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Abstract  
This paper studies the application of a general methodology of synthesis of Learning with 

Explainable Argumentation (ArgEML) to a particular real-life learning problem with the aim 

to validate the approach and to provide feedback for its further development. The problem 

concerns that of learning to prognose from a real-life image of a gynecological tumor whether 

this is benign or malignant. This dataset has already been analyzed and studied using various 

methods. Our goal is to synthesize and integrate these lower-level statistical and sub-symbolic 

methods with a symbolic and explainable layer of argumentation. The purpose is not so much 

to improve on the accuracy of these previous efforts but rather to validate the argumentation 

approach to ML and to possibly learn from this example how to further automate the search 

for learning argumentation theories from real-life data. The application of the ArgEML 

approach was carried out in a semi-automated manner using the Gorgias argumentation 

framework and the Gorgias Cloud system.  We show how using the natural explanations for 

the predictions (definite or plausible) of the learned argumentation theory we can separate the 

problem space into groups showing in each such group the basic argumentative tension 

between arguments for and against the alternatives.  
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1. Introduction 

Argumentation is a naturally suitable target language for Machine Learning (ML) model’s 

representation. It offers flexible coverage and prediction notions that are appropriate in the context of 

learning, where the data from which we are learning may be incomplete and appear to be inconsistent, 

or simply is inadequate to reveal the full process or theory generating the data. This suitability of 

argumentation as an umbrella framework in which learning can occur has been exposed recently in  

[1],[2] where the emphasis is shifted away from achieving optimal predictive accuracy to that of 

satisfactory or confident accuracy together with the recognition of difficult dilemma cases or sub-

domains of the problem where a definite prediction cannot be safely taken. Rather in these cases, the 

learned theory provides explanations that support the possible alternatives thus helping a subsequent 

process that is to utilize the learned theory to take a more informed decision. Explanations not only give 

enhanced meaning to the learned theory but they can also be used during the learning process to guide 

this, e.g. by focusing on the more relevant features for cases that are ambitious under the current state 

of the learned theory. 

In this paper we present an Argumentation-based Explainable Machine Learning (ArgEML) 

framework and its application to real-life imaging data on Gynecological Cancer. The ArgEML 

approach relies on a strong coupling of Learning with Reasoning within a framework of structured 

argumentation. In this work, we will be using the Gorgias argumentation framework [3] but most of the 

conceptual elements of the approach can be applied using other structured argumentation frameworks. 

We show how the ArgEML approach can help us understand the learning problem space by partitioning 
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this into sub spaces each of which is classified by its own argumentation framework and argumentative 

explanations for the prediction. 

Our work follows the same motivation as that of several other studies in the literature that explore 

how to integrate machine learning and argumentative reasoning. A review of these studies up to 2020 

can be found in [1], while [4–8] and references therein reflect more recent efforts in this area. All these 

aim to exploit the flexibility of argumentation and its natural connection to explanation in order to 

enhance the expressibility and interpretability of a learned function. 

The rest of the paper is organized as follows. In section 2 we provide background information about 

(1) the real-life imaging dataset we will be learning from and (2) the Gorgias argumentation framework 

we will be using. In Sections 3 and 4 we present the general elements of the ArgEML approach and its 

application to the real-life dataset. Then in Section 5 we present an analysis of the problem space based 

on the explanations for prediction that can be drawn from the learned argumentation theory and how 

this can help in understanding the problem space into its possible subclasses. Finally, Section 6 

concludes and discusses future work. 

2. Background Information 

We briefly describe the dataset for endometrial cancer detection taken from [9]. Then in Section 2.2 

we review the basic concepts and terminology of the Gorgias argumentation framework that are relevant 

for the learning process that we will be using in this paper. 

2.1. From Imaging Data to Prognosis  

In previous work a hysteroscopy Computer Aided Diagnostic system (CADs) was developed for the 

early detection of endometrial cancer [9–11]. Regions of Interest (ROIs) were extracted from 

hysteroscopic images of patients with (1) postmenopausal uterine bleedings and/or suspected 

endometrial lesions, and, patients with (2) normal endometrium. The ROIs were equally distributed 

among normal and abnormal cases. The CADs supported the ROIs texture feature extraction in different 

color systems. A total of 26 texture features were extracted from each color component, using three 

texture features algorithms: (i) Statistical Features (SF), (ii) Spatial Gray Level Dependence Matrices 

(SGLDM), and (iii) Gray Level Difference Statistics (GLDS). Our work builds on a combination of 

SF+SGLDM+GLDS features from the endometrial cancer detection dataset2, as these are shown in 

Table 1.The dataset consists of 445 records, 209 (47%) correspond to normal cases (benign) and 236 

(53%) to abnormal cases (malignant). Tumor is classified as 0-Malignant or 1-Benign. 

Table 1 
Dataset Features 

Algorithm Texture Feature Feature Name Feature Code 

SGLDM 
(Spatial gray-level dependence 
matrices) 

Homogeneity sgldm_homog Feature_0 
Entropy sgldm_entr Feautre_1 

SF 
(Statistical features) 

Energy fos_ener Feature_2 

Entropy fos_ent Feuture_3 

GLDS 
(Gray-level difference statistics) 

Homogeneity gldm_hom Feature_4 

Contrast gldm_con Feature_5 

Energy gldm_eng Feature_6 

Entropy gldm_ent Feature_7 

Mean gldm_mean Feature_8 

 

 

 
2 The dataset is available upon request from the authors. 



2.2. Gorgias Argumentation Framework 

Gorgias3 is a structured argumentation framework where arguments are constructed using a basic 

(content independent) scheme of argument rules. Two types of arguments rules are constructed within 

a Gorgias argumentation theory: object-level arguments and priority arguments expressing a 

preference, or relative strength, between other arguments. The dialectic argumentation process of 

Gorgias to determine the acceptability (admissibility) of an argument supporting a desirable claim or 

conclusion typically occurs between composite arguments where priority arguments are included 

alongside object-level arguments in order to strengthen (against counter-arguments) the arguments 

currently committed to. 

In general, argument rules are named associations between a set of premises and a claim or position 

that these premises are supporting via the argument rule. They have the general form of: 

“Argument_Name: Premises ►Claim”, where Premises is a set of literal (i.e.  positive or negative 

atomic statement) conditions and Claim is a single literal. They can be chained together to form a 

support of a desired claim. In their concrete form within the Gorgias system, argument rules are 

expressed using the syntax of Extended Logic Programming, where an argument rule has the following 

parametric syntactic form4: 

𝑟𝑢𝑙𝑒(𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡_𝑁𝑎𝑚𝑒, 𝐶𝑙𝑎𝑖𝑚, 𝐷𝑒𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑟𝑒𝑚𝑖𝑠𝑒𝑠): −𝑁𝑜𝑛_𝐷𝑒𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑃𝑟𝑒𝑚𝑖𝑠𝑒𝑠. (1) 

Argument_Name can be any Prolog term with which we parametrically name arguments expressed 

by this rule. Claim is a positive or negative atomic formula (negation in the Gorgias system is written 

by wrapping the positive atom with ``neg(.)''). Defeasible_Premises and Non_Defeasible_Premises are 

conjunctions of positive or negative atomic formulae: the former are executed under Gorgias while the 

latter directly under Prolog. In the context of learning, the non-defeasible conditions of argument rules 

are built from the concrete information that we have on the features of our dataset cases. The defeasible 

conditions allow the opportunity to use conditions for which we do not have complete information or 

even to invent new conditional predicates (we will not be concerned with the later in this paper). 

Example: The Gorgias code below shows two object-level argument rules (i.e. r1(), r2()) for and against 

buying an object with priority argument rules (i.e. pr1(), pr2()) between the object-level rules depending 

on whether we are low on funds. 

𝑟𝑢𝑙𝑒(𝑟1(𝑋), 𝑏𝑢𝑦(𝑋), []) ∶ − 𝑛𝑒𝑒𝑑(𝑋). 
𝑟𝑢𝑙𝑒(𝑟2(𝑋), 𝑛𝑒𝑔(𝑏𝑢𝑦(𝑋)), []): − 𝑢𝑟𝑔𝑒𝑛𝑐𝑦(𝑋, 𝑛𝑜). 
𝑟𝑢𝑙𝑒(𝑝𝑟1(𝑋), 𝑝𝑟𝑒𝑓𝑒𝑟(𝑟1(𝑋), 𝑟2(𝑋)), []). 
𝑟𝑢𝑙𝑒(𝑝𝑟2(𝑋), 𝑝𝑟𝑒𝑓𝑒𝑟(𝑟2(𝑋), 𝑟1(𝑋)), []): − 𝑙𝑒𝑣𝑒𝑙_𝑜𝑓_𝑓𝑢𝑛𝑑𝑠(𝑙𝑜𝑤). 

The combination of object-level arguments together with the contextual priority arguments result into 

a theory that captures the policy of “Normally, we buy something that we need even if this is not urgently 

needed. But when we are low on funds we may not buy something for which there is no urgency.”. 

In a learning context we would have an underlying process that generates, according to this policy 

data points by observing if an object is bought or not in different scenarios described by the three 

features of “need(.), urgency(.,.) and level_on_funds(.)”. The task is then to learn or reconstruct the 

above Gorgias theory (or an equivalent form of this).  

The coverage and prediction notions for the argumentation-based approach to learning will be build 

using the standard argumentation reasoning within a structured argumentation like the one of Gorgias. 

This depends on the central notion of an acceptable coalition of arguments, which in the case of the 

Gorgias framework relates to a (minimal) composite argument that is admissible. As in the standard 

definition of admissibility [12] a composite argument is admissible iff it is conflict free and it attacks 

back all other composite arguments that attack it.  

 
3 The Gorgias Argumentation framework was introduced in [13] and extended in [14].  The system of GORGIAS was developed in 2003 

and has since been used by several research groups for a variety of real-life applications [3]. Today it is publicly available through Gorgias 
Cloud as a https://aiasvm1.amcl.tuc.gr:8087/. 
4 In this paper, we will be using the cumbersome internal code syntax of the Gorgias system to present examples. This will help the interested 

reader to reproduce the learned results and/or apply the learning process to their own learning problems using the open Gorgias Cloud system. 



We can then define plausible and definite conclusions or predictions according to whether there 

exists an admissible composite argument that supports the conclusion of interest, in which case we say 

the conclusion is plausible or possible. If in addition there exists no admissible composite argument 

that supports any other conclusion that is in conflict with the conclusion of interest then we say that this 

is a definite conclusion. Note that it is possible for a conclusion and some other conflicting conclusion 

to both be plausible conclusions from the same argumentation theory, in which case we say the theory 

is (locally) ambiguous and the conclusion forms a dilemma within the theory. 

The above definition of admissibility of composite arguments hinges on the definition of attacks 

between composite arguments. Informally, a composite argument, D1, attacks another one, D2, iff they 

are in conflict and the arguments in D1 are rendered by the priority arguments that it contains at least 

as strong as the arguments contained in D2. The exact technical details of this central notion can be 

found in the associated references [13, 14]. What is important to note is that attacks can occur at two 

levels: (1) the object level based on a conflict between statements in the application language or at (2) 

a (hierarchy of) priority level(s) where the conflict between the two composite arguments refers to a 

preference between two arguments at a lower level. Accordingly, to build an admissible composite 

argument we consider attacks at the object level and then include priority arguments to strengthen its 

object rules against the attacking ones.  

To illustrate this, consider in the above example an object, obj1, for which need(obj1), 

urgency(obj1,no) and level_of_funds(low) all hold true and let us ask the Gorgias query of buy(obj1). 

This is supported by the simple argument arg1= [r1(obj1)] but this is not admissible as it is attacked by 

arg2=[r2(obj1),pr2(obj1)] which arg1 does not attack back. To do so we can extend arg1 to form the 

composite argument arg1’=[r1(obj1), pr1(obj1)]. Both arg1’ and arg2 are then admissible indicating 

that the case of obj1 is a dilemma of the theory having reasons for both to buy it or not to buy it. The 

ambiguity, “But when we are low on funds we may not buy something for which there is no urgency.” 

in the policy, that is represented by this theory, is reflected by the existence of such dilemma cases 

where the theory cannot make a definite prediction. Indeed, in a learning context the data produced by 

this policy will contain the ambiguity and it is thus natural for a theory learned from this data to reflect 

this ambiguity as a reasoned dilemma rather than insist on making a definite prediction for these cases. 

3. ArgEML Framework and Methodology 

The argumentation-based framework for Explainable Machine Learning (ArgEML) is based on a 

novel approach to ML that integrates sub-symbolic methods with logical methods of argumentation to 

provide explainable solutions to learning problems. The goal is to learn argumentation theories from 

data, using statistical learning techniques, to uncover significant features in developing argumentation 

theories and represent knowledge as contextual hierarchies within a preference-based structured 

argumentation framework.   In the following subsections we present a conceptual description of the 

ArgEML approach and a high-level description of its learning process.  

3.1. ArgEML approach (conceptual description) 

Our ArgEML approach is based on acknowledging the predictive accuracy difficulties in real-life 

learning problems and the importance of explanations, as a means of understanding the reasoning 

behind a prediction and providing the domain expert with a tool to take more informed decisions. The 

approach views the notion of prediction from a different perspective than that of a traditional ML model, 

by relaxing the requirement of accuracy and introducing the notions of definite prediction and 

ambiguity.  In this perspective, if we cannot uniquely predict, but can focus the prediction and give 

justifications for the alternatives, we have a valuable output of learning. 

Utilizing argumentation as a framework for explainable decision making we aim at learning 

contextual hierarchies starting from general and simple statements to more specific ones and structuring 

these using priorities between them. The learning process is not driven only by strict accuracy but for 

solutions that would be sufficiently good in terms of accuracy compensating with the high-level of 

explainability of the learned theory.  This concept of sufficiently good but explainable solution 



motivates a set of metrics that will govern the learning process. These are defined and explained in 

Section 3.1.1. 

The ArgEML method consists of a high-level iterative learning process that follows a set of semi-

automated steps as presented in Figure 1. The first step initiates the learning process by (1) deciding 

the language of the problem and (2) defining the basic contexts of the problem domain in terms of 

object-level arguments. The iterative process starts from an interim evaluation of the initial theory and 

repeats steps (3) mitigate errors and/or (4) reduce dilemmas until the evaluation results in no further 

improvement of the learned theory or exit criteria are met. The ArgEML methodology steps are further 

explained in Section 3.2. 

 
Figure 1: ArgEML conceptual description. 

3.1.1. Learning metrics 

Table 2 
Learning Metrics - Equations 

Metric Equation  

Coverage 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝐷, 𝑎𝑟𝑔_𝑖) ← 𝑂𝑏𝑗𝑠_𝑖 𝑁⁄  (2) 

Total Coverage 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝐷, 𝑎𝑟𝑔_𝑡ℎ𝑒𝑜𝑟𝑦) ← ⋃ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝐷, 𝑎𝑟𝑔_𝑖)

𝑚

𝑖=1

 
(3) 

Definite Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐷, 𝑎𝑟𝑔_𝑡ℎ𝑒𝑜𝑟𝑦) ← 𝑂𝑏𝑗𝑠_𝑎𝑐𝑐 𝑁⁄  (4) 
Definite Errors 𝐸𝑟𝑟𝑜𝑟𝑠(𝐷, 𝑎𝑟𝑔_𝑡ℎ𝑒𝑜𝑟𝑦) ← 𝑂𝑏𝑗𝑠_𝑒𝑟𝑟 𝑁⁄  (5) 
Ambiguity 𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦(𝐷, 𝑎𝑟𝑔_𝑡ℎ𝑒𝑜𝑟𝑦) ← 𝑂𝑏𝑗𝑠_𝑎𝑚𝑏 𝑁⁄  (6) 

Learning metrics are defined in terms of the number of observations or data points N in the dataset D 

that we are learning from, using the equations in Table 2. 

• Coverage. The coverage of an argument arg_i: Premises_i ►Claim is equal to the number 

of observations Objs_i in a dataset D that Premises_i is true (equation (2) in Table 2). 

The total coverage metric for an argumentation theory arg_theory with m arguments is 

defined as in equation (3) in Table 2. 

• Definite Prediction. This metric is related to the predictive accuracy that we normally have 

in a ML model, but in the ArgEML approach this only applies to the observations for which 

the theory provides a definite prediction (see Table 2). 

o Accuracy or Definite Accuracy: is defined as the percentage of the number of observations 

Objs_acc in a dataset D that an argumentation theory arg_theory provides a definite 

prediction and the prediction matches the actual target value (equation (4) in Table 2). 

o Errors or Definite Errors: is defined as the percentage of the number of observations 

Objs_err in a dataset D that an argumentation theory arg_theory provides a definite 

prediction but the prediction does not match the target value (equation (5) in Table 2). 

• Ambiguity. Ambiguity measures the percentage of observations Objs_amb in a dataset D 

that an argumentation theory arg_theory provides plausible predictions (equation (6) in 

Table 2). 

• Compactness. This metric relates to the explanation complexity and aims to capture a form 

of simplicity. It can be defined in a number of ways, in relation to the argumentation theory, 



suggesting a compact (small) number of arguments, or, in relation to an individual argument, 

indicating low complexity of its premises (small number of conditions). 

Compact Coverage is one of the major metrics of the ArgEML approach, it combines the 

metric of total coverage and the notion of compactness, suggesting a compact argumentation 

theory with high total coverage. 

Given this set of metrics, a solution (theory) can be evaluated using a combination of properties, not 

simply based on optimal prediction. Hence, a solution can be “sufficiently good” if it provides compact 

coverage, and acceptable levels of definite accuracy (or definite errors) and ambiguity with (useful) 

justifications (explanations), depending on how hard the problem is.  

3.2. Integrated learning process - Methodology 

Starting from a state of absolute ambiguity, the objective is to learn an argumentation theory that 

covers all or most observations in a given dataset, eliminates ambiguity, and improves the accuracy of 

definite predictions, by mitigating the errors. A high-level overview of the methodology is illustrated 

in Table 3. The first step (step 1) aims at selecting the language (features) to develop the theory. The 

second step (step 2) concerns the selection of a compact set of arguments to describe the basic contexts 

of the problem domain. Then, the learning process repeats step 3 and step 4, generates different versions 

of the argumentation theory, until an exit criterion is met or learning has no further improvement. Exit 

criteria can be defined using e.g. thresholds for the metrics of definite errors (Err_Thold) (or definite 

accuracy) and ambiguity (Amb_Thold).  

Table 3 
ArgEML Methodology Overview 

Learning Step Goal 

Step 1: Decide the language of the learning problem. Feature selection 
Step 2: Select the basic contexts of the problem domain. Compact coverage 
Repeat (Steps 3 & 4) until Goal is reached or learning has no further improvement: 
Step 3: Mitigate the error of individual arguments. Errors ≤ Err_Thold 
Step 4: Reduce dilemmas between pairs of arguments in conflict. Ambiguity ≤ Amb_Thold 

Evaluation: Select “sufficiently good” argumentation theory. Explainable Model 

We now briefly describe these steps in operational terms. 

Initialize theory:  

• Step 1: Decide the language of the problem. 

This step is similar to the data processing step in a machine learning pipeline. It mostly involves 

independent statistical analysis of the feature set to separate out a set of significant features. 

Examples include filter methods that select features based on their correlation to the output (target 

variable). More information on these methods can be found in [15]. 

• Step 2: Select the basic contexts of the problem domain. 

In Step 2 we initialize the argumentation theory by building a compact set of object-level arguments 

(general scenarios) that achieve a high total coverage of the data (Compact Coverage). We can use 

a combination of learning operators, working directly on the significant features set, or use a 

surrogate sub-symbolic machine learning algorithm amenable to rule-extraction. For example, we 

can train a Random Forest or XGBoost model and use a rule-extraction method (e.g. Interpreting 

Tree Ensembles with inTrees [16]) to construct object-level arguments that form the basic contexts 

of the argumentation theory.  

Iterative Learning Process: The process starts with an interim evaluation of the initial theory and 

repeats steps 3 and 4 based on the exit criteria. 

• Step 3: Mitigate the error of individual arguments. 

Individual object-level arguments will support erroneously the target conclusion for a number of 

cases. To mitigate this error, we construct a defeat argument against this, which together with a 



(possibly conditional) priority argument will remove a significant number of these erroneous 

predictions. Step 3 is executed as long as condition Errors > Err_Thold holds. At the end of each 

execution we generate a new version of the theory and we repeat the iterative learning process (steps 

3 & 4).  

• Step 4: Reduce dilemmas between pairs of arguments in conflict. 

In Step 4 we identify the pairs of object-level arguments (and local defeat arguments, if any that are 

in conflict to construct conditional priority arguments to resolve the conflict in either way. Step 

4 is executed as long as condition Ambiguity > Amb_Thold holds. At the end of each execution we 

generate a new version of the theory and we repeat the iterative learning process (steps 3 & 4).  

• Evaluation step: select a “sufficiently good” argumentation theory. 

This step carries out a global evaluation, in terms of some overall information gain, of the results 

of the previous local steps in the current theory. Using this we can compare different versions of the 

argumentation theory and select a sufficiently good improvement of the current theory or terminate. 

For example, information gain can be calculated using some adopted notion of entropy (as in 

Decision Trees) based on the values of the new metrics of compact coverage, definite errors and 

ambiguity. We can use definite errors or definite accuracy interchangeably. While these metrics-

based evaluation approaches, also known as objective approaches, are the ones mainly used today, 

human-centered evaluation is of equal importance with studies suggesting a more active role of the 

end user in the process [17][18].  

4. ArgEML applied to Cancer Prognosis 

In this section, we illustrate the (semi-automated) application of the ArgEML methodology on the 

dataset described in Section 2 for the classification of hysteroscopy images and the endometrial cancer 

detection. At the beginning of the process Err_Thold is set to 20% and Amb_Thold to 30%. 

• Step 1: Decide the language of the problem. 

We used a set of features from [9] as show in Table 1. The dataset of 445 observations was divided 

into training and test sets with 400 (90%) and 45 (10%) observations respectively. While techniques 

like cross-validation are usually employed at this step we simplified this process to focus on the 

validation of the ArgEML approach.  

• Step 2: Select the basic contexts of the problem domain. 

We followed the rule-extraction method, trained a Random Forest model using the training set and 

extracted a number of decision rules from the model. Then we selected a compact list of these rules, 

to cover most of the observations in the training set, to create the basic object-level arguments of the 

theory. This gave us an initial version of the theory with a small number of low-complexity 

arguments, as show in Table 55, and a total coverage of 99.75%. At this point we noticed that each 

data point is covered (roughly) twice by this initial theory and hence its predictive accuracy as a 

whole is low.  

Table 4 
Object-level arguments. 

Argument Premises Claim C A E 

r4(X) 𝑔𝑙𝑑𝑚_𝑚𝑒𝑎𝑛 > 1.65 𝐴𝑁𝐷 𝑠𝑔𝑙𝑑𝑚_𝑒𝑛𝑡𝑟 >  5.25 benign(X) 48% 79% 21% 
r6(X) 𝑔𝑙𝑑𝑚_𝑐𝑜𝑛 >  4.89 𝐴𝑁𝐷 𝑓𝑜𝑠_𝑒𝑛𝑒𝑟 ≤   0.06 benign(X) 50% 78% 22% 
r8(X) 𝑔𝑙𝑑𝑚_𝑐𝑜𝑛 ≤   5.03 𝐴𝑁𝐷 𝑔𝑙𝑑𝑚𝑒𝑛𝑡 > 1.30 malignant(X) 50% 72% 28% 

r10(X) 𝑔𝑙𝑑𝑚_𝑚𝑒𝑎𝑛 ≤ 1.65 𝐴𝑁𝐷 𝑠𝑔𝑙𝑑𝑚_ℎ𝑚𝑜𝑔 >  0.45 malignant(X) 50% 72% 28% 

C: Coverage. A: Accuracy. E: Error. 

• Step 3: Mitigate the error of individual arguments. 

The object-level arguments selected in Step 2 were further analyzed using the properties of 

Coverage, Accuracy and Error as shown in Table 4. For each argument in the list (r4, r6, r8, r10) we 

 
5 The numerical conditions in these argument rules can be discretized, e.g. into low, medium and high, to help with the 

readability of the explanations generated from these. This matter is beyond the scope of this paper.  



isolate the observations in the training set that the argument covers and try to learn a new set of 

conditions (premises) to construct a defeat argument. For example, for the argument r8, we 

examined the 201 (50%) observations from the training set, using a feature frequency distribution 

operator, looking for new conditions to support the contratictive conclusion of “benign(X)”. We 

learned the defeat argument r8b defined as follows: 

𝑟𝑢𝑙𝑒(𝑟8𝑏(𝑋), 𝑏𝑒𝑛𝑖𝑔𝑛(𝑋), [ ]): −𝑔𝑙𝑑𝑚_ℎ𝑜𝑚 > 0.50 𝐴𝑁𝐷 𝑓𝑜𝑠_𝑒𝑛𝑒𝑟 ≤ 0.05. 

In the context of mitigating errors, defeat arguments are created together with the corresponding 

priority arguments to ensure local correction of the error. Therefore, for the arguments r8, r8b we 

added the priority argument pr3: 

𝑟𝑢𝑙𝑒(𝑝𝑟3(𝑋), 𝑝𝑟𝑒𝑓𝑒𝑟(𝑟8𝑏(𝑋), 𝑟8(𝑋)), [ ]). 

Furthermore, to avoid side effects of defeat arguments on other object-level arguments we can add 

further priority rules that make these weaker than other conflicting arguments. For argument r8b 

we have therefore added: 

𝑟𝑢𝑙𝑒(𝑝𝑟7(𝑋), 𝑝𝑟𝑒𝑓𝑒𝑟(𝑟10(𝑋), 𝑟8𝑏(𝑋)), [ ]). 

The revised properties of Accuracy and Error for the initial object-level arguments is shown in 

Table 5. Step 3 improved the quality of the object-level arguments by reducing their Errors and 

satisfying the threshold of 20%. 

Table 5 
Object-level argument’s properties revised, after execution of Step 3. 

Argument Claim C A E 

r4(X) benign(X) 48% 83% 17% 
r6(X) benign(X) 50% 82% 18% 
r8(X) malignant(X) 50% 82% 18% 
r10(X) malignant(X) 50% 80% 20% 

 

• Step 4: Reduce dilemmas between pairs of arguments in conflict. 

During this step we examined all pairs of contradictory object-level arguments created in Step 2. 

This examination resulted in the following list of {(arguments pair=number of dilemmas)}: 

{pair(r4(X), r8(X))=5, pair(r4(X), r10(X))=0, pair(r6(X), r8(X))=7, pair(r6(X), r10(X))=8}. 
If a pair of arguments was in conflict then we tried to eliminate the dilemma using priority 

arguments, making object-level arguments stronger under a particular set of conditions. For each 

pair of contradictory object-level arguments we isolate the observations in the training set that both 

arguments covered, and try to find new conditions, using a frequency distribution operator, to 

construct priority arguments in favor of each contradictory conclusion. For example, for the pair of 

arguments r6(X), r10(X), we see that the majority of these dilemma cases belong in the class of 

benign. Therefore, we added a general priority argument, to express this preference.  

𝑟𝑢𝑙𝑒(𝑝𝑟12(𝑋), 𝑝𝑟𝑒𝑓𝑒𝑟(𝑟6(𝑋), 𝑟10(𝑋)), [ ]). 

Secondly, we searched for a condition or a set of conditions under which argument r10 is stronger 

than r6, and constructed the preference argument pr13: 

𝑟𝑢𝑙𝑒(𝑝𝑟13(𝑋), 𝑝𝑟𝑒𝑓𝑒𝑟(𝑟10(𝑋), 𝑟6(𝑋)), [ ]): −𝑠𝑔𝑙𝑑𝑚_ℎ𝑜𝑚𝑜𝑔

> 0.454 𝐴𝑁𝐷 𝑠𝑔𝑙𝑑𝑚_ℎ𝑜𝑚𝑜𝑔 < 0.46 

together with the higher-order preference of this specific preference over pr12: 

𝑟𝑢𝑙𝑒(𝑐6(𝑋), 𝑝𝑟𝑒𝑓𝑒𝑟(𝑝𝑟13(𝑋), 𝑝𝑟12(𝑋)), [ ]). 

At the end of Step 4 all dilemmas between the basic object-level arguments (r4,r6,r8,10) were 

resolved while other dilemmas, between pairs of defeat arguments and object-level arguments, may 

still remain. The resulting argumentation theory is provided as a Gorgias file in the Appendix. This 

theory was considered “sufficiently good” on the training set. It was then evaluated on the test set 

with similar results, as shown in Table 6. 



Table 6 
Argumentation theory assessment on the Training and Test sets. 

Metric Training set Assessment Test set Assessment 

Compact coverage Acceptable (TC: 99.75%) Acceptable (TC: 100%) 
Definite accuracy* 72% 71% 
Definite errors 18% 18% 
Ambiguity 10% 11% 

*TC: Total Coverage. 

5. Explainable Analysis of the Problem Space 

Using argumentation as the coverage notion for ML naturally affords the provision of explanations 

alongside the prediction of the learned output structure. Predicting the label of a case is carried out via 

the existence of an acceptable set of arguments that supports the prediction. The acceptability of this 

set of arguments can then be unraveled to produce an explanation that contains information both at the 

level of the basic attributive support of the prediction claim and at the level of the relative strength of 

the claim in contrast to other possible alternative claims. For the case of the Gorgias framework, this 

process of extracting natural explanations is facilitated by the form of the composite admissible 

arguments that are constructed as Internal Explanations by the Gorgias system and returned along 

with its answer to a query. Let us illustrate this kind of application level explanations, generated 

automatically in Cloud Gorgias, by supposing that we have the Gorgias internal explanation [pr4 
(101),r4(101),r6(101)] for predicting that case 101 is benign. From this, we can generate the 

explanation illustrated in Table 7. 

Table 7 
Application level explanation. 

The statement "benign (101)" is supported by {gldm_mean(101)>1.65 & 
sgldm_entr(101)>5.25}a. This reason is strengthened against the reason of {gldm_mean>1.66 & 
gldm_hom <= 0.45}b supporting "malignant (101)" by {gldm_con (101)>4.89 & fos_ener(101) 
<0.06}c. 

a Premises of r4. b Premises of r4b. c Premises of r6. 

We can see that this contains an attributive part, giving the basic reasons on which, the prediction 

is supported (or else answering “why this prediction”) as well as a contrastive part, which gives 

additional reasons that strengthen the basic reason against reasons supporting the opposite prediction 

(or else answering “why-not a different prediction”). Such explanations provide a high-level of 

interpretability of the learned theory that facilitates its evaluation through experts who would be able to 

judge the prognosis results based not merely on the final result but on their accompanied explanations 

and, in fact, provide useful feedback at the level of the explanation. We can then improve the learned 

model through a new learning phase from such new data cases which are further annotated by the 

argumentative explanation that supports their labels (c.f. the learning method of [19]). 

Furthermore, and perhaps more importantly, the Gorgias internal explanations can help us analyze 

the problem space and understand how this can be structured into different sub-parts. We can use these 

internal explanations of composite arguments to partition the problem space into (equivalence) 

groups, where each group is characterized by a unique type or pattern of explanation. In our prognosis 

application, we have found that the training data space is partitioned into a set of groups as shown in 

Table 8. In Groups 1-4, the prediction of the learned argumentation theory is definite whereas in groups 

5 and 6 the learned theory is in a dilemma, i.e. it returns admissible arguments supporting either of the 

two possible outcomes of the prediction. We can use this partitioning to grade our confidence in the 

prediction of the theory depending on the group that a new case may fall. For example, we might be 

more confident for a prediction that falls in group 3 over other predictions that fall in groups 1 or 4. 

As mentioned above, each group is defined by the unique pattern of the Gorgias internal explanation 

returned for all members of the group. From this we can extract two relevant pieces of information that 

describe the group: (1) the sub-space of features that concerns this group and (2) the arguments in the 



learned theory that are active in this sub-space as well as the active attacks between them. Combining 

these two pieces of information, we can understand how the learned theory captures the decision 

problem for each group by constructing the argumentation framework pertaining to each group.   

Table 8 
Subgroups of Data identified by Gorgias Argumentative Explanations. 

Group ID Gorgias Explanation(s) Number of Cases Accuracy/ Dilemma 

1 E1=[pr7(_),r10(_),r8(_)] 16 71% 
2 E2=[r8(_)] 142 78% 
3 E3=[pr4(_),r4(_),r6(_)] 170 83% 
4 E4=[r4(_)] 14 69% 
5 E51=[pr15(_),pr8(_),r10b(_),r8b(_)] 

E52=[pr19(_),pr7(_),r10(_),r8(_)] 
28 Dilemma 

6 E61=[pr16(_),pr4(_),r4(_),r6(_)] 
E62=[pr14(_),pr3(_),r4b(_),r6b(_)] 

14 Dilemma 

Others ---- 16 ---- 

 

Let us present this for group 3 whose internal Gorgias explanation, is the composite argument E3= 

[pr4(.), r4(.), r6(.)]. From this, we can recognize that the active arguments involved are: A4= [r4(.)], 

A6= [r6(.), pr4(.): r6(.) > r4b(.)] and B4b= [r6b(.), pr3(.): r4b(.) > r4(.)], together with the following 

attacks between these as shown in Figure 2 (left). 

 
Figure 2. Argumentation Frameworks for Group 3 (left) and Group 6 (right) 

Given this argumentation framework we see that the only admissible subsets are {A6} and {A4, 

A6} (the latter being E3), and hence in this group we have a definite prediction of benign. Note that 

although the prediction within this sub-part of the problem can be supported simply by the argument 

A6, this actually forms another sub-part of the problem, a small sub-group in “Others” of Table 7. Here 

in group 3, we see that the role of A6 is different, namely it comes to the defense of A4 against its 

defeater attack of B4b. The two arguments of A4 and A6 supporting the same conclusion of benign 

aggregate together to give a more informative explanation (see above).  

Similarly, the argumentation framework corresponding to group 6 is shown in Figure 2 (right). 

This has two admissible subsets of composite arguments, D1={A4, A6}, and D2={B4b, B6b} 

supporting opposite predictions, indicating that this sub-part of the problem is identified by the theory 

as a “difficult case’’. The learned theory though is not agnostic. It provides a contrastive explanation 

for each possible prediction. 

6. Conclusions and Future Work 

We have presented an integrated approach of Machine Learning with Argumentation and shown 

how this has been applied to a real-life problem of learning from images of endometrial cancer. The 

same method has been applied on other medical imaging data, e.g. on brain images for Alzheimer [19], 

and more recently on images relating to multiple sclerosis. We have shown how the explainability of 

such an argumentation-based approach to ML can help us understand and structure the learning problem 

space into meaningful sub-spaces. 

The proposed ArgEML learning process can be executed in different modes, from semi-automated 

and hybrid with the help of external statistical and other ML modules (as followed in this paper) to a 

fully automated process starting from the data and carrying out iteratively the learning operator steps. 



In particular, the learning operators of mitigation of errors and resolution of dilemmas can be automated 

with various parameters, depending on the features of the learning problem at hand. The long-term goal 

of our work is to automate this process of learning starting from the data to the final argumentation 

theory. While argumentation provides a natural link to explanations, a major challenge in this task of 

automating fully the learning process, is to consider how these explanations can meet the various 

qualities of explanations, as well as the involvement of the domain expert in the evaluation process, 

particularly in the context of Human-centric AI. The quality of explanations needs to drive the learning 

process as much as the prediction accuracy. 
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Appendix 

:- dynamic feature0/2, feature1/2, feature2/2, feature3/2, feature4/2, feature5/2, feature6/2, feature7/2, 
feature8/2.6 
 

complement(malignant(Tumor), benign(Tumor)). 
complement(benign(Tumor), malignant(Tumor)). 

 
rule(r4(Tumor), benign(Tumor),[]):-feature8(Tumor,Value),Value>1.65, 
feature1(Tumor,Value2),Value2>5.25. 
rule(r4b(Tumor), malignant(Tumor),[]):-feature8(Tumor,Value),Value>1.66, 
feature4(Tumor,Value2),Value2=<0.45. 
rule(pr3(Tumor), prefer(r4b(Tumor), r4(Tumor)),[]). 
 
rule(r8(Tumor), malignant(Tumor),[]):-feature5(Tumor,Value),Value=<5.03, 
feature7(Tumor,Value2),Value2>1.30. 
rule(r8b(Tumor), benign(Tumor),[]):-feature4(Tumor,Value),Value>0.50, 
feature2(Tumor,Value2),Value2=<0.05. 
rule(pr5(Tumor), prefer(r8b(Tumor), r8(Tumor)),[]). 
 
rule(pr1(Tumor), prefer(r4(Tumor), r8(Tumor)),[]). 
rule(pr2(Tumor),prefer(r8(Tumor), r4(Tumor)),[]):-feature0(Tumor,Value),Value>0.445, 
feature4(Tumor,Value2),Value2>0.445. 
rule(c1(Tumor),prefer(pr2(Tumor),pr1(Tumor)),[]). 
 
rule(r6(Tumor), benign(Tumor),[]):-feature5(Tumor,Value),Value>4.89, 
feature2(Tumor,Value2),Value2=<0.06. 
rule(r6b(Tumor), malignant(Tumor),[]):-feature7(Tumor,Value),Value>1.67, 
feature1(Tumor,Value2),Value2=<5.93, feature6(Tumor,Value3),Value3=<0.19. 
rule(pr14(Tumor), prefer(r6b(Tumor), r6(Tumor)),[]). 
 
rule(pr4(Tumor), prefer(r6(Tumor), r4b(Tumor)),[]). 
rule(pr16(Tumor), prefer(r4(Tumor), r6b(Tumor)),[]). 
 
rule(r10(Tumor), malignant(Tumor),[]):-feature8(Tumor,Value),Value=<1.65, 
feature0(Tumor,Value2),Value2>0.45. 
rule(r10b(Tumor), benign(Tumor),[]):-feature4(Tumor,Value),Value>0.50, 
feature0(Tumor,Value2),Value2>0.50, feature3(Tumor,Value3),Value3>3.31. 
rule(pr15(Tumor), prefer(r10b(Tumor), r10(Tumor)),[]). 
 
rule(pr12(Tumor), prefer(r6(Tumor), r10(Tumor)),[]). 
rule(pr13(Tumor),prefer(r10(Tumor), r6(Tumor)),[]):-feature0(Tumor,Value),Value>0.454, 
feature0(Tumor,Value2),Value2<0.46. 
rule(c6(Tumor),prefer(pr13(Tumor),pr12(Tumor)),[]). 
 
rule(pr19(Tumor), prefer(r8(Tumor), r10b(Tumor)),[]). 
rule(pr7(Tumor), prefer(r10(Tumor), r8b(Tumor)),[]). 
 
rule(pr40(Tumor), prefer(r6(Tumor), r8(Tumor)),[]). 
rule(pr41(Tumor),prefer(r8(Tumor), r6(Tumor)),[]):-feature0(Tumor,Value),Value>0.45. 
rule(c40(Tumor),prefer(pr41(Tumor),pr40(Tumor)),[]). 

 

 

 
6 Predicates feature0,feature1,..,feature8 correspond to feature-names is shown in Table 1. 


