware Cross-modal
Retrieval Method

The proposed text-image retrieval system comprises
three main components: an image encoder, a text en-
coder and a similarity measurement module (Figure 1).
The image encoder is designed to extract image features
by a pre-trained feature extractor and a self-attention
block. The text encoder embeds a sentence and its re-
lated external knowledge extracted from a knowledge
graph into a joint feature space. Finally, the image and
text features are both used within the similarity measure-
ment module to compute the similarity score between
text queries and candidate images, which are then ranked
according to their relevance. The model can also be ap-
plied in reverse, where the best captions to summarize
an image are retrieved.

3.1. Image encoder
The image encoder is a pre-trained feature extractor with
a self-attention block [16, 17]. Two sets of image features
are extracted from the image encoder:
High-level image feature. We use ResNet-101 [18] as
a backbone and the last Fully Connected (FC) layer is
retrained. For an image 𝑖, the output of the retrained FC
layer is regarded as the high-level image feature fℎ𝑖𝑔ℎ.
Mid-level image feature. The output of ResNet block 3,
denoted as f𝑖𝑛, is sent to an additional self-attention block
to further capture the long-range dependencies among



pixels and provide more detailed information at relatively
mid-level. The self-attention block can be defined as Eq.
(1) [16].

f𝑜𝑢𝑡 = softmax
(︁
f𝑇𝑖𝑛𝑊

𝑇
𝜃 𝑊𝜑f𝑖𝑛

)︁
𝑔(f𝑖𝑛). (1)

Here f𝑜𝑢𝑡 is the output feature of the same size as f𝑖𝑛.
𝑔 is a linear embedding of the input feature: 𝑔 (f𝑖𝑛) =
𝑊𝑔f𝑖𝑛. 𝑊𝑔 , 𝑊𝜃 , and 𝑊𝜑 are weight matrices of 1 × 1
convolutions to embed the feature. Then followed by a
2D pooling layer and a flattening operation, the mid-level
image feature is extracted as a vector:

f𝑚𝑖𝑑 = pool2d (fout). (2)

To project the image feature and text feature into a same
dimension, the concatenated high-level and mid-level
image feature are sent to a final FC layer to obtain the
overall image presentation:

f𝑖𝑚𝑔 = FC𝑖𝑚𝑔 (concat (fhigh , fmid)). (3)

3.2. Knowledge-aware text encoder
Knowledge representation. For a sentence 𝑠 with
𝑛 words: 𝑠 = {𝑤1, 𝑤2, ..., 𝑤𝑛} (𝑛 ≥ 1), a tokenizer
is used to separate every word and divide the part-of-
speech (e.g. noun, verb, adjective, adverb, etc.) for them.
Based on the part-of-speech tags, all the nouns can be
appended into a word list. Then we extract a sentence
graph 𝐺𝑠 based on the word list only. The sentence
graph can be regarded as a subgraph of the existing re-
mote sensing knowledge graph [15], 𝐺. More specifi-
cally, the nouns in the word list are regarded as the initial
nodes. Starting from those nodes, all the one-step neigh-
bours with the connected edges in 𝐺 are included in
𝐺𝑠. Note that the sentence graph is a directed graph,
which means the edge between two nodes is a one-way
relationship. In the sentence graph, each edge can be
represented as a relationship triplet 𝑟(𝑠, 𝑝, 𝑜), shown as
<𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒−𝑜𝑏𝑗𝑒𝑐𝑡 >, which can be regarded
as a short sentence with three words. Mining all the edges
of the sentence graph might be redundant, so we decide
to randomly select 𝑞 triplets from all the available ones.
Text encoder. We use Sentence-Transformer [19] as the
text encoder for the sentence features f𝑠𝑒𝑛, as well as
the external knowledge representation f𝑘𝑛𝑜𝑤 . Sentence-
Transformer is a modification of the pretrained BERT
network using siamese and triplet network structures
to derive semantically meaningful sentence embeddings.
The encoding process of a sentence and the correspond-
ing knowledge can be formulated as:

f𝑠𝑒𝑛 = SenTrans (s{w1 ,w2 , ...,wn})

f𝑘𝑛𝑜𝑤 = FC𝑘𝑛𝑜𝑤(
1

𝑞

𝑞∑︁
𝑖=0

SenTrans (ri{si , pi , oi})).

(4)

After being embedded in the feature space, sentence rep-
resentation and external knowledge representation are
concatenated and sent to the finial FC layer to obtain the
overall representation of a text:

f𝑡𝑒𝑥𝑡 = FC𝑡𝑒𝑥𝑡 (concat (fsen , fknow )). (5)

3.3. Similarity Measurement
Similarity score. The similarity score 𝑆𝑖𝑠 is defined as
the negative pairwise euclidean distance between two
features: 𝑆𝑖𝑠 = − dis (fimg , ftext). With smaller distance
to the query feature, the similarity score is larger and the
target ranks higher.
Loss function. Triplet loss is commonly used in the
text-image retrieval task [3, 20, 4]. It constrains the simi-
larity score of the matched image-text pairs to be larger
than the similarity score of the unmatched ones by a
margin. Meanwhile, previous research [3] discovered
that using the hardest negative in a batch during training
rather than all negatives samples can boost performance.
Therefore, the loss function can be formulated as:

𝐿(𝑖, 𝑠) = max (0,𝑚− 𝑆𝑖𝑠 + 𝑆𝑖𝑠′)

+ max (0,𝑚− 𝑆𝑠𝑖 + 𝑆𝑠𝑖′) ,
(6)

where 𝑚 is a margin parameter, image 𝑖 and sentence 𝑠
are the corresponding pair. Sentence 𝑠′ is the top-1 text
retrieval result with query image 𝑖 and image 𝑖′ is the
top-1 image retrieval result with query text 𝑠.

4. Experiments

4.1. Experimental details
Datasets. We perform experiments on two commonly
used RS text-image datasets: the RSICD dataset and UCM-
Caption dataset. The RSICD dataset [9] contains 10921
images with the size 224×224 pixels. The UCM-Captions
dataset [23], which is based on the UC Merced Land Use
dataset [24], contains remote sensing images categorized
into 21 land use classes, with 100 samples for each class.
For each sample in both datasets, there are 5 sentences
describing the image content. We follow the train-test
split in previous work [4], randomly selecting 80%, 10%
and 10% for the dataset as the training set, validation set
and test set, respectively.
Metrics. To evaluate the model performance, we exploit
the standard evaluation metrics in retrieval tasks and
measure the rank-based performance by Recall@𝑘 (R@𝑘)
and mR [3, 25]. With different values of 𝑘, R@𝑘 means
the fraction of queries for which the most relevant item
is ranked among the top-𝑘 retrievals. mR represents
the average of all R@𝑘 in both text-image retrieval and



Table 1
Experimental results on the RSICD dataset. KCR w/o KG denotes the proposed model without knowledge triplet embedding
and KCR w/o KG Att represents the proposed model without knowledge triplet embedding and self-attention block.

Backbone
Text - Image Retrieval Image - Text Retrieval

mRR@1 R@5 R@10 R@1 R@5 R@10

VSE++ [3]

ResNet18

2.82 11.32 18.10 3.38 9.51 17.46 10.43
SCAN [20] 3.71 16.40 26.73 5.85 12.89 19.84 14.24
MTFN [21] 4.90 17.17 29.49 5.02 12.52 19.74 14.81
AMFMN [12] 4.90 18.28 31.44 5.39 15.08 23.40 16.42
GaLR [4] 4.69 19.48 32.13 6.59 19.85 31.04 18.96
KCR 5.84 22.31 36.12 4.76 18.59 27.20 19.14

CAMP [22]

ResNet101

4.15 15.23 27.81 5.12 12.89 21.12 14.39
KCR w/o KG Att 4.47 20.64 33.68 3.94 12.36 24.08 16.53
KCR w/o KG 4.63 20.11 34.77 4.12 18.40 29.30 18.56
KCR 5.40 22.44 37.36 5.95 18.59 29.58 19.89

Table 2
Experimental results on the UCM-Caption dataset.

Backbone
Text - Image Retrieval Image - Text Retrieval

mRR@1 R@5 R@10 R@1 R@5 R@10

VSE++ [3]

ResNet18

10.10 31.80 56.85 12.38 44.76 65.71 36.93
SCAN [20] 12.76 50.38 77.24 14.29 45.71 67.62 44.67
MTFN [21] 14.19 52.38 78.95 10.47 47.62 64.29 44.65
AMFMN [12] 12.86 53.24 79.43 16.67 45.71 68.57 46.08
KCR 17.24 56.95 81.14 11.90 48.57 71.43 47.87

CAMP [22]

ResNet101

11.71 47.24 76.00 14.76 46.19 67.62 43.92
KCR w/o KG Att 16.67 54.19 81.52 7.14 41.42 62.38 43.89
KCR w/o KG 16.00 52.90 81.81 10.00 44.29 69.05 45.68
KCR 17.43 57.52 80.38 15.24 50.95 73.33 49.14

image-text retrieval. In our experiment, we report the
results of 𝑘 = 1, 𝑘 = 5, and 𝑘 = 10.
Hyper-parameters. In all experiments, the margin of
the triplet loss function is set to 0.2 following the pre-
vious work [4]. For the image encoder, the input and
intermediate dimensions of the self-attention block are
respectively set to 1024 and 512, according to [16]. In
terms of text encoder, the number of selected triplets are
set to 10 in our experiments. Other feature dimensions
are annotated in Figure 1. In addition, to achieve fair
comparison with the competing methods, results with
the ResNet18 backbone are also reported. For ResNet18
backbone, the dimension of the mid-level feature is 256
and other parameters are as the same of the model with
ResNet101 backbone.
Implementation details. For the training process, we
train and evaluate the model in mini-batch with a batch-
size of 100. The optimizer is Adam optimizer with a
weight decay of 5e-4 and initial learning rate of 0.001.
For every 10 epochs, the learning rate drops 10%. All the
experiments are conducted on a single NVIDIA GeForce
RTX 3090 GPU. The max training epoch are 150 and 200
for the UCM-Caption and RSICD dataset, respectively.

4.2. Experimental results
Comparison methods. We compare the proposed
method with the following state-of-the-art methods in
text-image retrieval, especially those for remote sensing
text-image retrieval.

• VSE++ [3] uses a CNN and a Gated Recurrent
Unit (GRU) [26] to capture image and text fea-
tures, respectively.

• SCAN [20] exploits fine-grained interplay be-
tween images and texts by inferring the semantic
alignment between them.

• CAMP [22] proposes a cross-modal message pass-
ing method to explore the image-text interactions
before calculating similarities.

• MTFN [21] introduces a rank-based fusion model
to avoid finding the common embedding space
for cross-modal data.

• AMFMN [12] employs multiscale visual self-
attention module to extract the visual features
and guide the text representation.

• GaLR [4] utilizes an attention-based multi-level
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information dynamic module to fuse global and
local feature extracted by a CNN and a Graph
Neural Network (GCN), respectively. In addition,
GaLR involves a post-processing stage based on
a plug-and-play multivariate rerank algorithm.

Results on the RSICD dataset (Table 1). KCR achieves
the best performance with the exception of image-text
retrieval, where GaLR is the best performing. With
ResNet18 backbone, KCR outperforms GaLR on mR by
0.18%. In terms of text-image retrieval, the improvements
are 1.15%, 2.83% and 3.99% for R@1, R@5, and R@10, re-
spectively. For image-text retrieval, KCR achieves close
performance compared to GaLR and outperforms other
competitors. Note that compared to GaLR, which has
multiple image feature extractors and post-processing
stage, the structure of KCR is less conceptually heavy. Ex-
perimental results on the sub-component analysis of KCR
(e.g. running the model without knowledge embedding
and self-attention module) show that incorporating com-
monsense knowledge can extend sentence content and al-
leviate the information gap, since the model performance
is significantly improved. The combination of external
knowledge brings an extra 0.77%, 2.33%, and 2.59% for
the three metrics in text-image retrieval. For image-text
retrieval, external knowledge improves the model per-
formance by 1.83%, 0.19%, and 0.28% on R@1, R@5, and
R@10, respectively. Removing the self-attention module

and the mid-level feature degrade the results by 2.03%
on mR, which indicates the importance of representative
mid-level image feature.
Results on the UCM-Caption dataset (Table 2). For
text-image retrieval, KCR significantly outperforms state-
of-the-art methods. For R@1, R@5, and R@10, With
ResNet18 backbone, KCR achieves the best performance
with an average improvement of 3.27% compared to
AMFMN. For image-text retrieval, KCR gains 2.86% on
both R@5 and R@10. The overall improvement on mR
is 1.79%. As is shown in the sub-component analysis,
self-attention block and mid-level feature improve the
model performance on mR by 1.79%. External knowledge
improves the model performance, especially for image-
text Retrieval. The average improvements on the three
metrics are 5.24%, 6.66%, and 4.28% respectively. mR
gains a 3.46% increase because of introducing relevant
knowledge from knowledge graph. Meanwhile, com-
pared with RSICD dataset, knowledge embedding has a
more obvious improvement on the UCM-Caption dataset,
indicating that the information gap might be larger on
the smaller dataset. Examples of the top-5 retrieval re-
sults of KCR and KCR w/o KG are shown in Figure 2.
In addition, we observe that ResNet101 is slightly more
effective than ResNet18, with observed improvements of
0.75% on average for RSICD dataset and 1.27% on average
for UCM-Caption dataset.



5. Conclusion
Retrieving remote sensing images from text queries is
appealing but complex, since retrieval needs to be both
visual and semantic. To address the information asymme-
try between images and texts, we propose a Knowledge-
aware Cross-modal Retrieval (KCR) method. By integrat-
ing relevant information from external knowledge graph,
the model enriches the text scope to better match texts
and images. Despite its conceptual simplicity, KCR shows
improved performance with respect to all competitors,
which indicates potential generalization capabilities of
the knowledge-aware method.
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