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Abstract
In this paper we study everyday explanations for classification tasks with formal argumentation. Every-

day explanations describe how humans explain in day-to-day life, which is important when explaining

decisions of AI systems to lay users. We introduce EVAX, a model-agnostic explanation method for

classifiers with which contrastive, selected and social explanations can be generated. The resulting

explanations can be adjusted in their size and retain high fidelity scores (an average of 0.95).
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1. Introduction

A recent trend in explainable artificial intelligence (XAI) is hybrid (or neuro-symbolic) ap-

proaches, where the performance of learning-based systems is combined with the transparency

of knowledge-based AI [1]. One such knowledge-based approach that seems suitable for this

purpose is formal argumentation [2], see e.g., [3]. Formal argumentation is designed to model

the argumentative nature and defeasible character of human reasoning, by means of argumenta-

tion frameworks: a set of arguments and an attack relation between these arguments. Although

argumentative XAI is relatively new, several methods have been proposed, see [3] for a recent

overview.

In this paper we are interested how formal argumentation can contribute to the modeling

of explanations, as described in [4]: explanations of a specific event or decision for human

(non-expert) end users. Specifically, we study:

• everyday explanations: explanations as used by humans in day-to-day life. Unlike scientific

explanations, these need not be based on general laws. We will focus on local explanations

(i.e., explanations for a specific outcome) and assume a receiver who benefits from a

smaller explanation.

• contrastive, selected and social explanations: among the main findings in [4] is that ex-

planations are: contrastive, when explaining 𝑃 , humans often expect the explanation to

highlight the difference between 𝑃 and something else (e.g., 𝑄), the explanation answers
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why 𝑃 rather than 𝑄? ; selected, not all possible explanations are returned, but rather just

one or two are selected based on a cognitive bias, such as abnormality or responsibility;

and social, explanations (e.g., their size or content) are adjusted to the receiver.

• faithfulness: when explaining the outcome of a black box, learning-based system, it should

be faithful to the system and its mechanisms.

In order to model the above properties in an argumentative explanation method, we introduce

EVAX, an argumentative explanation method for everyday explanations of decisions derived

with a classifier. EVAX is a model-agnostic method, which only requires the input and output

of a classifier and can then compute, faithfully, explanations which are contrastive, selected and

social.

The paper is structured as follows. Section 2 contains the preliminaries after which EVAX
is introduced (Section 3). We present a quantitative (Section 4) and qualitative (Section 5)

evaluation. Related work is discussed in Section 6 and we conclude in Section 7.

2. Preliminaries

In this section we recall the necessary preliminaries on formal argumentation and classification

tasks and present our definition of arguments and defeats.

2.1. Formal argumentation

An abstract argumentation framework (AF) [2] is a pair 𝒜ℱ = ⟨Args,Def⟩, where Args is a

set of arguments and Def ⊆ Args × Args is an defeat relation on these arguments. Given an

argumentation framework 𝒜ℱ , Dung-style semantics [2] can be applied to it, to determine

what combinations of arguments (called extensions) can collectively be accepted.

Definition 1. Let 𝒜ℱ = ⟨Args,Def⟩ be an AF, S ⊆ Args be a set of arguments and 𝐴 ∈ Args
an argument. Then S defeats 𝐴 if there is an 𝐴′ ∈ S such that (𝐴′, 𝐴) ∈ Def; S defends 𝐴 if S
defeats every defeater of𝐴; S is conflict-free if there are no𝐴1, 𝐴2 ∈ S such that (𝐴1, 𝐴2) ∈ Def.
S is admissible if it is conflict-free and it defends all of its elements, S is complete if it is admissible
and it contains all the arguments it defends. The grounded extension of 𝒜ℱ is the minimal (w.r.t.
⊆) complete extension, denoted by Grd(𝒜ℱ).

In abstract argumentation, arguments are abstract entities and the attack relation is pre-

determined. In contrast, in structured argumentation [5], arguments are constructed from a

knowledge base and a set of rules and the attacks are based on the structure of the resulting

arguments. In both cases, the strength of the arguments determines whether an attack is

successful (e.g., an attack by a stronger argument is successful and therefore also a defeat, but

an attack by a weaker argument is not successful). While there is a variety of approaches to

structured argumentation, we will use a simple notion of an argument: a triple of a premise, a

conclusion and the strength of the argument.

Definition 2. An argument𝐴 is a triple (𝜓, 𝜑, 𝑝), where𝜓 is the premise (e.g., a feature), denoted
by prem(𝐴) = 𝜓, 𝜑 is the conclusion inferred from 𝜓 (e.g., a class), denoted by conc(𝐴) = 𝜑
and 𝑝 is the strength value of the argument, denoted by str(𝐴) = 𝑝 where 0 ≤ 𝑝 ≤ 1.



Based on the structure of the arguments, the defeat relation is determined:

Definition 3. Let 𝒜ℱ = ⟨Args,Def⟩ be an AF and 𝐴,𝐵 ∈ Args. Then (𝐴,𝐵) ∈ Def iff
conc(𝐴) ̸= conc(𝐵) and str(𝐴) ≥ str(𝐵).

2.2. Classification

As mentioned in the introduction, in this paper we are interested in explaining the outcome of

a classification task with argumentation. Intuitively, classification is an inference task in which

it is checked whether an object (e.g., an image, sound or text file) belongs to a category [6].

Definition 4. A feature is an attribute-value pair (𝑎, 𝑣) ∈ ℱ , where 𝑎 is the label of the feature
and 𝑣 is its corresponding value. Let ℱ be a set of features, 𝒳 = {𝑥1, . . . , 𝑥𝑛} be the input space,
consisting of 𝑛 input points such that 𝑥𝑖 ⊆ ℱ for all 𝑖 ∈ {1, . . . , 𝑛} and 𝒞 = {𝑐1, . . . , 𝑐𝑚}. A
classification task is a function which assigns to an input point 𝑥𝑘 a class 𝑐𝑖 ∈ 𝒞 based on the
input space 𝒳 .

Example 1. Let 𝑥1, . . . , 𝑥6 ∈ 𝒳 , where every 𝑥 ∈ 𝒳 is a student, and let 𝒞 = {0, 1}, where 1
represents a student being accepted to university, and 0 a rejection. The set of features consists of
{𝑔, 𝑡,𝑚} ∈ ℱ , where 𝑔 corresponds to the (rounded) average grade of the student, 𝑡 to whether or
not the student passed the entry test and 𝑚 to whether or not they are motivated. Suppose that we
are given the following input space:

𝒳 𝑔 𝑡 𝑚 𝑐

𝑥1 8 1 0 1
𝑥2 7 0 0 0
𝑥3 6 1 1 1
𝑥4 8 1 1 1
𝑥5 7 0 1 0
𝑥6 6 1 1 ?

A classification task is then to determine whether student 𝑥6 is accepted or not.

3. EVAX: everyday argumentative explanations

In this paper, we are interested in everyday explanations as described in [4], i.e., explanations

of why a specific event/property/decision occurred for end users in a day-to-day setting. To

ensure that our explanations fulfill these requirements, we follow the major findings in [4]:

• contrastive explanations provide reasons pro and con the outcome [3, 7]. In an argumen-

tative setting, explanations are contrastive when arguments and counterarguments for

the outcome are present in the explanation.

• selected explanations have a fixed maximum size, the elements of which are selected

based on at least one cognitive bias. In an argumentative setting, explanations contain a

maximum number of arguments.



• social explanations can be adjusted to the receiver, by varying the complexity or size of an

explanation. Since explanations based on argumentation frameworks can be represented

in a variety of ways [3], argumentative explanations are social by definition.

Additionally, the explanations should remain faithful to the model (i.e., they explain the behavior

of the model accurately).

Our method EVAX takes as input a trained black box model and constructs a global set

of arguments: for each feature 𝑓 and each class 𝑐 it determines the probability that input

containing 𝑓 will be assigned 𝑐. For a specific input point, consisting of a set of features, a

local argumentation framework is created (i.e., only containing the arguments corresponding to

features from that input point and the defeats between them), from which the conclusion is

predicted. This local argumentation framework can then be used to derive explanations, the

size of which can be set by the user. We have implemented two ways to present explanations:

based on abnormality and in a dialogue form.

We start by describing the method of EVAX (Section 3.1), we will illustrate it with a toy

example in Section 3.2.

3.1. Method outline

EVAX takes as input a labeled dataset, a trained black box model BB and a threshold value

𝜏
select

that controls the size of the output. EVAX returns a set of predictions 𝒴
pred

and a set of

local explanations ℰ . The explanations 𝑒 ∈ ℰ answer the question: “Why did black box BB
assign class 𝑐 to input instance 𝑥?” These explanations are deployments of an argumentation

framework that represent the behavior of BB around a single datapoint in argumentative terms.

This AF thus forms the basis for the explanations, and will, for every classified instance, be

referred to as 𝒜ℱ 𝑙. The size of 𝒜ℱ 𝑙 can be manually altered by 𝜏
select

.

Algorithm 1 EVAX

1: procedure EVAX(BB, labeled_dataset, 𝜏
select

= 20)

2: 𝒳train,𝒳test,𝒴train,𝒴test ← split_dataset(labeled_dataset, test_size = 0.2)
3: global_arguments← get_global_arguments(BB,𝒳train) ◁ step 1

4: for 𝑥𝑖 in 𝒳test do
5: 𝒜ℱ 𝑙 ← create_local_AF(𝑥𝑖, global_arguments, 𝜏

select
) ◁ step 2

6: predict(𝒜ℱ 𝑙) ◁ step 3

7: explain(𝒜ℱ 𝑙) ◁ step 4

8: results()

9: get_results(BB, predictions, 𝒴test)

The procedure of EVAX is shown in Algorithm 1.
1

First, EVAX divides the labeled dataset into

a set of unlabeled datapoints 𝒳 (the input space) and a set of labels 𝒴 (the target space), which

are then split up into a train set and a test set, respectively 𝒳train,𝒳test and 𝒴train,𝒴test. The

default size of the test set is 0.2, and the default 𝜏
select

value is 20. Afterward, the method can

be divided into four main steps, which are described below. The first step handles all datapoints

1

See https://github.com/jowanvanlente/EVAX for the implementation.

https://github.com/jowanvanlente/EVAX


and is executed just once, whereas the other three steps handle a single datapoint and may be

repeated multiple times, up to a maximum of the size of the test set.

• Step 1: Extract a global list of arguments, to represent the global behavior of BB.

– EVAX first iterates over all features (𝑎𝑘, 𝑣𝑘) ∈ ℱ of all (unlabeled) datapoints

𝑥𝑗 ∈ 𝒳train and all output classes 𝑐𝑖 ∈ 𝒞, and computes for every feature-class pair a

decision rule. These rules are accompanied by a precision score 𝑝(𝑘,𝑖) that articulates

the probability that BB will assign a datapoint with that particular feature to that

particular class. It then saves all 𝑝(𝑘,𝑖) scores in a triple ((𝑎𝑘, 𝑣𝑘), 𝑐𝑖, 𝑝(𝑘,𝑖)), which is

added to a list of triples.

– Arguments are constructed based on the list of triples. For every triple an argument

is constructed in which the feature (𝑎𝑘, 𝑣𝑘) is the premise prem, the output-class 𝑐𝑖
is the conclusion conc and the precision score 𝑝(𝑘,𝑖) is set as the argument strength

str. Together these arguments form the global list of arguments.

• Step 2: Create a local AF, 𝒜ℱ 𝑙.
– EVAX creates a local AF:𝒜ℱ 𝑙 in every iteration of this step. This is an argumentation

framework 𝒜ℱ 𝑙 = ⟨Args𝑙,Def𝑙⟩ that represents the classifier’s behavior around

one particular datapoint. Based on the values of that datapoint, it selects a set of

relevant arguments (Args𝑙 ⊆ Args) from the global list of arguments (Args) and

determines the defeats (Def𝑙).
– Argument selection is done by matching the features of the datapoint from 𝒳test

with the premises of the arguments: given a datapoint 𝑥𝑖 ∈ 𝒳test and an argument

𝐴 ∈ Args, if prem(𝐴) is one of the features in 𝑥𝑖 then 𝐴 is added to the local AF

(meaning 𝐴 ∈ Args𝑙). As a result, all arguments with a premise corresponding to

one of the features of the datapoint are selected. To gain computational efficiency

and maintain selectedness, a threshold 𝜏
select

can be defined, which ensures only the

top 𝜏
select

strongest arguments are included in the list.

– The defeats are determined as in Definition 3.

• Step 3: Predict the output class based on 𝒜ℱ 𝑙.

– First, the grounded extension of the local AF (Grd(𝒜ℱ 𝑙)) is computed, after which

the conclusion of the arguments in Grd(𝒜ℱ 𝑙) is picked as the prediction. Formally,

this means that prediction 𝑦𝑖 ∈ 𝒴 is equal to conc(𝐴) such that 𝐴 ∈ Grd(𝒜ℱ 𝑙).
Since arguments in the grounded extension are non-conflicting, they always have

the same conclusion. Therefore it does not matter what argument in Grd(𝒜ℱ 𝑙) is

picked. When Grd(𝒜ℱ 𝑙) is empty, EVAX will predict the majority class.

• Step 4: Explain
– The current implementation allows for two variations: adding selectedness based

on abnormality and presenting the explanation in a conversational form.

– Abnormality is one of the methods humans use when selecting an explanation

and describes how people tend to choose a cause that is unusual [8]. We have

defined the abnormality of an argument as 1− coverage. The coverage value refers

to the fraction of datapoints that the decision rule, out of which the argument is



constructed, ‘rules over’. In other words, the coverage of argument 𝐴 refers to the

fraction of input instances that have a feature equal to prem(𝐴). Since the coverage

describes how often a feature is present in a dataset, it essentially describes how

‘normal’ a feature is. Therefore, a lower coverage means that a feature becomes

less normal, thus becomes increasingly abnormal. The deployment of 𝒜ℱ 𝑙 then

amounts to selecting the argument with the highest abnormality score that argues

for the predicted class. An example of the output is given in Figure 1.

a130: odor = 6→ (precision = 1.0, abnormality = 0.989)
‘𝑥1 is poisonous because of its unusual pungent odor’

Figure 1: Example output of themost abnormal argument of𝒜ℱ 𝑙 that explains why BB as-
signed 𝑥1 (a mushroom) to class 𝑐1 (poisonous). On the right, we see the same explanation,
but in natural language.

– EVAX can also provide a dialectical representation of 𝒜ℱ 𝑙, similar to a dispute

tree [9]. This representation has the form of a discussion between a proponent (P)

and opponent (O) about what class to assign to the datapoint in question. A thresh-

old 𝜏
explain

allows the user to choose the number of arguments to include in the

explanation. Arguments are divided into pro and con arguments and are put forward

by P and O, who take turns. If the value of threshold 𝜏
explain

is even, O starts the

dispute, and if it is odd, P starts. After the first argument is put forward, the strongest

counterargument is replied.
2

Note that the threshold is different from 𝜏
select

, because

it does not affect the size of𝒜ℱ 𝑙, but merely the size of the dialectical representation

of 𝒜ℱ 𝑙. See Figure 2 for an example with 𝜏
explain

= 4.

P: a130: odor = 6→ 1 (1.0)

O: a143: spore-print-color = 2→ 0 (0.87)

P: a16: gill-size = 1→ 1 (0.91)

O: a93: gill-color = 4→ 0 (0.84)

P: since odor is pungent, it is certain 𝑥1 has class poisonous

O: since spore print color is black, it is likely 𝑥1 has class edible

P: since gill size is narrow, it is likely 𝑥1 has class poisonous

O: since gill color is black, it is likely 𝑥1 has class edible

Figure 2: The dialectical explanation of the assignment of𝑥1 to 𝑐1 by BB, as in Figure 1. The
values between brackets refer to the precision score. One must read from top to bottom;
the arrows solely indicate the conflicts, not necessarily defeats.

2

The only requirement of the counterargument is a conflicting conclusion, and not necessarily a higher strength

value, i.e., it does not have to defeat the argument. This is to ensure that counterarguments are included in this

explanation form.



3.2. Toy example

Recall the classification task described in Example 1, on students being accepted into university.

In Figure 3 we present a similar case to illustrate EVAX. It represents one iteration of Steps 2, 3,

and 4. It thus assumes that the global list of arguments has already been computed.

In this example, a black box predicts that an input instance ‘John’ will be accepted into

university. The same input instance is used as input for EVAX. Based on that input, EVAX
creates a local argumentation framework 𝒜ℱ 𝑙 by selecting three relevant arguments, based

on the three different features, and defines defeats over them. It then calculates the grounded

extension and predicts that John will be accepted into university. In addition, it computes an

AF-based explanation, which in this case is a dialectical representation of 𝒜ℱ 𝑙, as described in

Step 4. The threshold 𝜏
explain

has a value of 3. The arrows in the representation are the defeats.

Note that the arrows between the different components of EVAX do not represent defeats, but

indicate the information flow.

accepted

black-box

John
Grade: 6

Passed test: yes
Motivated: yes

fidelity calculator

EVAX

accepted

𝒜ℱ 𝑙

𝐴1: (grade < 8)→ declined (0.7)
𝐴2: (passed test = yes)→ accepted (1.0)
𝐴3: (motivated = yes)→ accepted (0.6)

Defeats: (𝐴1, 𝐴3), (𝐴2, 𝐴1)

P: 𝐴2

O: 𝐴1

P: 𝐴3

O: John is motivated, therefore he usually gets accepted
P: John has grade 6, therefore he usually gets declined

O: John passed the test, therefore it is certain he gets accepted

Figure 3: Illustation of EVAX applied to Example 1.

4. Quantitative evaluation

We have tested EVAX on four datasets and used five quantitative metrics for the evaluation.

The (labeled) datasets are from the UCI Machine Learning Repository [10]:

• With the Adult dataset one tries to predict whether or not a person makes more than

50.000 dollars a year. We removed all datapoints with unknown values and discretized

the continuous features.



• The Mushroom dataset includes instances of 23 different species of mushrooms. The

task is to identify whether a mushroom is poisonous or edible. We did not perform any

alterations on this dataset.

• The task of the Iris dataset is to predict the type of iris plant. We discretized the continuous

values.

• With the Wine dataset one wants to predict the type of wine of an input instance. Again

we discretized the continuous values.

The discretization of continuous variables is necessary to constrain the number of arguments

that are added to the global list of arguments. We have used the 𝑐𝑢𝑡 method by pandas [11]

with a bin value of 10. Since higher bin values tend to give better performance but reduce the

computational efficiency, we have tuned this value by incrementally increasing the value from 3

up to 20. We found that from a bin value of 10 and upwards, the fidelity did not significantly in-

crease (sometimes it even decreased), while the computational efficiency consistently decreased

with higher bin values.

For each of these datasets we have chosen four different machine learning models with

different complexity to test the performance and range of EVAX : logistic regression, support

vector machines (SVM), random forest, and neural networks. All four models are initialized

from the scikit-learn library [12].

Finally, we applied the following five metrics for the evaluation:

• Fidelity indicates how well the explanation approximates the prediction of the black box

model. It represents the fraction of datapoints that are assigned to the same output class

by EVAX and BB.

• Accuracy (BB) indicates how well our model performs on unseen data. It represents the

fraction of correctly classified datapoints. The value between brackets () refers to the

original accuracy of BB.

• Size measures the average minimum amount of arguments necessary to retain the same

prediction. In other words, it is the lowest possible 𝜏
select

score without affecting the

accuracy or fidelity. A consistent low size value indicates the method can guarantee to

compute small explanations that are consistently faithful.

• Empty Grd specifies the fraction of datapoints for which the grounded extension

Grd(𝒜ℱ 𝑙) is an empty set. When Grd(𝒜ℱ 𝑙) is an empty set, EVAX relies on a default

prediction. A higher ‘Empty Grd’ value thus means that accuracy and fidelity scores are

increasingly determined by the default prediction, and therefore become less reliable.

• Time indicates the number of seconds needed to run the program.

The results in Table 1 show high fidelity (an average of 0.95) for all four ML models, which

indicates a sufficient degree of faithfulness. Only the adult dataset and the neural network of

the wine dataset have relatively low scores. This might be due to the relatively low accuracy

of the BB in those cases. Since the argument with the highest argument strength is always in

Grd(𝒜ℱ 𝑙), the minimum size is always equal to 1. This indicates that the model is capable of

computing small explanations without losing faithfulness. Moreover, we see that the method

never computes an empty grounded extension Grd(𝒜ℱ 𝑙), and hence requires no reliance on a



Fidelity Accuracy (BB) Size Empty Grd Time (s)
Adult Logistic regression 0.95 0.73 (0.72) 1 0.0 5.06

SVM 0.93 0.75 (0.74) 1 0.0 13.61
Random forest 0.88 0.77 (0.78) 1 0.0 5.06
Neural network 0.91 0.75 (0.75) 1 0.0 5.28

Mushroom Logistic regression 0.98 0.96 (0.95) 1 0.0 17.92
SVM 0.99 0.98 (0.99) 1 0.0 13.45

Random forest 1.0 0.99 (1.0) 1 0.0 13.63
Neural network 1.0 0.95 (0.95) 1 0.0 17.87

Iris Logistic regression 0.97 0.97 (0.9) 1 0.0 0.24
SVM 1.0 0.97 (0.97) 1 0.0 0.25

Random forest 1.0 0.97 (0.97) 1 0.0 0.26
Neural network 0.93 0.97 (0.9) 1 0.0 0.23

Wine Logistic regression 0.94 1.0 (0.94) 1 0.0 2.32
SVM 0.94 1.0 (0.94) 1 0.0 2.60

Random forest 0.92 1.0 (0.91) 1 0.0 2.73
Neural network 0.86 0.97 (0.83) 1 0.0 3.86

Table 1
Quantitative results of EVAX.

default prediction. These results are obtained on a Windows 64-bit operating system with 16GB

RAM and an Intel(R) Core(TM) i5-1145G7 @ 2.60GHz processor.

5. Qualitative evaluation

The purpose of EVAX is the modeling of explanations as described in [4]. In this section we

discuss how the explanations generated through EVAX are contrastive, selected and social, as

described at the beginning of Section 3.

Contrastive explanations explain the fact (e.g., 𝑃 ) by highlighting its differences with the foil

(e.g., 𝑄), by answering the question why 𝑃 rather than 𝑄? [4]. Argumentative explanations

are contrastive when they include arguments pro and con the conclusion. For explanations

computed by EVAX this is the case when there is at least one argument with a fact conclusion

and a counterargument with a foil conclusion. Such counterarguments make it possible to

explain the outcome relative to an alternative outcome, by showing what features give reason

to believe that foil. As shown in Figures 2 and 3, when 𝜏
explain

> 1, explanations contain at least

one counterargument and are therefore contrastive.

While an event might have infinitely many causes, humans are able to select one or two as

the explanation. To this end a variety of cognitivie biases are employed [4]. EVAX incorporates

selectedness by implementing both minimality and biasedness. Minimality amounts to including

just a few arguments as the explanation. This is enabled by guaranteeing that the number of

arguments in 𝒜ℱ 𝑙 does not exceed threshold 𝜏
select

. In addition, this restricted size has shown

not to affect the fidelity score. EVAX allows for biasedness in the form of abnormality, which is

a common cognitive bias in everyday explanations [8].



Finally, explanations are social, since the explainer will adapt the explanation to the explainee,

for example, by adjusting the size, the content or the form of the explanation. Explanations can

be adjusted in two ways with EVAX. First, the number of arguments that are included in 𝒜ℱ 𝑙

can be adjusted with 𝜏
select

and the size of the explanation can be adjusted with 𝜏
explain

. In that

way, an inexperienced end-user who requires a single argument to explain the prediction can

set 𝜏
select

= 𝜏
explain

= 1. A more experienced user who wants a completer set of arguments and

counterarguments can set higher values. Second, because a computed explanation 𝑒 ∈ ℰ stems

from an AF, the explanation can be presented in various ways. In the current paper we have

illustrated one of these representations in Figure 2, in the form of a dialogue.

6. Related work

As the survey [3] shows, the field of argumentative XAI goes in several directions. In addition

to explaining argumentation-based conclusions with argumentation (e.g., [9, 13, 14, 15]), ar-

gumentation can also be employed to explain conclusions derived with other AI approaches.

Here a distinction can be made between intrinsic methods, which provide explanations for

conclusions drawn by argumentation mechanisms (e.g., [16, 17, 18]) and post-hoc methods,

which provide argumentative explanations for conclusions drawn from non-argumentative

methods (e.g., [19, 20, 21]).

Closest related to our work is [22, 23]. There several agents engage in a dialogue, by putting

forward arguments in the form of classification association rules. This dialogue results in a

tree of arguments and counterarguments. The result is an overview of the agents’ point of

view, with arguments that might contain several premises. Given the focus on the dialogue

and the structure of arguments and counterarguments, [22, 23] provide social and contrastive

explanations. Our approach also aims at minimal explanations: our arguments have only one

premise, the size of the explanation can be adjusted and the selection of the arguments in the

explanation can be based on argument strength or abnormality. The purpose of our work (i.e.,

providing small, everyday explanations) is therefore different.

Following our interpretation of the explanations in [4], none of the other available argu-

mentative XAI approaches are contrastive, selected and social. As mentioned, explanation

methods based on argumentation frameworks are social by definition, since AFs allow for a

variety of explanation representations, which can be used to adjust the explanation to a receiver.

Additionally, most argumentative explanation methods are contrastive, since they present not

only arguments for the conclusion, but also counterarguments. The exception to this is [19],

since there is no clear relation between arguments and counterarguments in this approach.

Selectedness, in the form of minimality and biasedness is most difficult to establish, it seems,

since none of the mentioned approaches is selected in our sense. Selection based on a cognitive

bias is not integrated at all. Reducing the size of the explanation is discussed, however, the

reduction might not be sufficient. Even when a small explanation is provided, it might still

contain many causes or result in large dispute trees [16, 17, 19].

In contrast, EVAX provides a method which is contrastive (arguments and counterarguments

are part of the explanation), selected (the maximum size can be reduced to one argument

and the selection of this argument can be based on abnormality) and social (the size of the



explanation can be adjusted and the explanation can be represented as a dialogue). Since

the explanations provided by EVAX rely on an argumentation framework, in future work

we can look at representing them as dispute trees (as in [9]), apply selectedness based on

necessity and sufficiency [24], derive explanations in terms of labeling [14] or strongly rejecting

subframeworks [15].

7. Conclusion

We have introduced EVAX an argumentative explanation method for everyday explanations

for classifiers. It takes as input a trained classifier, calculates a local argumentation framework

𝒜ℱ 𝑙 and can present explanations in a variety of ways (recall Figure 3). In particular, we have

shown how explanations can be selected, based on abnormality and how explanations can

be represented as a dialogue between proponent and opponent. Although the method might

seem somewhat naive, our results show that it is a fast explanation method, which satisfies our

requirements. Based on the quantitative results (recall Table 1) we have shown that our method

is faithful. Moreover, in the qualitative evaluation (Section 5), we have discussed how EVAX
produces everyday explanations that satisfy the findings from [4] (i.e., contrastive, selected

and social explanations). The result is a model-agnostic explanation method with which local

explanations can be provided in a faithful manner, based on findings from the social sciences.

The results in this paper show that EVAX is a promising explanation method, which can be

explored further. First, the properties of everyday explanations can be further worked out by

including counterfactual statements, incorporating more cognitive biases, and testing more

explanation deployments. Second, experimental evaluations with human users would more

closely assess the quality of argumentative explanations.
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