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Abstract
This paper proposes a novel entitymetrics analysis by exclusively focusing on citation sentence. Since citation sentence offers
both citing and cited author’s research interest, knowledge entity that appears in this sentence can be considered as a key
entity. To characterize such key entities, we conduct an entitymetrics analysis on citation sentences that are extracted from
full-text research articles collected from PMC. We use “opioid” as our search query since it is an actively studied domain,
which indicates that rigorous amounts of knowledge entities and entity pairs are available for examination. After which, we
construct two novel citation sentence-based networks, namely the direct citation sentence (DCS) network and the indirect
citation sentence (ICS) network. The DCS network is built upon direct entity pairs that are captured within citation sentences.
The ICS network, on the other hand, utilizes indirect entity cooccurrences based on cited author information that appears
inside a citation sentence. To demonstrate the usefulness of the DCS and ICS network, a conventional full-text network is
formed for comparison analysis based on network features and opioid-related bio-entity pairs. The results show that DCS
and ICS network demonstrate distinct network characteristics and provide unobserved top-ranked bio-entity pairs when
compared to traditional method. This indicates that our method can expand the base of entitymetrics and provide new
insights for knowledge structure analysis.
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1. Introduction
In accordance with exponential increase of scientific pub-
lication, importance of knowledge entities as a means
to extract meaningful and structured knowledge from
mass literature is growing. Entitymetrics is an approach
enabling entity level analysis on scientific literature and
related researches are being actively conducted since its
proposal in 2013 [1, 2, 3]. Entitymetrics was initially sug-
gested to utilize article title and abstract for knowledge
structure analysis [1]. While a lot of entitymetrics related
studies had a tendency of focusing on title and abstract
[1, 2, 3, 4, 5], several entitymetrics studies attempted to
conduct full-text data [6, 7, 8, 9] based research based on
development of text-mining techniques. Using full-text
data is considered to be significant, since it contains more
comprehensive entities compared to title and abstract
[9, 10]. Thus, the scope of data for entitymetrics analysis
leads to disparate research outcomes. Based on this idea,
our study suggests a new approach for entitymetrics by
focusing on citation contexts in an article. Such method
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is expected to extend the base of bibliometric knowledge
discovery.

Entitymetrics has been actively utilized on biomed-
ical literatures. Zhu et al. [5] proposed a framework
to build a paper-entity/entity-entity cooccurrence, and
entity-specific network from the title and abstract of the
paper for identifying relationships between liver cancer
related disease, drugs, and gene entities. In addition, drug
repurposing studies have also actively utilized entitymet-
rics [11, 12]. Such previous works define bibliometric
indicators upon bio-entities such as drugs, diseases, and
symptoms extracted from biomedical literatures. This en-
ables an efficient literature-based knowledge discovery in
the field of biomedicine, where publication is conducted
actively with large volume. In this context, the current
paper also uses biomedical literature to suggest the use-
fulness of our suggested approach. More specifically,
the current study targets the domain of opioid research.
The opioid domain is an actively studied research field,
especially after the rise of the opioid crisis due to the
overprescription of opioid medications from the 1990s
until today [13]. According to the study of Sweileh et al
[14], research productivity of tramadol, which is a widely
used opioid pain medication, has risen significantly since
the 1970s and 80s and has sparked in the year 2008. This
indicates that there will be abundant rate of knowledge
entities and entity pairs to explore in opioid-related pub-
lications.

Our study focuses on citation sentence, where refer-
ence information is included. Citation sentences include
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Figure 1: The Overall Schematic Research Workflow for the Proposed Methods

both the citing and cited author’s intention for the cor-
responding contents. In the perspective of the citing
author, he or she takes advantage of the citation sentence
in order to obtain credibility for their research. For the
cited author, citation sentence is a channel of recognition
receiving recognition from other researchers for their
established research findings. Based on such characteris-
tics, analysis of citation sentences can provide insights,
which reflects both citing and cited author’s interest.

The current study suggests a novel entitymetrics based
approach in three aspects. First, we conduct entitymet-
rics analysis using citation sentence to expand the base
of entitymetrics. Second, based on this citation sentence
based entitymetrics, we propose two novel networks,
namely the direct citation sentence network (DCS) and
the indirect citation sentence (ICS) network, which en-
ables us to analyze the knowledge entities and knowledge
structures of a certain research domain in different per-
spectives. Third, to demonstrate the usefulness of our
suggested method, we conduct knowledge structure anal-
ysis towards scientific literature in the opioid research
domain. During this process, we aim to investigate three
specific research questions as follows: 1) How can we con-
struct a citation sentence-based cooccurrence network
by using entitymetrics? 2) What is the key difference be-
tween our suggested networks and a conventionally built
cooccurrence network? 3) What kind of new aspects can
we find from the knowledge structure of opioid domain
by utilizing citation sentence-based networks?

This paper explores opioid research domain using bio-
entities extracted from citation sentences. Also, we con-
struct two novel cooccurrence networks derived from
the corresponding entitymetrics method and conduct a
bio-entity pair analysis. The results show that suggested
method yields the identification of unobserved bio-entity
pairs with significant difference. The rest of the paper is
organized as follows: Section 2 explains detailed method-
ology, Section 3 presents research results, and Section 4
concludes the research and suggests future work.

2. Methodology
Figure 1 shows the overall workflow of the current study.

2.1. Data Collection & Parsing
To conduct citation sentence entitymetrics and construct
DCS and ICS network, we collected the total full-text
research papers that were published until March 2022 by
using “opioid” as the search query in PubMed Central
(PMC). A total of 118,808 papers were collected in this
process. After the paper retrieval stage, we parsed each
article’s PMID/PMCID and full-text. For each sentence in
the collected full-text data, we designated distinct ID. Af-
ter which, we identified citation sentences that referred
to other journal articles or documents. In addition, the
referred authors (cited authors) in the citation sentences
were collected and matched with the corresponding sen-
tences.

2.2. Bio-Entity Extraction
To extract bio-entities from the collected citation sen-
tences, PKDE4J [15] was employed for named entity
recognition (NER). PKDE4J is a framework designed for
dictionary-based NER tasks, which consists of two ma-
jor modules: entity extraction module and relation ex-
traction module. For the current study, we only used
the entity extraction module. The extraction module
contains another four sub-modules: dictionary loading,
pre-processing, entity annotation, and post-processing
module. Dictionary-wise, it is possible to add multiple dic-
tionaries for the entity extraction process. To obtain com-
prehensive findings from the collected dataset, we used a
total of five biomedical entity dictionaries based on drug,
disease, compound, protein, and treatment. These dictio-
naries were built from biomedical and clinical databases
such as BioGrid, PharmGKB, NCBI taxonomy, PubChem,
Drugbank, Medical Subject Headings (MeSH), and Clini-
calTrials.gov.
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Figure 2: Cooccurrence Network Construction Process for the Direct and Indirect Citation Sentence Network. Newly captured
entity pairs are highlighted (red box)

2.3. Network Construction
Based on the idea that entity pair that co-occurs within
a unit is considered to have a strong associtation, we
computed cooccurrence of bio-entities and construct an
entity-entity network based on their relationships. In
contrast with conventional entitymetrics cooccurrence
network built upon full-text, this research employed a
novel approach by constructing a network only using
citation sentence. Such approach is expected to provide
novel insights that have not yet been addressed regard-
ing knowledge structure. We formed two networks in
accordance with differently set cooccurrence window. To
be specific, one is built upon entity cooccurrence within
same citation sentences, whereas the other is formed
based on entity cooccurrence within author information
that is included in the citation sentence. Since the former
method considers direct cooccurrence within the cita-
tion sentences, it is defined as a direct citation sentence
network (DCS network). The latter approach is defined
as an indirect citation sentence network (ICS network)
because it captures cooccurrence beyond sentence-based
occurrence instance by generating indirect pairs employ-
ing author information. The construction framework is

presented in Figure 2.

2.3.1. Direct Citation Sentence (DCS) Network

For the first approach, we calculated the sentence-
level cooccurrences of bio-entities using the citation
sentences. For instance, in Figure 2, bio-entities that
appeared in the same citation sentence is computed
as a cooccurrence pair. For instance, since <Cita-
tion Sentence 1> in Figure 2a has four bio-entities
(dopamine, neurotransmitter, midbrain, and stria-
tum), a total of six bio-entity pairs are provided
(dopamine-neurotransmitter, dopamine-midbrain,
dopamine-striatum, neurotransmitter-midbrain,
neurotransmitter-striatum, and midbrain-striatum) as
denoted in Figure 2b. This approach is adopted under
the idea that the entity pairs in the citation sentences
contain key information the citing author intended to
emphasize, despite its small volume. Citation is an act
of authors attempt to obtain credibility for his or her
assertion, and at the same time, it is an act of assigning
credit to the cited author. This indicates that entities
included in citation sentences can be considered as
key entities. Thus, utilizing DCS network can identify
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Figure 3: Citation sentence-based author-entity bipartite network converted into an entity-entity network

key bio-entities and entity cooccurrence pairs more
concretely, which expands the scope of entitymetrics
and knowledge structure analysis.

2.3.2. Indirect Citation Sentence (ICS) Network

Like the previous method, citation sentences are utilized
to construct ICS network. However, unlike the DCS net-
work, this network considers the author-level cooccur-
rence of bio-entities. Doing so enables construction of
indirect connection between key bio-entities in a way
which conventional methods could not. For this, we
linked a connection between the author and bio-entity
using citation sentences with the cited author. That is, the
bio-entities appearing in citation sentence were regarded
to belong to the cited author. After which, we counted
the frequency of the bio-entity pairs that belong to each
author. For example, <Citation Sentence 1> and <Citation
Sentence 2> in Figure 2a are both citing the same author
(i.e., Volkow). Since <Citation Sentence 1> includes four
bio-entities (dopamine, neurotransmitter, midbrain, and
striatum) and <Citation Sentence 2> contains two bio-
entities (opioid overdoses and suicide), a total of six bio-
entities are belonged to the cited author (Figure 2c). This
process represents an author-entity bipartite network
(Figure 3). Then, the corresponding bipartite network is
converted into an entity-entity network by computing
the bio-entity cooccurrence pair within a cited author.
This approach has considerable advantages as it extends
the window of cooccurrence through author informa-
tion in specific sentences (in this case, citation sentences)
of individual papers. To be more precise, since ICS net-
work considers the cited authors’ corresponding works,
knowledge entities extracted from this network can be
thought as carrying several authors’ research key points.
Moreover, in the aspect of entity cooccurrence pair, un-
observed entity pairs that have not yet been scrutinized
can also be detected.

2.4. Network Comparison Analysis
To demonstrate our proposed method’s usefulness, we
compared DCS and ICS network with a conventionally
built full-text cooccurrence network in two different as-
pects. First, we compared network features of our sug-
gested networks with the traditional full-text network. In
this process, we provided network features such as net-
work density, average path length (i.e., geodesic length),
average clustering coefficient, and modularity to examine
network characteristics. Then, we explored the bio-entity
pairs derived from the cooccurrence results from the DCS
and the ICS network. Based on this, we conducted a com-
parison analysis with the conventional full-text network
to observe the distinguishing entity pairs, which are only
shown in our proposed networks.

2.4.1. Network Features

Density of a network represents the overall degree of con-
nection between nodes in a network. It is measured as
the ratio of the number of links that are actually present
to the maximum number of possible connections in the
network. The calculation for network density is as fol-
lows:

𝐷 =

∑︀
𝐿𝑤

𝑁C2
(1)

where 𝐷 is the density, 𝑁 is the number of nodes, and
𝐿𝑤 is the weighted link between two distinct nodes.

Average Path Length (APL) is a network feature that
is calculated by the average number of steps among the
geodesic paths (i.e., shortest paths) for all possible pairs
in a network [16]. This measure can be expressed as:

𝐴𝑃𝐿 =
1

1
2
N(𝑁 + 1)

∑︁
𝑖>𝑗

𝑑𝑖𝑗 (2)

where 𝑁 is the total count of nodes and 𝑑𝑖𝑗 is the shortest
path length between node 𝑖 and node 𝑗.

The Average Clustering Coefficient (𝐴𝐶𝐶) indicates
the degree of association between local communities that
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are comprised of nodes and the degree of aggregation of
a network [17]. Higher 𝐴𝐶𝐶 means that there is also a
higher tendency of topological clustering in the network.
𝐴𝐶𝐶 can be described as follows:

𝐶 =
3× number of triangles
number of all triplets

(3)

Modularity is another common macro-level network
feature that measures the strength of network community
characteristic [18]. Similar to 𝐴𝐶𝐶 , high modularity
level indicates better community detection. Modularity
algorithm is computed as follows:

𝑀 =
1

2𝑚

∑︁
𝑖,𝑗

[︂
𝐿𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚

]︂
𝛿(𝑐𝑖, 𝑐𝑗) (4)

where 𝑀 represents the modularity, 𝐿𝑖𝑗 is the weight of
the edge between 𝑖 and 𝑗, 𝑘𝑖 is the sum of the weights of
the edges linked to node 𝑖 (same goes with node 𝑗), 𝑐𝑖 is
the community node 𝑖 is assigned to, 𝛿(𝑐𝑖, 𝑐𝑗) is 1 when
𝑐𝑖 = 𝑐𝑗 and is 0 when 𝑐𝑖 ̸= 𝑐𝑗 , and 1

2

∑︀
𝑖𝑗𝐿𝑖𝑗 [19].

2.4.2. Bio-Entity Pair Analysis

After examining network characteristics based on dif-
ferent network indicators, we compared the top-20 bio-
entity pairs that were observed in the suggested DCS and
ICS network with the top-ranked bio-entity pairs in the
traditional full-text cooccurrence network. Top-20 bio-
entity pairs from DCS network and ICS network were
also compared with each other to further distinguish each
networks’ advantage. Difference in entity cooccurrence
pair results from distinctness of analysis scope, and the
suggested citation sentence-based network construction
yields novel insights regarding knowledge entities and
knowledge structures.

The domain of opioid research was explored through
this process. Opioid is a heavily studied biomedical con-
cept since it is extremely necessary for surgical contexts
[20, 21] and highly addictive [22] at the same time. This
indicates that opioid is an extremely sensitive topic due
to its double-edged sword feature. For this reason, it
was worth examining knowledge entities and knowledge
structure of the opioid domain to analyze the thoroughly
studied research field.

We used conventional full-text cooccurrence pair that
was collected using sentence-level cooccurrence extrac-
tion. Network comparison result is presented in the next
section.

3. Results
We constructed two cooccurrence networks based on
opioid-related bio-entities extracted from citation sen-
tences: the direct citation sentence (DCS) network and

the indirect citation sentence (ICS) network. Based on
different power-law distribution studies [23, 24, 25], we
excluded bio-entities and bio-entity cooccurrence pairs
that showed unusually low-frequencies (frequency less
than 10) in order to obtain reasonable results by get-
ting rid of non-informative data. Also, a total of 75
bio-entities that were in the top-100 entity frequency
list were excluded due to their ambiguous and overly
general characteristics. For instance, entities such as
“opioids” were excluded since it was obvious for us to
observe such words due to the fact that we used “opi-
oid” as our search query. Other examples include inexact
terms such as “treatment,” “drug,” “human,” and so on (see
Appendix A). DCS network consists of 6,105 bio-entities
and 45,087 links, whereas ICS contains 13,525 bio-entities
and 1,831,917 links. For comparison, a cooccurrence net-
work was formed based on full-text data, which consists
of 13,292 bio-entities and 144,800 links. The fact that
ICS network has more identified bio-entities than the
full-text network indicates that the author-entity bipar-
tite network indirectly connects significant number of
bio-entities throughout the whole dataset.

3.1. Network Features
3.1.1. Conventional Method

As mentioned above, a conventional full-text cooccur-
rence network was built for comparison. The density
of this network is 0.00164, which means that 0.164% of
the whole possible links are presented. This particular
metrics represents the average strength of the possible
connections among the entire network. The average
path length is 3.351, which indicates that the shortest
path among the entire entity pairs is about 3 step long.

Table 1
Top-10 bio-entities for each cluster in full-text network (Cluster
1: anesthetic and analgesic related, Cluster 2: tumor and
disease related, Cluster 3: psychological disorder and reward
system related)

Cluster 1
morphine; anesthesia; fentanyl; infusion;
saline; sedation; propofol; ketamine;
analgesics; postoperative pain

Cluster 2
tumor; liver; glucose; mrna; dna;
hypertension; hcv; obesity; rna; il-6

Cluster 3

substance use disorder; withdrawal;
chronic pain; addiction; dopamine; cocaine;
amp; neuropathic pain; methadone;
mental health

The full-text network’s ACC is 0.601 and the modular-
ity is 0.407. According to Newman [26], a network with
modularity greater than 0.3 is considered to have signifi-
cant community structures. For this reason, we examine
the major clusters of this network. According to Table
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1, there are three major clusters, which are: 1) tumor
and disease related, 2) psychological disorder and reward
system related, 3) anesthetic and analgesic related.

3.1.2. DCS Network Features

The density of the DCS network is 0.00242, which indi-
cates that 0.242% of all possible links are presented in the
current network. The DCS network has a larger density
than the conventionally built network, which shows that
our method suggests a more connective network. The
average path length of the DCS network is 3.434, which
is similar to the full-text network. This means that both
networks’ shortest path of all bio-entity pairs is approxi-
mately 3 steps. Based on the study of Ding et al. [1], this
can be interpreted as both networks having an efficiency
regarding knowledge flow.

ACC for the current network is 0.612, which shows that
nodes in the DCS network tends to form clusters with
each other since it is even higher than the traditional full-
text network. Also, the modularity for the DCS network
is 0.455, which is higher than the full-text network. These
results indicate that the DCS network has a higher clus-
tering tendency than the conventionally formed full-text
network. Hence, we investigated the major topological
clusters that appeared in this network. In the suggested
DCS network, there are four major clusters, which are: 1)
pain management related, 2) tumor and disease related,
3) anesthetic and analgesic related, and 4) psychological
disorder and reward system related. This result shows
that the DCS network provides more specific topological
clusters than the conventional full-text network. Table 2
shows DCS network’s top-10 bio-entities for each cluster
based on the weighted degree.

Table 2
Top-10 bio-entities for each cluster in direct citation sentence
network (Cluster 1: pain management related, Cluster 2: tu-
mor and disease related, Cluster 3: anesthetic and analgesic
related, Cluster 4: psychological disorder and reward system
related)

Cluster 1

chronic pain; neuropathic pain;
postoperative pain; analgesics; pain
management; pain relief; quality of life;
hyperalgesia; paracetamol; painful

Cluster 2
tumor; liver; calcium; mrna; mitochondrial;
proliferation; oxidative stress; dna; nmda;
il-6

Cluster 3
morphine; anesthesia; sedation; fentanyl;
ketamine; infusion; propofol; epidural;
dexmedetomidine; adverse effects

Cluster 4
substance use disorder; dopamine;
addiction; withdrawal; cocaine; reward;
amp; mental health; gaba; methadone

3.1.3. ICS Network Features

Unlike the DCS network, the ICS network represents a
much more compact characteristic in the sense of net-
work connectivity. The density of the ICS network is
0.02010, which refers to the fact that 2.01% of all possi-
ble linkages are provided in the corresponding network.
This measure is significantly higher than both conven-
tional full-text and DCS network. Also, the average path
length of the ICS network is 2.336. In other words, the
average of every shortest path of all entity couples is
approximately little more than 2 steps, which is even
shorter than the conventional full-text and DCS network.
This suggests that the ICS network also has a structure
for highly efficient knowledge flow since it presents the
lowest average path length.

The ACC for the ICS network is 0.918, which indicates
that the current network is extremely connective while
having a great clustering tendency. However, the ICS
network has the lowest modularity (0.148). Despite the
low modularity, this network has three major topological
clusters in the domain of opioid research, which are:
1) psychological disorder and reward system related, 2)
pain disorder related, and 3) tumor and disease related.
This seems reasonable since the ICS network suggests
a significantly high ACC. Table 3 suggests the top-10
bio-entities for all three clusters ordered by the weighted
degree.

Table 3
Top-10 bio-entities for each cluster in indirect citation sentence
network (Cluster 1: psychological disorder and reward system
related, Cluster 2: pain disorder related, Cluster 3: tumor and
disease related)

Cluster 1
SUD; addiction; dopamine; withdrawal;
mental health; reward; amp; perception;
emotional; psychological

Cluster 2

chronic pain; morphine; neuropathic pain;
anesthesia; analgesics; adverse effects;
quality of life; pain relief; persistent;
postoperative pain

Cluster 3
tumor; calcium; gaba; liver; mrna; obesity;
proliferation; progression; toxicity;
oxidative stress

These findings suggest that our proposed methods
have distinct advantages when compared with the tradi-
tional full-text cooccurrence network. All three networks
showed decent average path length, which indicates ef-
ficient knowledge flow. However, the DCS and ICS net-
work represented higher density and ACC. To be more
specific, the ICS network was significantly more connec-
tive than the other two networks. This supports the fact
that our proposed methods can provide a much more
compact network in the perspective of network linkage.
Also, focusing on topological cluster, the DCS network
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provided the most concrete result by presenting four
specific topic clusters while the other networks offered
three.

3.2. Bio-Entity Pair Analysis
Since our citation sentence-based networks (DCS & ICS
network) show certain strengths, it is worth investigating
the highly ranked bio-entity pairs extracted from these
networks to analyze knowledge entities and knowledge
structures. We compare the top-20 opioid-related bio-
entity pair rank with another entity pair rank derived
from the conventional full-text network (Appendix B).

3.2.1. DCS Network vs. Full-Text Network

In Table 4, there are a total of five bio-entity pairs
that only appear in the DCS network when compared
with the traditional full-text network. This means
that utilizing citation sentence-based entitymetrics en-
ables us to capture unobserved bio-entity cooccurrences.
These entity pairs are dopamine-reward, hyperalgesia-
allodynia, withdrawal-morphine, gabapentin-pregabalin,
amphetamine-cocaine, and SUD-cocaine. Among these
top ranked bio-entity pairs, dopamine-reward is the most
highly observed cooccurrence. This entity dyad is highly
important in the field of opioid (especially opioid addic-
tion) since it represents the concept of “reward system”.
The reward system (also known as mesolimbic dopamine
system) is a brain region that is comprised of several cor-
tical and subcortical brain regions that mediates complex
incentive learning and promotes motivation [27]. This
system is known to be closely related to the human’s
endogenous opioid system and addictive disorders [28].

Hyperalgesia-allodynia is also exclusively included in
the top-20 opioid-related bio-entity pair from the direct
citation sentence network. Hyperalgesia and allodynia
are both pain disorders that are associated with severe
neuropathic pain. While hyperalgesia is an escalated
pain from a stimulus that normally occurs pain, allody-
nia is linked to pain that usually does not provoke pain
[29]. Though the relationship between opioid and these
two pain-related disorders are not yet understood in the
molecular-level, it is thought to be that high dosage of
opioid administration induces such symptoms due to opi-
oid tolerance [30, 31]. The fact that an entity pair that
was newly introduced in the top cooccurrence list needs
further investigation indicates that the corresponding
bio-entity pair is being thoroughly studied in the domain
of opioid.

Gabapentin-pregabalin pair is also newly observed in
the top-20 list derived from the DCS network. Manufac-
tured by Pfizer, both these anticonvulsants (i.e., drugs
meant for epilepsy reduction and prevention) are known
to be significantly associated with opioid use disorder

Table 4
Top-20 bio-entity pairs in the direct citation sentence network
(bolded pairs represent exclusive pairs compared with the full-
text network)

Entity 1 Entity 2 Freq

SUD addiction 1993
mental health SUD 1992

methadone buprenorphine 1989
morphine fentanyl 1942
dopamine reward 1544
anesthesia propofol 1482

cbd thc 1290
glucose insulin 1206
heroin cocaine 1203

hyperalgesia allodynia 1172
postoperative pain pain management 1162

withdrawal morphine 1146
gabapentin pregabalin 1132

propofol sedation 1126
naloxone overdose 1119
morphine oxycodone 1107
anterior posterior 1092

hip fracture 1052
amphetamine cocaine 1050

SUD cocaine 1048

patients since it has a likelihood of high co-prescription
with opioid medications [32, 33]. It is not yet certain
whether these drugs are harmful as opioids when they are
misused [34, 35] or whether they affect opioid receptors
in the human body [34]. Considering this situation, the
fact that gabapentin-pregabalin pair is being frequently
observed highlights its research value in the domain of
opioid research.

Another bio-entity pairs that appeared in the top-20
list are amphetamine-cocaine and SUD-cocaine. The ap-
pearance of these cooccurrences is explainable since am-
phetamine and cocaine are psychostimulants that are
highly addictive [36].

3.2.2. ICS Network vs. Full-Text Network

Compared with the traditional full-text network, the ICS
network has 17 unique bio-entity pairs among the top-20
list (Table 5). This indicates that the ICS network, which
utilized author information in the process of the network
construction, offers an additional understanding regard-
ing the knowledge structure of the domain of opioid re-
search. These entity dyads fall into the scope of addictive
disorder and pain disorder. To be more specific, while
chronic pain-neuropathic pain, chronic pain-morphine,
analgesics-chronic pain, and chronic pain-pain manage-
ment are linked to pain disorder, the other bio-entity
pairs are connected to addictive disorder. For instance,
SUD-heroin pair represents heroin addiction, which is
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one of the most prevalent opioid drug addictions nowa-
days [37]. Analgesics-chronic pain, on the other hand,
suggests the close connection with opioid administration
for pain management. Due to its highly controversial and
addictive nature, opioid analgesics for pain treatment is
being thoroughly studied [38]. This shows the two-sided
characteristic of opioid use since it emphasizes both the
positive (treatment for pain disorder) and the negative
(opioid addiction) aspect of opioid. In addition, this ten-
dency suggests that the corresponding features of opioid
use receive robust attention from various authors in the
field of opioid-related studies.

Table 5
Top-20 bio-entity pairs in the indirect citation sentence net-
work (bolded pairs represent exclusive pairs compared with
the full-text network)

Entity 1 Entity 2 Freq

SUD addiction 8684
mental health SUD 6480
chronic pain neuropathic pain 6080

SUD cocaine 5814
dopamine reward 5363
withdrawal SUD 4819
withdrawal addiction 4507
addiction reward 4448
abuse SUD 4246

chronic pain morphine 4227
analgesics morphine 4210
morphine fentanyl 4177
analgesics chronic pain 4159
dopamine addiction 4135

SUD heroin 4120
SUD reward 4110

addiction cocaine 4108
dopamine SUD 4105

chronic pain pain management 4002
SUD relapse 3930

3.2.3. DCS Network vs. ICS Network

It has been suggested in the previous sections that both
DCS and ICS network provide us with meaningful in-
sights towards the knowledge structure of opioid-related
research. However, this has been done at different levels.
Since the ICS network reflects many different authors’
topological research key points, the bio-entity pairs ob-
served in this network tend to be much more general
and broader than the bio-entity pairs from the DCS net-
work. Generality and broadness can be explained by
ICS network’s characteristic, which can be related to our
findings in section 3.1, where it was suggested that the
ICS network offered a highly connective network struc-
ture (high density and ACC) while obtaining knowledge
flow efficiency (low average path length) at the same

time. On the other hand, the top-ranked bio-entity cooc-
currences that appeared in the DCS network deals with
more narrowed-down and detailed opioid-related con-
cept pairs. This can also relate with our results in the
previous subsection, where it was highlighted that the
DCS network provides a much more specific topological
clusters based on modularity measure (Table 2). This can
be explained by the fact that the bio-entity pairs from
the DCS network are under the realm of those derived
from the indirect citation sentence network. For example,
hyperalgesia-allodynia pair is included in the domain of
pain disorder, while pain disorder is heavily covered by
the bio-entity pairs observed in the ICS network. At the
same time, amphetamine-cocaine pair provides specific
examples of opioid based psychostimulant, which is im-
mensely associated with addictive disorders. Also, CBD
(cannabidiol) and THC (tetrahydrocannabinol) are both
the main psychoactive components of marijuana, which
is also an actively studied addictive substance that ap-
peared in the DCS network. Likewise, addictive disorder
is greatly dealt by the top-ranked bio-entity pairs from
the ICS network.

Table 6
Top-20 bio-entity pair comparison between DCS and ICS net-
work (bolded pairs represent exclusive pairs compared with
each other)

DCS Network ICS Network

Entity 1 Entity 2 Entity 1 Entity 2

SUD addiction SUD addiction

mental health SUD mental health SUD

methadone buprenorphine chronic pain neuropathic
pain

morphine fentanyl SUD cocaine

dopamine reward dopamine reward

anesthesia propofol withdrawal SUD

cbd thc withdrawal addiction

glucose insulin addiction reward

heroin cocaine abuse SUD

hyperalgesia allodynia chronic pain reward
postoperative

pain
pain

management analgesics morphine

withdrawal morphine morphine fentanyl

gabapentin pregabalin analgesics chronic pain

propofol sedation dopamine addiction

naloxone overdose SUD heroin

morphine oxycodone SUD reward

anterior posterior addiction cocaine

hip fracture dopamine SUD

amphetamine cocaine chronic pain pain
management

SUD cocaine SUD relapse
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4. Conclusion
This paper proposes a novel approach to entitymetrics
which utilizes citation sentences so that we can measure
the impact of knowledge entities and analyze the knowl-
edge structure with a different perspective, compared to
conventional approaches where abstract or full-text is
utilized. To be more specific, we suggest two citation
sentence-based networks, namely the direct citation sen-
tence (DCS) network and the indirect citation sentence
(ICS) network. Both networks are cooccurrence networks
that are constructed based on citation sentences that were
extracted from full-text data collected from PMC. The
DCS network is built by calculating cooccurrence pair
within a citation sentence. The ICS network, on the other
hand, is formed in a way where indirect connection be-
tween entities are being captured based on cited author
information. That is, we first compute an author-entity
bipartite network, then we convert this network into an
entity-entity network (i.e., ICS network).

When compared with a conventionally built full-text
network, it was clear that DCS and ICS network respec-
tively hold different advantages regarding network fea-
tures. Both the DCS and ICS network show denser net-
work connectivity than the traditional full-text network.
This is especially prominent in the ICS network since it
has the highest density and ACC measures. DCS network
provides the most detailed topic cluster compared to ICS
and conventional full-text network based on the highest
modularity.

Furthermore, to examine whether our proposed meth-
ods can provide us with novel knowledge entity/struc-
ture analysis results, we explore the domain of opioid
research. This study compares each network’s top-20 bio-
entity pairs with the conventional full-text cooccurrence
network. The comparison results show that our sug-
gested methods successfully capture novel entity pairs
in the rank, which are not presented in the top list of the
network constructed with conventional approach. Even
though our suggested networks provided unobserved
bio-entity pairs in the top list compared with the tradi-
tional method, significant differences were also captured
between DCS and ICS network. While the ICS network
tends to provide much more general and broader bio-
entity pairs, the DCS network offers much more specific
and specialized bio-entity pairs. This can be linked to our
previous findings regarding network feature-based char-
acteristics. The generality and broadness of bio-entity
pairs in the ICS network can be supported by ICS net-
work’s high connectiveness and efficient knowledge flow.
The detailed feature of the bio-entity pairs extracted from
the DCS network can be explained by DCS network’s
topological specificity. The novel approach of citation
sentence-based entitymetrics thus provide insights which
cannot be captured via conventional method. These meth-

ods can support the need for the use of citation sentences
in future entitymetrics studies when a more in-depth
knowledge structure analysis is needed.
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A. Excluded Entity List

Table 7
Excluded 75 bio-entities

Entity Frequeuncy Entity Frequency
treatment 526686 lead 57961

pain 456305 oral 57447
drug 211165 procedure 57276
Fig 206186 procedures 56578
care 201449 affect 56073

response 174147 neuronal 54537
drugs 168170 severity 54409

surgery 161686 protocol 54118
brain 157926 condition 54087
dose 137096 like 53988

reduced 127899 key 53656
function 127052 medications 52639
therapy 117437 end 51958
human 117366 sensitivity 51654
blood 106818 interest 50794

disease 106162 secondary 49189
opioids 101146 rat 48710

symptoms 96081 distribution 48064
support 89745 strategies 46310
chronic 82604 adult 44728

stimulation 82076 disorders 43925
severe 80434 delivery 43609

exposure 80109 line 42817
impact 77239 side effects 42242
general 76767 right 41062

expressed 72793 injury 41590
acute 71777 understanding 40342

normal 71392 moderate 39323
management 68786 focus 37051
medication 67976 diseases 36224
measures 67668 light 35968

association 67400 onset 35871
concentrations 64023 finding 35413

central 63070 strategy 35201
food 62410 nervous 34967
block 62157 activated 34227

set 61710 content 33724
intensity 59397

B. Conventional Full-Text Network
Cooccurrence Information

Table 8
Top-20 bio-entity pair in the full-text network

Entity 1 Entity 2 Freq
anesthesia propofol 5902
methadone buprenorphine 5708
morphine fentanyl 5326

mental health SUD 5240
SUD addiction 4292

anterior posterior 3697
morphine oxycodone 3463
naloxone overdose 3447

heroin cocaine 3410
kit rna 3329

glucose insulin 3225
hip fracture 3199

propofol remifentanil 3182
anesthesia isoflurane 3152

postoperative pain pain management 3116
anesthesia sevoflurane 3093
propofol sedation 3081

hypotension bradycardia 3057
cbd thc 3040

withdrawal morphine 3035
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