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Abstract
Generally speaking, a scientific paper presents the result of a specific research area and provides a solution to the research
question. With the exponential expansion in the number of scientific publications, a large amount of valuable information is
submerged. Although existing information extraction methods can extract entities and relations, they are unable to directly
provide readers with the mechanism that reveals the path to solve the problem. Inspired by the biomedical research of
medical mechanism, in this paper, we propose a novel knowledge schema, i.e., metrics-driven mechanism knowledge schema
(Operation, Effect, Direction), which depict the knowledge about “How to optimize the quantitative and qualitative metrics of
a specific task?”. Furthermore, we select the natural language processing domain for practice, which is a representative branch
of Artificial Intelligence (AI). Specifically, we construct a mechanism sentence extraction dataset and a mechanism triple
extraction dataset using abstract data from ACL papers based on the proposed schema. Then we propose a metrics-driven
mechanism knowledge extraction pipeline based on the pre-trained model. Finally, a knowledge base of metrics-driven
mechanisms in the natural language processing (NLP) domain, named NLPMKB, is constructed. The human evaluation
results show that the extracted mechanism knowledge from NLPMKB is high-quality with 87.0% precision and 79.4% recall.
Moreover, the experiments on the knowledge retrieval task demonstrate that the performance can be further improved with
the support of the NLPMKB.
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1. Introduction
“Much of the practice of science can be

understood in terms of the discovery and
description of mechanisms.” — Machamer
et al. [1]

As a kind of knowledge, mechanism reveals how to 
manipulate things and help people understand the path
to solve the problem[2, 1]. With the prosperous develop-
ment of Artificial Intelligence (AI), the research field of 
AI is rapidly extending in multiple disciplines, and the
corresponding research publications are growing rapidly. 
From the perspective of solving problems, AI research
can be regarded as a work of discovering and describing
the mechanisms between a specific problem and the cor-
responding solution [3]. In this paper, we explore the
metrics-driven mechanism extraction from the abstract
of AI articles.

Benchmarks [4] formalize a particular task through
datasets and associated quantitative evaluation metrics.
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Improving the performance reflected by evaluation met-
rics on established benchmarks is an important way to
increase the legitimacy of a research work [5]. Inspired
by the definition of the benchmark-driven methodology
[6], we define the metrics-driven research pattern in AI as
the pattern that focuses on optimizing the performance
of a particular task reflected by the quantitative and qual-
itative metrics. Therefore, the metrics-driven mechanism
in our paper can be regarded as knowledge about how
to optimize the quantitative and qualitative metrics of a
specific task.

Generally speaking, readers have specific questions
when reading scientific publications [7]. For instance,
Can the mechanism knowledge discovered in this paper
solve my problem? is the general question that arises
when readers read scientific papers to solve problems
using AI knowledge. In the past 20 years, the number of
scientific publications in the AI domain has grown twelve-
fold [8]. As a result, a large number of valuable mecha-
nism knowledge has unfortunately been submerged in
the “information flood”. Since a large amount of informa-
tion is encoded in a paper in the form of text, it is difficult
for people to obtain mechanism knowledge when fac-
ing “information overload”. Therefore, it is evident that
extracting the information contained in scientific publica-
tions can improve the efficiency of searching and reading
when facing a specific question, as shown in Figure 1.

Research in natural language processing (NLP) has
provided great convenience in terms of extracting fine-
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Figure 1: Our model primarily focuses on extracting the
metrics-driven mechanism knowledge in the abstract regard-
ing the operations related to performance improvement and
optimization. The orange block is the task entity, the green
blocks are the operation entities, and the blue blocks are the
effect entities. The arrows between the operation entity and
the effect entity indicate a change in direction by the effect
entity under the influence of the operation entity.

grained entities and relations in scientific publications,
including task entity, method entity, dataset entity, and
metric entity identification [9, 10, 11, 12, 13]; chemical
entity recognition [14, 15]; and biomedical named en-
tity recognition [16]. Most of the current works extract
descriptive scientific information instead of procedural
scientific information. For instance, descriptive scientific
information includes the problems addressed in scientific
publications, the domain of a research question, and the
method used to address a problem [17]. As a kind of pro-
cedural scientific information, a discovered mechanism
oriented toward improving quantitative metrics in AI is
neglected in scientific information extraction.

Inspired by Chen et al. [18] and Hope et al. [19], we
construct a metrics-driven mechanism knowledge rep-
resentation schema to express the key procedural sci-
entific information in AI. In our scheme, the metrics-
driven mechanism knowledge is represented as a triple
(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝐸𝑓𝑓𝑒𝑐𝑡,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) . Operation is
the entity that refers to the innovative model, method,
or approach proposed in a paper. Effect is the entity that
refers to the metrics evaluating operation’s effectiveness
or performance. Direction, regarded as the relationship
between the operation entity and the effect entity, refers
to the change in direction by the effect entity under the
influence of the operation entity. Based on the trade-
off between scalability and expression capabilities, we
preliminarily divide the Direction into three categories:
positive effect, negative effect, and other. The coarse-
grained metrics-driven mechanism knowledge represen-
tation schema achieves a balance between domain adapt-
ability and universality, which can be applied not only
in AI but also in biology and chemistry.

This paper chooses the NLP domain for practice since

it is a representative and prosperous branch of AI. First,
we construct an annotated mechanism knowledge ex-
traction dataset based on the abstracts of ACL papers1.
Then, we propose a model that utilizes the pre-trained
knowledge to extract metrics-driven mechanism triples.
Finally, we construct a metrics-driven mechanism knowl-
edge base in NLP, named NLPMKB, to further improve
the performance of knowledge retrieval.

In summary, our primary contributions are as follows:

• We propose a coarse-grained metrics-driven mecha-
nism knowledge representation schema. Moreover,
based on the proposed schema, an annotated dataset is
constructed in the field of NLP with 1,486 mechanism
triples.

• Utilizing the annotated dataset, we train an informa-
tion extraction (IE) model. The experimental results
show that the BERT-based mechanism sentence ex-
traction model can achieve an 89 F1 score, and the
mechanism triple extraction model based on SpERT
achieves 78.7 and 59.8 F1 score on the mechanism en-
tity recognition task and the relation extraction task,
respectively.

• Based on the trained model, a large number of pub-
lications in ACL are extracted to construct a metrics-
driven mechanism knowledge base (KB) in the NLP
domain. The human evaluation results show that our
metrics-driven mechanism KB has high quality and
utility. Our search engine achieves 20- and 12-point
improvements on P@3 and P@5 in the metrics-driven
mechanism knowledge retrieval task.

2. Related Work

2.1. Mechanism Knowledge in Science
Mechanisms are involved in the research of many disci-
plines. In biology, biochemists and molecular biologists
pursue explanations of genes, proteins, and the molecules
that influence biochemical reactions in the context of
mechanistic explanations [20, 21, 22]. In chemistry, re-
searchers regard chemical reactions as a mechanism.

According to the Oxford dictionary, a mechanism is
“a natural system or type of behavior that performs a par-
ticular function” 2. In the philosophy of science, there is
a great deal of discussion about the formal definition of
mechanism. For example, Machamer et al. [1] defined
mechanisms as organized entities and activities that pro-
duce regular changes from start or set-up to finish or

1https://aclanthology.org
2https://www.oxfordlearnersdictionaries.com/definition/academic/
mechanism
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termination conditions. Glennan [2] defined the mecha-
nism as a complex system that produces behavior through
the interaction of several parts according to direct causal
laws.

2.2. Information Extraction
Information extraction (IE) refers to the extraction
of structured information from unstructured or semi-
structured texts. In general, the problem of IE is com-
posed of Named Entity Recognition (NER) and Relation
Extraction (RE) tasks. There are two types of approaches
for IE: the pipeline-based approach and the end-to-end
joint approach.

As for the pipeline-based approach, the model first
recognizes entities using a NER method and then extracts
the relations between recognized entities with an RE
method [23, 24, 25]. The strength of the pipeline-based
approach is its flexibility when integrating different data
sources and methods. However, its weakness is the error
propagation problem between the individual NER step
and RE step.

In terms of the end-to-end joint approach, the model
jointly extracts entities and relations using the shared
layer or shared parameters between the NER task and the
RE task; such models include DygIE++ [26] and SpERT
[27]). Moreover, Yan et al. [28] employed an encoder-
decoder framework based on BART [29] to extract en-
tities in the text. Li et al. [30] designed an alternative
strategy in which they cast the entity-relation extraction
as a multi-turn question-answering problem.

2.3. Scientific Information Extraction
Information extraction from scientific literature allows re-
searchers to gain key insights from scientific documents.
There are differences in the types of entities and relations
in different fields.

In AI, current scientific information extraction re-
search primarily focuses on extracting keyphrases [31,
32], lexical functions of keyphrases [33], fine-grained
scientific entities (e.g. Task, Method, Dataset, and Met-
ric) [12, 11, 34, 10, 35], and relations[36, 37, 38]. In Se-
mEval 2017 Task-10, Augenstein et al. [36] proposed the
hyponym-of and synonym-of relations. In SemEval 2018
Task-7, Gábor et al. [37] proposed the usage, result, part-
whole, and compare relations. Recently, Mondal et al. [38]
proposed the evaluated-On and evaluated-By relations.

In short, current scientific information extraction re-
search emphasizes descriptive information (e.g., task en-
tities, method entities, dataset entities, and the relations
between them), which primarily focuses on declarative in-
formation instead of procedural information in academic
publications. Our work further extends the procedural
information of mechanism knowledge between proposed

operation entities and performance metric entities as
they are oriented to the specific problem.

There are several studies related to mechanism knowl-
edge extraction and representation in a specific domain.
Hope et al. [39] proposed a weak structural representa-
tion that describes an idea in product descriptions re-
garding purpose (what they are trying to achieve) and
mechanism (how they achieve that purpose). Chen et al.
[18] identified the hypothesis sentences from scientific
documents in business and management. Then, they
extracted cause and effect entities in those hypothesis
sentences. Hope et al. [19] built a COVID-19 mechanism
relations knowledge base, which includes activities, func-
tions, and influences relations extracted from CORD-19
papers. In summary, what current studies have in com-
mon is that they construct a very simple mechanism
knowledge representation schema, which is an optimal
solution considering trade-offs in terms of ease of extrac-
tion, scalability, and coverage.

3. Data and Task

3.1. Schema of Mechanism
In many scientific fields, a detailed description of the
mechanism is required to deliver a satisfactory explana-
tion [1]. Mechanism, a kind of knowledge, reveals how
to manipulate things, promotes the development of sci-
ence, and aids researchers in understanding and solving
problems.

As shown in Table 1, mechanism knowledge exists
in AI (e.g., natural language processing and computer
vision), chemistry, biology, and other fields. Although
the research fields are different, the common point core
of mechanism knowledge is that it expresses the influen-
tial relationship between things or entities in a scheme.
Whether the things or entities expressed in the mecha-
nism are concrete (e.g., chemicals, cells, and plants) or
abstract (e.g., theory and concept), we divide these things
or entities into two types, operation and effect, based on
the role in the mechanism.

We find that the mechanism knowledge in artificial
intelligence research is primarily metric-driven, that is, it
states the effect of the proposed methods and models on
specific metrics as a key conclusion in the abstract of a
scientific paper. The common expression forms primarily
include the following two types based on the analysis
and refinement of a large number of paper abstracts:

1. A direct description of the effect of the innova-
tive model or method on the specific metric or
aspect, such as: model X improves (reduces/affect-
s/achieves) metric M with specific change value
(e.g., percentage).
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Table 1
The Mechanism knowledge in scientific research. The mechanism examples come from scientific abstracts in natural language
processing (NLP), computer vision (CV), chemistry(Chem), and biology(Bio).

No. Example Field

1 We apply SVM ranking models and achieve an exact sentence accuracy of 85.40 % on the Redwoods corpus. NLP
2 In this paper, we experimentally study the combination of face and facial feature detectors to improve face

detection performance.
CV

3 The rate of reduction is decreased by increasing amounts of stabilizing agents and increased by increasing
concentrations of precursor ions.

Chem

4 Low light availability and high nutrient availability increased the nitrogen content of leaf tissue by 53%
and 40% respectively, resulting in a 37% and 31% decrease in the C/N ratio.

Chem

5 In conclusion, high-energy diet may improve number of small follicles and alter energy metabolite during
early luteal phase in cycling ewes.

Bio

6 Knocking down the expression of TaLSD1 through virus-induced gene silencing (VIGS) increased wheat
resistance against Pst accompanied by an enhanced hypersensitive response (HR), an increase in PR1 gene
expression and a reduction in Pst hyphal growth.

Bio
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Figure 2: Metrics-driven mechanism annotation process.

2. An indirect description of the effect of the inno-
vative model or method on the specific metric or
aspect by comparison, such as: compared with
the baseline, model X outperforms (or an adjective
expressing the comparative degree) on M metric.

In our schema, metrics-driven mechanism knowledge
in the form of natural language can be abstracted as
a triple (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐸𝑓𝑓𝑒𝑐𝑡,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛). This
metric-driven mechanism triple represents an entity such
as a model or a model proposed by the researcher, that
corresponds to the “applying dictionary and web-based
answer reranking together” in Figure 3. Effect in a metric-
driven mechanism triple represents the metric entity,
which corresponds to the “mean reciprocal rank score” in
Figure 3. Direction expresses the relationship between the
operation entity and the effect entity, which corresponds
to the “increase” in Figure 4.

Effect is a measurable and comparable entity in a
metrics-driven mechanism knowledge schema. There-
fore, we use the trisection method to divide the Direc-
tion in the metrics-driven mechanism knowledge triple

The results indicate [applying dictionary and web-based 
 answer reranking together] approach increase the performance

of Webclopedia on a set of 102 TREC-10 definition questions
by 25% in [mean reciprocal rank score]metric and 14% in

finding answers in the top 5.

Figure 3: Metrics-driven mechanism knowledge in a natural
language form.

applying dictionary and web-
based answer reranking together 
 mean reciprocal rank score

increase


Figure 4: Metrics-driven mechanism knowledge in a triplet
form.

into positive effect, negative effect, and other in a coarse-
grained manner.

• Positive effect: the method/model proposed in the re-
search article improves the metric. For example, the
pretraining model improves the F1 score of the text
classification task.
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• Negative effect: the method/model proposed in the
research article reduces the metric. Examples include
using structural features to reduce the alignment error
rate.

• Other: other than the above two relationships. For
example, a external feature affect the metric but we
did not know the effect direction.

3.2. Task Definition
To extract metrics-driven mechanism knowledge from
the abstract text, we divide the target problem into two
subtasks, i.e., selection-then-extraction corresponding to
the dataset construction process:

Subtask 1 : mechanism knowledge sentence selection,
which identifies sentences containing mechanism
knowledge.

Subtask 2 : mechanism knowledge extraction, which
extracts the mechanism knowledge triples from
the recognized sentences.

3.3. Dataset
As shown in Figure 2, the construction of the mecha-
nism knowledge extraction dataset primarily includes
two steps: sentence selection and triple annotation.

The metrics-driven mechanism triples in our anno-
tated dataset explicitly exist in a single sentence.Note
that in our proposed dataset, the mechanism knowledge
described across multiple sentences was excluded due to
time and efficiency constraints. As shown in the follow-
ing examples, the annotator did not consider the implicit
mechanism knowledge existing between sentences in the
process of annotation. In Examples 1 and 2, the effect en-
tities (e.g., “accuracy” and “performance” in the examples)
and operation entities (e.g., “using bilingual dictionary
and transfer grammar” and “coarse-to-fine approach” in
the examples) are separated from each other in different
sentences.

Example 1 In Malayalam-Tamil pair, the divergence is
more reported in lexical and structural level, that
is been resolved by using bilingual dictionary
and transfer grammar. The accuracy is in-
creased to 65 percentage, which is promising.

Example 2 For decoding, we describe a coarse-to-fine
approach based on lattice dependency parsing
of phrase lattices. We demonstrate performance
improvements for Chinese-English and Urdu-
English translation over a phrase-based baseline.

3.3.1. Sentence selection

We find that most of the sentences containing the metrics-
driven mechanism are distributes in the conclusion part,
and it is intuitive that sentences containing the metrics-
driven mechanism also contain the metric entities. Given
a paper abstract, the annotator first needs to choose the
target sentence that contains the metrics-driven mecha-
nism knowledge. To improve annotation efficiency, three
heuristic rules are proposed to detect possible target ab-
stract sentences. Specifically, heuristic rules primarily
consider three aspects: verbs, metric entities, and argu-
mentation functionality types [40, 41, 42] in the sentence.

• Cue Verb Rule: verb words such as effect, influence,
decrease, reduce, increase, and improve as well as their
noun forms.

• Metric Rule: specific metric entities such as accuracy,
F1 score, and BLEU as well as abstractive metric entities
such as performance and quality.

• Argumentation Functionality Rule: the argument
functionality of the sentence is the “proposal” or “out-
come”.

To apply these rules, we use SpERT[27] to recognize
the metric entities in a sentence and trained a BERT-
based argumentation functionality classifier based on the
schema and dataset proposed by Accuosto and Saggion
[42] in computational linguistics.

3.3.2. Triple annotation

Given a selected sentence containing metrics-driven
knowledge, the annotator needs to label the entities in the
metrics-driven mechanism’s schema and then determine
the relationship between entities based on the context.

We use brat1 as the annotation tool for mechanism
sentence recognition and mechanism knowledge tagging.
The two annotators are graduate students with NLP back-
grounds. For annotation disagreement on entity bound-
aries (e.g., “our model” vs. “model”), we choose the longer
annotation (e.g., “our model”). The inter-annotator agree-
ment score of our dataset is 0.9522.

3.3.3. Annotated dataset analysis

Based on the annotated dataset, summaries of the statis-
tics for the datasets for subtask 1 and subtask 2 are pro-
vided in Table 2 and Table 3. As shown in Table 2, the
proportion of sentences containing mechanism knowl-
edge is relatively low compared with non-mechanism

1https://brat.nlplab.org/standoff.html
2The tool (https://github.com/kldtz/bratiaa) we adopted to calcu-
late the F1 score of per document or label as the inter-annotator
agreement score.
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Table 2
Statistics of the dataset for subtask 1.

Statistics items Number

Total # of Sentences 4,163
# of Mechanism Sentences 1,032
# of Non-mechanism Sentences 3,131
Avg # tokens 26

Table 3
Statistics of the dataset for subtask 2.

Statistics items Number

Total # of Sentences 1,032
Avg # of Sentence Tokens 31
# of Entities 2,525
# of Operation Entities 1,214
Avg # of Operation Entity Tokens 3.02
# of Affect Entities 1,311
Avg # of Effect Entity Tokens 1.76
# of Relations 1,486
# of Pos Effect Relations 1,056
# of Neg Effect Relations 217
# of Affect Relations 213

sentences. We find that mechanism sentences are primar-
ily distributed in the third to sixth sentence as shown in
Figure 5. In addition, it can be found in Table 3 that the
distribution of metric mechanism knowledge relations
is also highly imbalanced, and positive effect relations
account for the majority.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ 6𝑡ℎ 7𝑡ℎ 8𝑡ℎ

50

100

150

200

Sentence Position

C
ou

nt

Figure 5: Position distribution of mechanism sentences in
abstracts of papers.

4. KB Construction
We describe our approach, which is depicted in Figure
6, for extracting mechanisms from the abstracts of sci-

entific papers. We first trained a metrics-driven mecha-
nism knowledge extraction model based on the annotated
dataset from a small collection of ACL papers (Section
3.3). Then, the trained model was applied to scientific
papers in the natural language processing domain to
build an NLP metrics-driven Mechanism Knowledge Base
(NLPMKB), which supports and further improves the
retrieval performance for metric-driven mechanisms. Fi-
nally, we built a metrics-driven mechanism knowledge
search engine.

4.1. Extraction Pipeline for Mechanisms
Knowledge

We propose a metrics-driven mechanism extraction
pipeline that includes two steps: mechanism sen-
tence extraction and mechanism triple extraction.
Recently, pretrained language models, e.g., BERT[43],
RoBERTa[44], and SciBERT[45], have promoted the per-
formance of natural language understanding tasks rang-
ing from text classification and named entity recognition
to machine reading comprehension. SciBERT is a pre-
trained language model for scientific text, which lever-
ages a large-scale scientific publications as a pretraining
task dataset and advances downstream scientific NLP
tasks. Therefore, our mechanism extraction pipeline uses
SciBERT as a backbone for extracting the text’s semantic
information.

4.1.1. Mechanism Sentence Extraction

We formalize the mechanism sentence extraction as a bi-
nary text classification task. Given a sentence 𝑠𝑒𝑛𝑡 in an
abstract of a scientific paper, the model needs to identify
whether 𝑠𝑒𝑛𝑡 contains complete metric-driven mecha-
nism knowledge. Our BERT-based mechanism sentence
extraction model has two parts, i.e., text encoder and clas-
sification layer. We formalize the mechanism sentence
extraction as a binary text classification task. Given a sen-
tence in a scientific paper’s abstract, the model needs to
identify whether contains complete metrics-driven mech-
anism knowledge. Our BERT-based mechanism sentence
extraction model has two parts: a text encoder and a
classification layer.

In the text encoder, we employ SciBERT as a text en-
coder to extract the text features that act as the input to
the classification layer. The input of the text encoder can
be represented as follows:

𝑋 = [[𝐶𝐿𝑆], 𝑡𝑜𝑘𝑒𝑛1, 𝑡𝑜𝑘𝑒𝑛2, · · · , 𝑡𝑜𝑘𝑒𝑛𝑚, [𝑆𝐸𝑃 ]]
(1)

where 𝑡𝑜𝑘𝑒𝑛𝑖 denotes the 𝑖𝑡ℎ token of the input sentence
𝑠𝑒𝑛𝑡 as tokenized by the corresponding tokenizer. 𝑚 is
the token number of 𝑠𝑒𝑛𝑡. [𝐶𝐿𝑆] and [𝑆𝐸𝑃 ] correspond
to the special symbol at the beginning and the end of
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Figure 6: Mechanism Knowledge Graph and Search Engine Construction Process.

the sentence, respectively. We can obtain the text vector
representation ℎ via SciBERT:

ℎ = SciBERT(𝑋) (2)

In the classification layer, we use ℎ𝐶𝐿𝑆 , which is the
first component of ℎ and corresponds to the [𝐶𝐿𝑆] token,
as the input to the classification layer, which includes
a dropout layer and a fully connected layer. Finally, we
apply a softmax function to the label logits to obtain
the probability distribution regarding whether the input
sentence contains metrics-driven mechanism knowledge.

𝑝 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(W · ℎ𝐶𝐿𝑆 + 𝑏) (3)

where 𝑝 is a 2-dimensional vector that denotes the prob-
ability that the sentence contains mechanism knowledge.
W and b denote the weight and bias in the fully con-
nected layer, respectively.

4.1.2. Mechanism Triple Extraction

As described in Section 3.1, the metrics-driven mecha-
nism is a triple (Operation, Effect, Direction ) triple, where
the Operation and the Effect are entities, and the Direction
is the relationship between the Operation and the Effect.
Therefore, we formalize the mechanism triple extraction
as an entity and relation extraction task. There are two
types of approaches for entity and relation extraction

tasks: pipeline-based approaches and end-to-end joint
approaches. SpERT, proposed by Eberts and Ulges [27],
is a state-of-the-art end-to-end joint entity and relation
extraction method.

We finetune SpERT on our dataset to jointly extract
entities and relations. As shown in Figure 6, SpERT first
obtains the representation of span and classifies the entity
category of span. Second, SpERT combines the entities in
pairs to form the representation of relations between en-
tities. Finally, entity pairs are classified as one of {positive
effect,negative effect, other}.

The metrics-driven mechanism knowledge is extracted
by employing the finetuned model from the abstracts of
26k ACL papers. In the extracted mechanism triples,
some Operation entities are pronouns (e.g., “our model”,
“proposed method” and “new algorithm”) instead of con-
crete entities. To alleviate the influence of this problem,
we adopt the coreference resolution method proposed by
AllenAI[46].

4.2. Construction of the NLP Mechanism
KB

Task entities refer to research problem in NLP sci-
entific papers. We further extend the mechanism
triple (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ,𝐸𝑓𝑓𝑒𝑐𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) into
the (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝐸𝑓𝑓𝑒𝑐𝑡,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,𝑇𝑎𝑠𝑘) n-
ary mechanism relation. Therefore, the proposed NLP
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metrics-driven mechanism KG schema contains three
types of entities: tasks, operations, and effects. According
to the schema in Section 3.1, there are three relation types
(positive effect, negative effect, and other) that describe the
influence direction between the operation entity and the
effect entity. In addition, we use evaluatedBy to describe
the relation between the task entity and the effect entity.

The paper research task entity extraction problem is
formalized as a multi-label classification task because of
the uncontrollable research task extraction result based
on the sequence-labeling approaches. In the Papers With
Code(PWC)3 , there is a taxonomy of tasks and subtasks
[5]. In addition, there are many available papers with
metadata that indicate the research areas, tasks or sub-
tasks. Based on the BERT model and PWC dataset, a
paper task classification model was finetuned, and it
achieves an 87 F1 score.

For a paper without extraction
(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝐸𝑓𝑓𝑒𝑐𝑡,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑇𝑎𝑠𝑘)
n-ary mechanism relation, we use the
(𝑀𝑒𝑡ℎ𝑜𝑑,𝑀𝑒𝑡𝑟𝑖𝑐,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑇𝑎𝑠𝑘) n-ary rela-
tion as a pseudo n-ary mechanism relation to express the
knowledge that is similar to the metrics-driven mecha-
nism knowledge in our work. Entities in pseudo n-ary
mechanism relations are extracted by the SpERT[27]
model trained on the SCERC[12] dataset. Note that
the method entity and the metric entity refer to the
Operation entity and effect entity, respectively. The
direction between them is set as “unknown”.

Finally, we build a knowledge base of metrics-driven
mechanisms in the NLP domain (NLPMKB) that con-
sists of 24k n-ary mechanism relations and 76k pseudo
n-ary mechanism relations in the form of (Method, Metric,
Direction,Task).

4.3. Construction of Mechanism
Knowledge Search Engine

The NLPMKBenables applications to retrieve metrics-
driven mechanisms in NLP. For example, a user can
search all papers that contain a mechanism related to the
question: how to improve the diversity of the keyphrases
extraction task. To build the search engine of mechanism
knowledge, we first use the multi-qa-MiniLM model4,
which maps sentence and query text to a 384 dimensional
dense vector space. Then, we compute the cosine simi-
larity score to find potentially relevant papers. Finally,

3Papers With Code (PWC) is an open source repository about pa-
pers, datasets, and evaluation in the machine learning(ML) com-
munity and natural language processing(NLP) community created
by researchers at Facebook AI Research. We downloaded the PWC
dataset (licensed under CC BY-SA 4.0). We focus on the Papers with
abstracts archive. https://paperswithcode.com

4https://huggingface.co/sentence-transformers/
multi-qa-MiniLM-L6-cos-v1

Table 4
Result of mechanisms sentence extraction

Type Precision Recall F1 score

Non mechanism sent 92.5 93.0 92.7
Mechanism sent 77.8 76.7 77.2
Total 89.0 89.0 89.0

we rerank the retrieved sentences using Cross-Encoder
for MS Marco5.

5. Evaluating The Extracted
Mechanism Knowledge

In this section, we first evaluate the trained mechanism
extraction model (Section 5.1). Then, we evaluate the
quality of the extracted mechanism knowledge from the
perspective of correctness and coverage (Section 5.2). Fi-
nally, we evaluate the utility of extracted metric-driven
mechanism knowledge (Section 5.3) in terms of the mech-
anism knowledge search scenario.

5.1. Model Evaluations
Evaluation of Subtask 1

For subtask 1, as shown in Table 4, our mechanism
sentence extraction model achieves an 89 F1 score on the
testset, which has 454 non-mechanism sentences and 146
mechanism sentences.

Deep learning models are commonly referred to as
black boxes. To understand the reasons underlying the
decision making process and avoid avoid the detection of
incorrect features in the data by the model, we adopt the
Local Interpretable Model-agnostic Explanations (LIME),
an explainable artificial intelligence (xAI) framework pro-
posed by Ribeiro et al. [47], to interpret the mechanism
sentence extraction model.

The LIME model is one of the most popular model-
agnostic frameworks, and it primarily focuses on explain-
ing individual predictions. As for the text classification
task, LIME samples instances around an individual input
text instance by adding a perturbation to the original text;
one example of a perturbation involves randomly delet-
ing words from the original text. Then, LIME classifies
the generated samples using the trained model. Finally,
the contribution of each word in the original text to the
final model prediction result is obtained by the LIME
framework.

We randomly select two sentences that contain
metrics-driven mechanism knowledge, as shown in Fig-

5https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-12-v2

12

https://paperswithcode.com
https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2


−0.1 0 0.1 0.2 0.3

improves
robustness

by
based

that
lattice

lattices

search
with

show
algorithm

translation
its

generated

a

phrase

for

machine

constraining
We

AI: We present a stack-based lattice search algorithm for NMT and show that
constraining its search space with lattices generated by phrase-based
machine translation (PBMT) improves robustness.

−0.05 0 0.05 0.1

reduce

in

tagging

technique

scheme

order
more

a
applied

we
and

dropout

overfitting
employed

regularisation

to

sophisticated
as

AI: we employed a more sophisticated tagging scheme and applied dropout as
a regularisation technique in order to reduce overfitting.

−0.05 0 0.05 0.1

energy
number
improve

may
In

conclusion
diet

high

early
alter

in

of

follicles

during

small
luteal

phase
cycling

metabolite
and

Biology: In conclusion, high-energy diet may improve number of small follicles
and alter energy metabolite during early luteal phase in cycling ewes.

−0.02 0 0.02 0.04 0.06

increased
resulting

by
40

the

37
in

content
tissue

53
decrease

respectively

31

leaf
C

Low

N

and

high
availability

Chemistry: Low light availability and high nutrient availability increased the
nitrogen content of leaf tissue by 53% and 40% respectively, resulting in a 37%
and 31% decrease in the C/N ratio.

Figure 7: Examples in artificial intelligence, biology and chemistry field for mechanism sentence extraction based on LIME
framework

Table 5
Result of metrics-driven mechanism recognition

Type Precision Recall F1 score

Entities Extraction

Operation 72.0 66.4 69.1
Effect 86.3 87.6 86.9
Total 79.8 77.6 78.7

Relations Extraction

Pos_eff 59.7 71.7 65.1
Neg_eff 50.0 54.2 52.0
Other 60.0 26.1 36.4
Total 58.1 61.6 59.8

ure 7, to make reasonable interpretations about our mech-
anism sentence extraction model. In Figure 7, the x-axis
refers to the word contribution to the prediction result,
where the positive and negative values correspond to the
probability that the sentence contains mechanism knowl-
edge or not, respectively. In Figure 7, the verb "improve"
and "reduce" that represent the metric changes direction
have the biggest influence on the prediction.

Benefiting from the BERT model’s strong ability in
feature extraction and the domain generalizability of
the metrics-driven mechanism representation scheme,

although the dataset proposed in this paper is in the
field of natural language processing, our mechanism sen-
tence extraction model and mechanism triple extraction
model still have good performance in other fields, such
as biology and chemistry. the second row in Figure 7
demonstrates the decent generalization performance in
other fields such as biology and chemistry.

Based on the LIME framework, it can be found that
the BERT- based model primarily focuses on key verbs,
such as increase, improve, reduce, and decrease, which
indicate the metric entities change direction, to identify
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Table 6
Human evaluation result for the enhanced mechanism knowledge search engine.

Our search engine Baseline

No Query P@3 P@5 P@3 P@5

1 how to improve F1 on text classification? 100 60 33 60
2 how to improve model generalization? 100 80 100 60
3 how to decrease training time? 100 100 100 100
4 how to improve performance of Named Entity Recognition

(NER)?
67 80 33 40

5 how to improve BLEU on machine translation? 100 100 100 100

Avg. 93 84 73 72

Table 7
Human evaluation result of COLING 2020 papers

Ground truth
Predicted Positive Negative

Positive 27 4
Negative 7 62

the sentences that contain the metrics-driven mechanism
knowledge.

Evaluation of Subtask 2
Identical to the scientific information extraction in

terms of entity granularity, our mechanism triple ex-
tract model achieves a 78.67 F1 score on both Operation
and Effect entity recognition. For relation extraction, it
achieves a 59.80 F1 score. Using the same method, our
mechanism entity and relation extraction model outper-
forms SCIERC, which achieves a 70.33 and 50.84 F1 score
corresponding to entity recognition and relation extrac-
tion, respectively.

5.2. Quality Evaluation of Extracted
Mechanism Knowledge.

To evaluate the quality of the metrics-driven mechanism
knowledge extracted from the paper abstracts, we ran-
domly selected 100 papers in 2020 COLING and checked
the extracted (Operation, Effect, Direction) triples with a
relaxed-match evaluation [48], i.e., an entity is regarded
as positive if its type is correct and there is an overlap
with the ground truth entity boundary.

There are 34 papers that contain metrics-driven mecha-
nism knowledge in their abstracts. The confusion matrix
is shown in Table 7. We achieve 87.0 precision and 79.4
recall. According to the analysis of seven papers, the
mechanism knowledge could not be extracted, which we
find was caused by the error cascade in the mechanism’s
knowledge extraction model. For instance, “Our word

segmentation system outperforms the previous state-of-
the-art system in both speed and accuracy on both in-
domain and out-domain datasets.” actually contains the
mechanism knowledge, but the mechanism sentence ex-
traction model fails to recognize it.

5.3. Utility Evaluation of Extracted
Mechanism Knowledge

Using the PWC hierarchical task taxonomy, our NLP
Mechanism KB supports the automatic semantic exten-
sion of tasks such as extending Text Generation to Para-
phrase Generation, News Generation and Paper generation.
Therefore, for a query about Text Generation, our NLP
Mechanism KB can return mechanism knowledge for
Paraphrase Generation, News Generation and Paper gener-
ation.

To illustrate the utility of our mechanism knowledge
search engine, we map the text (e.g., the abstract sen-
tences in a paper, research tasks, and input query) to a
shared vector space R𝑑, where 𝑑 is the vector dimension.
In the similarity calculation step, a abstract sentence and
research task are concatenated together to obtain the se-
mantic vector. Then, the cosine similarity score between
the two semantic vectors is calculated. In the evalua-
tion, our constructed mechanism knowledge search en-
gine is compared with the baseline without mechanism
knowledge enhancement, which uses all of the sentences
in an abstract as potential candidates instead of the ex-
tracted mechanism sentence. For the sake of fairness, the
baseline uses the same similarity calculation method and
backbone ranking model as our search engine.

As shown in Table 6, the enhanced mechanism knowl-
edge search engine achieves a significantly better perfor-
mance against the baseline method. Specifically, in terms
of P@3 and P@5, the enhanced mechanism knowledge
search engine could achieve 20- and 12-points improve-
ments compared with the baseline method, respectively.
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6. Conclusion
In this paper, we introduce a coarse-grained represen-
tation scheme to express metrics-driven mechanisms in
the field of artificial intelligence. Our scheme achieved
a balance between domain adaptability and universality.
Moreover, we construct a dataset based on the abstracts
of papers in the NLP field for mechanism sentence ex-
traction and mechanism triple extraction. Based on the
annotated dataset, a BERT-based metric-driven mecha-
nism knowledge extraction model is trained and a knowl-
edge base of metrics-driven mechanism in the NLP field
is constructed. The human evaluation shows that our
metrics-driven mechanism knowledge base has high qual-
ity, and the extracted mechanism knowledge achieves
87.0 precision and 79.4 recall. Additionally, we find that
the mechanism search performance is improved by using
the extracted metrics-driven mechanism knowledge.

Benefitting from the pre-trained model’s learning abil-
ity and the domain generalizability of the metrics-driven
mechanism representation scheme proposed in this paper,
the trained model also has the ability to extract metrics-
driven mechanism knowledge in the fields of biology
and chemistry. In the future, we will extract metrics-
driven mechanism knowledge distributed in multiple
sentences and explore the few-shot learning method to
build a mechanism extraction model for general fields.
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