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Abstract
Many real-world problems present challenges that still have not been solved by the machine learning community, despite the
high availability of satellite imagery and recent advances in computer vision. In particular, techniques which are cheaper and
less reliant on large data sets are needed to map slums in cities. This study presents preliminary results using deep learning
feature extraction followed by clustering using k-means, an unsupervised method, to detect slums in Sentinel-2 satellite
imagery. The clusters that represented deprived areas in cities are identified using a data set which contains information
about the topology of the urban areas derived from crowd-sourced digital maps. Overall, the unsupervised method performed
worse than the baseline, a fine-tuned ResNet18 model (a supervised approach). The mean Intersection over Union for the
two investigated locations (Mumbai and Capetown) was 0.46 and 0.51 for the supervised model, and 0.27 and 0.31 for the
unsupervised model. Results suggest that other strategies for dealing with such imbalanced data sets need to be investigated
to improve the results obtained for the slum class, and also strategies to automatically identify the clusters that represent
deprived areas/slums. The code used in this paper is available at: https://github.com/ml-labs-crt/slums-unsupervised.
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1. Introduction
The last decade saw a surge in the availability of satel-
lite imagery and the development of image processing
techniques. With this increase, it was expected that more
societal challenges would be solved using remote sensing
data and machine learning. However, many important
societal problems have not yet completely benefited from
the higher availability of imagery or current develop-
ments in computer vision. Many factors contribute to
this situation, especially the high cost of acquiring and
processing very-high-resolution satellite imagery [1, 2],
and the lack of labelled data related to many societal
problems, required to train supervised machine-learning
models [3].

This work investigates the potential of employing
freely available medium-resolution satellite imagery and
feature extraction using deep learning, an unsupervised
approach that does not require labelled data, to detect de-
prived/slum areas in two cities (Mumbai and Capetown).
Slums, according to the United Nations Habitat, are loca-
tions where residents lack at least one of the following:
water, sanitation, housing durability, security of tenure
or sufficient living area [4]. The UN-Habitat estimates
that over one billion people live in such conditions, but
because most of the information about these settlements
comes from outdated census surveys [5], there is an in-
terest to explore other forms of data collection and pro-
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cessing that could provide current estimates [5, 1, 3]. The
next section outlines the literature pertinent to slummap-
ping and further details the motivations for this paper.

1.1. Related Work
Since 2012, there has been a popularisation of deep learn-
ing architectures, and they have been shown to perform
well in many classification tasks. In line with this trend,
the research to map slums moved from traditional image
processing approaches to supervised learning methods
using deep learning and high or very-high-resolution im-
agery [6]. In 2017, Mboga et al. [7] and Persello and Stein
[8] demonstrated that convolutional neural networks
outperformed feature extraction methods and since then,
many works employing neural networks to map slums
have been published.

However, the great majority of studies to date rely on
supervised learning and costly high or very-high satellite
imagery [6], and hence consider only small areas [5, 2].
Additionally, many researchers have found that models
developed for one city do not generalise well to other
areas [9, 10, 1]. For a global slum inventory to be pos-
sible, these issues need to be tackled, and unsupervised
learning may be a suitable alternative.

Nonetheless, the literature on mapping slums with un-
supervised learning techniques is limited. To the best of
our knowledge, [11] and [12] are currently themost repre-
sentativeworks, though both have limitations. Block et al.
[11] employs high-resolution imagery and St. Amand
[12] relies heavily on visual inspection for decision mak-
ing. This paper presents our initial results of developing
a pipeline to map slums using freely available medium-
resolution satellite imagery, unsupervised learning and
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Figure 1: Left: Sentinel-2 image with ten meters resolution of Mumbai, India. The yellow polygons were annotated as slum
areas and were used as ground truth in the supervised model. Right: Similar to the image on the left, but of Capetown, South
Africa.

automated classification of slum clusters using topologi-
cal information derived from crowd-sourced digital maps.
In the next section, the methodology used in this study
is described.

2. Methodology
Two locations were used to investigate the potential of
feature extraction using deep learning and posterior clus-
tering: Mumbai, in India, and Capetown, in South Africa.
The satellite imagery was collected by Gram-Hansen et al.
[1] and consists of Sentinel-2 images with ten metres res-
olution. These cities have been investigated by other
researchers, and hence are ideal for testing the proposed
unsupervised method. As in Block et al. [11]’s experi-
ments, three bands were used (blue, green and red) and
the imagery was scaled from 16-bit to 8-bit. Figure 1
shows the satellite imagery of the locations.

The imagery was split into tiles of 20 by 20 pixels
(approximately 200 x 200 metres), slightly bigger than
those used by Taubenböck et al. [13], who also adopted
medium-resolution imagery in their research. The base-
line model to which the unsupervised approach was com-
pared was a supervised model trained with ground-truth
data collected by Gram-Hansen et al. [1]. For a tile to be
considered as belonging to a certain class, at least 50% of
the pixels in that tile would have to be from that class.

As expected, this is a hugely imbalanced data set, as only
3% of the tiles are slums in Mumbai and less than 1%
in Capetown. Table 1 presents an analysis of the areas
covered in this paper.

As suggested by other researchers [14] and to mimic
a real-world scenario, only 20% of the slum tiles were
used to train the model. Also, the non-slum class was
undersampled with a proportion of 4 to 1, in an attempt to
account for the imbalance in the data set. The remaining
80% of the slum tiles and non-slum tiles were used to test
the model. As a result, the baseline was trained with 399
tiles (80 slums and 319 non-slums), in the case of Mumbai,
and with 532 tiles (106 slums and 426 non-slums) for
Capetown. The code used in this paper is available at
https://github.com/ml-labs-crt/slums-unsupervised.

2.1. Baseline
The model adopted as the baseline was a fine-tuned
ResNet18, trained initially on ImageNet images. The su-
pervised model choice followed from the results obtained
by Bell and Veeeraraghavan [15], who tested ResNet mod-
els of different sizes. Both the supervisedmodel (baseline)
and the unsupervised model were implemented in Py-
Torch 1.10.2. The supervised model was trained using
a batch size of 8 and for 50 epochs. Early stopping was
triggered when the average loss of the validation set was
20% higher than the average of the last 10 epochs. The re-
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Table 1
Analysis of the Areas

Height Width Non-slum Slum Non-slum Slum
Location # of pixels # of pixels # of tiles # of tiles % of total tiles % of total tiles

Mumbai 3920 1980 18831 573 97.0% 3.0%
Capetown 6080 5300 79799 761 99.1% 0.9%

Figure 2: Left: Complexity scores for Mumbai, India. Darker polygons denote smaller complexity scores. In the background,
Sentinel-2 satellite imagery of the same city. Right: Similar to the image on the left, but of Capetown, South Africa.

sults were evaluated using Intersection over Union (IoU),
as is commonly done in the related literature.

2.2. Unsupervised Approach
The unsupervised model’s features were extracted using
a ResNet18 model pre-trained with the ImageNet data set.
Care was taken so that the exact same tiles were used
to train both models. The extracted features for each
tile (a vector with 1000 rows) were subsequently fitted
to a k-means model initialised using sklearn’s default
initialisation and 100 repetitions. The number of repeti-
tions was set following from Fränti and Sieranoja [16].
The number of clusters chosen was seventeen, and it was
selected based on Taubenböck et al. [17]’s work, who
analysed satellite imagery of 110 cities worldwide using
the Local Climate Zones Classification Scheme (that has
seventeen different climate zones).

Lastly, to decide which clusters should be considered
slums and which should be labelled as non-slums, the

complexity score designed by Soman et al. [18] was lever-
aged. Figure 2 shows the complexity score for the two
areas investigated in this paper. The complexity score
for Mumbai ranged between 0 and 20, and for Capetown,
between 0 and 18. Lower scores denote less developed
areas. This complexity score was set based on informa-
tion available on OpenStreetMap. For this reason, some
locations within the city do not have a complexity score.
In the case of Mumbai, 41% of all pixels did not have a
complexity score (mostly areas where water bodies are)
and in Capetown that was the case for 63% of the pixels.
The median complexity score of each cluster was calcu-
lated using the average complexity score of the pixels in
each tile. Subsequently, clusters with the lowest values
of median complexity score were assigned as “slum clus-
ters” (see details of each ones on Table 2). In the next
section, the results are discussed.



Table 2
Number of Tiles in Each Cluster and Median Complexity of Clusters. In Bold, Clusters That Were Identified as “Slum Clusters”

Mumbai Capetown
Cluster_ID Non-slum Slum Tiles per Median Non-slum Slum Tiles per Median

# of tiles # of tiles Cluster % Complexity # of tiles # of tiles Cluster % Complexity

0 1812 37 9.8% 3.01 1452 35 1.9% 2.87
1 698 18 3.8% 3.00 6553 72 8.3% 3.00
2 1252 25 6.8% 3.89 3760 2 4.7% 3.00
3 272 5 1.5% 2.95 1413 9 1.8% 2.21
4 1708 32 9.2% 3.49 5853 4 7.3% 3.00
5 1887 62 10.3% 3.00 5147 56 6.5% 2.77
6 6 0 0.0% 3.75 4588 6 5.8% 3.00
7 1461 69 8.1% 3.00 4276 42 5.4% 2.58
8 1922 28 10.4% 3.61 8238 54 10.4% 3.00
9 1038 21 5.6% 3.00 7036 26 8.8% 3.00
10 1951 22 10.5% 3.73 3121 37 4.0% 3.00
11 18 3 0.1% 3.77 6944 37 8.7% 2.91
12 1133 35 6.2% 4.00 5088 73 6.5% 2.49
13 1102 35 6.0% 3.60 3006 5 3.8% 3.00
14 556 9 3.0% 3.79 5808 32 7.3% 3.00
15 829 22 4.5% 3.07 5167 106 6.6% 2.16
16 730 36 4.1% 3.02 1741 13 2.2% 2.74

Total 18375 459 100% 79191 609 100%

3. Results and Discussion
The extraction of features using deep learningwas carried
out for two locations (Mumbai and Cape Town). For
Mumbai, the percentage of tiles assigned to each cluster
was in the range of 0.03% to 10.5%, and for Capetown it
was in the range of 1.8% to 10.4%. Using the ground-truth
data, it was possible to observe that some clusters did
contain most of the slum tiles; for instance, clusters 5
and 7 for Mumbai contained 13.5% and 15% of the total
slums tiles. Similarly, clusters 1, 12 and 15 for Capetown
contained 11.8%, 12.0% and 17.4% of all slum tiles. Table
2 describes the number of tiles assigned to each cluster.

As mentioned in Section 2, the decision of which clus-
ters would be considered “slum clusters” took into consid-
eration the average complexity of the pixels of each tile
in that cluster. Though Soman et al. [18] suggests in their
paper that areas with a complexity score smaller than 5 or
6 could be considered informal settlements, in the cities
covered in this study, this would result in all clusters
being labelled as slums. For example, for Capetown the
median complexity for all clusters was in the range of 2.16
to 3.0. In the case of Mumbai it was in the range of 2.95 to
4.0. For this reason, only clusters that had a complexity
below the median cluster complexity for each location
were considered ”slum clusters”. In the case of Mumbai,
it meant clusters with a median complexity below 3.49
and for Capetown clusters with a median complexity
below 3.0 (see Table 2). All tiles in the so-called “slum
clusters” were then assigned a slum label and compared

with the ground truth to obtain Intersection over Union
(IoU) scores that could be compared to the baseline results
obtained with the supervised model. Due to all clusters
having a non-negligible amount of non-slum tiles in them
(see Table 2), overall, the unsupervised learning model
performed worse than the supervised method. Figure 3
shows a visualisation of the clusters and Table 3 has the
intersection over union (IoU) for each class and for each
model.

Both models had an intersection over union (IoU) be-
low 0.10 for the slum class, caused by tiles being classified
as slums even when they were not labelled like that in
the ground-truth data. The obtained results suggest that
oversampling the non-slum areas with a 4 to 1 ratio may
not be an appropriate strategy for dealing with the huge
imbalance in this problem. Moreover, the use of com-
plexity scores needs further investigation to determine
the best strategy to set the complexity threshold for each
location. In the way that it was employed in this experi-
ment, it did not help identify the less developed/slums
clusters. Other parameters set in the experiment may
need to be reviewed to increase performance, such as the
tile dimension and number of clusters.

Nonetheless, themean IoU of the unsupervisedmethod
outperformed the results obtained by Gram-Hansen et al.
[1] in the case of Capetown (0.17 versus 0.31) and was
only slightly worse than the case of Mumbai (0.40 versus
0.27). The intersection over union (IoU) for the slum class,
however, was smaller than obtained by Gram-Hansen
et al. [1] for both locations. Still, Gram-Hansen et al.



Figure 3: Left: Areas in yellow were predicted as non-slums (unsupervised approach). Areas in red were labelled as slums
(ground truth). In the background, satellite imagery of Mumbai. Right: Similar to the image on the left, but of Capetown.

Table 3
Results of the Binary Classification of Urban Areas into Slum/Non-slum Classes Using Intersection over Union (Iou)

Supervised learning Unsupervised learning
Location IoU Non-slum IoU Slum mean IoU IoU Non-slum IoU Slum mean IoU

Mumbai 0.84 0.08 0.46 0.52 0.03 0.27
Capetown 0.95 0.07 0.51 0.60 0.01 0.31
All locations 0.90 0.08 0.49 0.56 0.02 0.29

[1] used convolutional neural networks and very-high-
resolution imagery (30cm per pixel) in their experiments,
which indicates that unsupervised learning and freely
available medium-resolution imagery can be promising
for this real-world application.

4. Conclusions and Future Work
This experiment presents the initial results of an attempt
to use deep learning feature extraction and unsupervised
learning to map slums. Results demonstrate that the
proposed method performed worse than the baseline, a
supervised learning approach.

Looking to the future, it would be desirable to investi-
gate strategies to improve the results for the slum class,
such as oversampling the slum class to the point of elim-
inating the imbalance, as suggested in [19], or adopting
more sophisticated sampling for the non-slum class. It
is also possible that more traditional image processing

techniques could be used to mask out regions that are
clearly not urban, such as water and vegetation. These
changes would reduce the total number of non-slum tiles
and potentially make the problem less imbalanced. Addi-
tionally, the adoption of block complexity derived from
crowd-sourced digital maps requires further investiga-
tion to determine its usability as a tool to identify clusters
that represent deprived areas/slums. Performing feature
extraction using a deep learning model pre-trained with
a remote sensing data, as opposed to ImageNet, may
also be beneficial. Also, it would be interesting to see a
comparison of the deep features extracted from medium-
resolution satellite imagery and very-high-resolution im-
agery for the same location with the intention of confirm-
ing that the former can satisfactorily be employed for
mapping slums using unsupervised learning. Lastly, to
develop a global slum inventory, the analysis developed
here could be extended to estimate the population living
in the areas identified as deprived/slums.
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