
Ontologically Parsing Semi-structured Text with
Unknown Grammars
David W. Embley1,2, Stephen W. Liddle1, Deryle W. Lonsdale1, Gary J. Norris2 and
Scott N. Woodfield1,2

1Brigham Young University, Provo, Utah, USA
2FamilySearch International, Lehi, Utah, USA

Abstract
Semi-structured text often contains valuable information that could be parsed and placed in a structured
store that is relatively easy to process, but parsing requires a grammar, which is usually unknown. This
makes potentially rich information sources such as family history books difficult to access and query,
especially for the task of learning about specific individuals of interest. A conceptual modeling approach
is useful because we can conceptualize the desired individual records as an ontology relating lexical
objects to one another, lexicalize the text, generate a grammar to parse the stream of lexical objects, and
compile records that satisfy the grammar and populate the ontological conceptualization. The induced
grammars are regular and thus parse in linear time, and we have measured high accuracy (f-score > 90%)
for a variety of family history books with minimal effort and expertise required to generate thousands of
records per book.

Keywords
ontological conceptualization, grammar, semi-structured text

1. Introduction

Aiding discovery of our ancestral past is a booming business, with successful companies such
as Ancestry, FamilySearch, Find My Past, MyHeritage, and many more. Beyond heightened
interest in discovering our roots, genealogies are also important in the study of inherited genetic
disorders, inter-generational poverty, and community and society longevity research [1].

Among themany billions of primary and secondary genealogical sources are record collections
compiled by genealogical enthusiasts documenting inter-generational families in ancestral lines,
communities, and mortuary or cemetery records. These record collections are written in a
semi-structured style amenable to automated information extraction.

Fig. 1 shows a semi-structured text snippet taken from The Ely Ancestry [2]. Although not
in a formal tabular structure, there are markers such as “b.”, “d.”, and “dau. of” that identify
attribute-value pairs for record fields and a layout that allows these fields to be grouped into
records. It thus satisfies the informal definition of semi-structured text that enables identification
of fully structured records like the following:

ER2022 Forum, October 17–20, 2022, Hyderabad, India
Envelope-Open embley@cs.byu.edu (D.W. Embley); liddle@byu.edu (S.W. Liddle); lonz@byu.edu (D.W. Lonsdale);
woodfiel@cs.byu.edu (S. N. Woodfield)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:embley@cs.byu.edu
mailto:liddle@byu.edu
mailto:lonz@byu.edu
mailto:woodfiel@cs.byu.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Text Snippet from The Ely Ancestry [2].

Person((Name, “Elizabeth Selden”), (BirthDate, “Apr. 18, 1796”), (DeathDate, “May 8, 1868”))

Person((Name, “Joseph Spencer”), (BirthDate, “1790”), (DeathDate, “1823”))

Marriage((Name, “Frances Spencer”), (MarriageDate, “1861”), (Spouse, “Charles Atwood
White”))

Our approach to automatically extracting records from semi-structured books is to rewrite
the book in terms of the types of records we seek. Record fields are attribute-value pairs, which
are grouped according to the ontologically conceptualized record types we seek. The properties
of conceptualized relationship sets allow us to generate grammars for each record type, which
we can then use to check, parse, and compile records.

Fig. 2 shows a rewriting of the text snippet in Fig. 1 with respect to two different record types.
The lined-through text is suppressed leaving an ordered list of record field values, which when
labeled become attribute-value pairs. Observe: (1) the group of value fields that belong to a
record are partitioned into record groups in the linear flow of the text, and (2) every field value
beyond the first has a direct relationship to the first field value and can be seen as a property of
the entity denoted by the first field value. Record examples in these rewritings include:

In Person: “Elizabeth Selden” is the first field value, “Apr. 18, 1796” is her birth date, “May 8,
1868” is her death date.

In Marriage: “Elizabeth Selden” was married on “Sept. 24, 1818” to “Joseph Spencer” and was
married on “Apr. 21, 1831” to “Amos Beebe Eaton”.

Valid sentences with respect to a generated grammar for a record type can be parsed and
compiled into relational database records. Tables 1 and 2 show the results for the text snippet
in Figs. 1 and 2 respectively.

Tables 1 and 2 show coordinates for some text values, which serve as unique identifiers. For
example, the Elizabeth Selden born in 1796 has coordinates “(@563,33,4)” and she is distinct
from the Elizabeth Selden born in 1819 who has coordinates “(@563,38,4)”. Coordinates are
built from page, line, and token offset values for the corresponding lexical tokens. Name is a
key for the Person table, and Name-Spouse is a compound key for the Marriage table. Unique
coordinates also allow us to join records appropriately, thus deriving more complete, linked
information about individuals, marriages, and children.

Figure 2: Record Types Partition Running Text.

Table 1
Person Relational Database Table.

Person(Name BirthDate DeathDate)
Elizabeth Selden (@563,33,4) Apr. 18, 1796 May 8, 1868
Joseph Spencer (@563,34,16) 1790 1823
Amos Beebe Eaton (@563,36,6) 1806 1877
Elizabeth Selden (@563,38,4) 1819 -
Ellen Dwight (@563,39,4) 1843 -
Daniel Cady (@563,40,4) 1834 June 29, 1895
Frances Spencer (@563,41,4) 1836 -

Table 2
Marriage Relational Database Table.

Marriage(Name Spouse MarriageDate)
Elizabeth Selden (@563,33,4) Joseph Spencer (@563,34,16) Sept. 24, 1818
Elizabeth Selden (@563,33,4) Amos Beebe Eaton (@563,36,6) Apr. 21, 1831
Elizabeth Selden (@563,38,4) Elisha Colt (@563,38,15) 1851
Daniel Cady (@563,40,4) Caroline Ketcham (@563,40,22) 1866
Frances Spencer (@563,41,4) Charles Atwood White (@563,41,15) 1861

In this paper we present the following contributions, which are centered on a conceptual
modeling approach. In Section 2 we describe a theoretical foundation for compiling database
records by parsing semi-structured text whose grammar is unknown but can be derived from an
ontological conceptualization of the information conveyed in the text. In Section 3 we present
theoretical extensions for parsing semi-structured text with nested records and anomalous
field values. In Section 4 we describe an implementation of the theory and its extensions that
achieves high extraction accuracy for both named entity recognition (NER) and named relation
recognition (NRR) with relatively modest required effort and expertise.

MarriageEventDate

ChristeningPlaceChristeningDateBirthPlaceBirthDate

DeathDate

DeathPlace

BurialDate

BurialPlace

MarriageEventPlace

Spouse

Person

Child

Name

Person Spouse
--[0:1]-->
MarriageEventDate
MarriageEventPlace

2

Parent1
Parent2

ChildOf

ParentOf

Figure 3: Hypergraph Diagram of an OSM Extraction Ontology [3]

Table 3
Nested ParentOf Relational Database Table.

ParentOf(Name (Child)*)
Elizabeth Selden (@563,33,4) Elizabeth Selden (@563,38,4)

Ellen Dwight
Daniel Cady
Frances Spencer

2. Theoretical Foundations

Conceptual modeling is at the core of this work: our approach starts with an ontology that
corresponds precisely to a real-world application, and thus it constrains the text of semi-
structured documents written for this application to correspond to a small number of records
types. Book authors who wish to write in a semi-structured style must necessarily write with
respect to these record types. Fig. 3 shows a diagram of the family history ontology (a conceptual
model instance) that we use in our running example. Authors of family history books who wish
to describe genealogies must necessarily write information about parents, children, dates of
important life events, etc., which the ontology describes.

The next step of our approach is to render the ontology’s hypergraph diagram in Nested
Normal Form (NNF) [4]. This entails the set of record types for a book and establishes the basis
for generating grammars for each of these record types. A relational database schema is a set
of relation schemes, each of which is a named set of attribute names. Relation schemes are
normalized, which eliminates redundancy with respect to applicable functional dependencies
among its attributes while maximizing the number of attributes in each relation scheme. Al-
though much less common in practice, relation schemes can have groups of one or more of its
attributes designated as being nested with respect to the non-nested attributes. If, for example,
Child were to be nested in a ParentOf table, it could be rendered as Table 3. Nested relations
also have an NNF normal form, which leads us directly to the grammars we wish to derive for
parsing semi-structured text.

The OSM hypergraph diagram in Fig. 3 is reduced with respect to its embedded functional
dependencies [5]. All relationship sets are binary except for the 4-ary relationship set, which
cannot be losslessly reduced to binary relationship sets because of the compound left-hand
side of the functional dependency, Person Spouse → MarriageEventDate MarriageEventPlace. As
such, the derivation of an NNF relational database schema is immediate. NNF relation schemes
generated from the ontology include the following:

Person(Name, BirthDate, BirthPlace, ChristeningDate, ChristeningPlace, DeathDate, Death-
Place, BurialDate, BurialPlace)

Marriage(Name, (Spouse, MarriageDate, MarriagePlace)*)

ParentOf(Parent, (Child)*)

Family(Parent1, Parent2, (Child)*)

ChildOf(Child, Parent1, Parent2)

Note that Family subsumes ParentOf where Parent2 is always empty. Formally, we use one or
the other but not both for a book, and which we use depends on the book’s layout.

Given the NNF record types, grammar generation is straightforward. We instantiate objects
in a non-lexical object set𝑁 (cause them to come into existence in𝑁) by ontological commitment
of a text phrase in one or more lexical object sets connected by relationship sets to 𝑁. For the
ontology diagram in Fig. 3, objects are instantiated in the non-lexical object set Person when text
snippets are added to the connected lexical object set Name. Moreover, since Child and Spouse
are specializations of Person, their ontological commitment is also by Name. Specializations are
populated only by explicitly designating one of the objects in the generalization Person to be an
element of a specialization.

The grammar immediately falls out from these scheme trees. As an example consider the
Person records in Fig. 1 where a person has birth and death dates. A person can have either,
both, or neither dates, and the dates can come in any order, as follows:

Record Scheme: Person(Name, BirthDate, DeathDate)

Grammar: <Person> → Name | Name BirthDate | Name DeathDate | Name BirthDate Death-
Date | Name DeathDate BirthDate

Grammar: <Person> → Name (𝜖 | BirthDate | DeathDate | BirthDate DeathDate | DeathDate
BirthDate)

Grammar: <Person> → Name [BirthDate, DeathDate]

The three grammar production rules are equivalent such that the bracket notation denotes an
alternation of the power set of the set of listed terminals with each subset within the power set
ordered in all permutations. Using square bracket notation, we give the grammar for all of our
record types:

Record Scheme: Person(Name, BirthDate, BirthPlace, ChristeningDate,
ChristeningPlace, DeathDate, DeathPlace, BurialDate, BurialPlace)

Grammar: <Person> → Name [BirthDate, BirthPlace, ChristeningDate,
ChristeningPlace, DeathDate, DeathPlace, BurialDate, BurialPlace]

Record Scheme: Marriage(Name, (Spouse, MarriageDate, MarriagePlace)*)

Grammar: <Marriage> → Name ([Spouse, MarriageDate, MarriagePlace])+

(The underline in this notation adds the requirement that the underlined terminal symbol appear
in every attribute group; alternatively, it could be thought of as eliminating from the power set
every subset that that does not include the underlined terminal.)

Record Scheme: ParentOf(Parent, (Child)*)

Grammar: <ParentOf> → Parent1 (Child)+

Record Scheme: Family(Parent1, Parent2, (Child)*)

Grammar: <Family> → Parent1 Parent2 (Child)+

Record Scheme: ChildOf(Child, Parent1, Parent2)

Grammar: <ChildOf> → Child Parent1 Parent2

These grammars are all regular in Chomsky’s classification, which thus allows for efficient
linear-time processing [6, 7].

The next step is to perform lexical analysis. For each record type 𝑅, a lexer rewrites the
book as a sequence of attribute-value pairs corresponding to the fields of 𝑅. The values in the
attribute-value pairs all have book coordinates (described earlier and illustrated in Table 3). The
lexer generates attribute-value pairs such as Name: Elizabeth Selden, BirthDate: Apr. 18, 1796,
and DeathDate: May 8, 1868. The lexer is programmed by example. A programmer specifies the
attribute (e.g. Name) and copies a snippet from the text that contains the value and enough
context to uniquely categorize and thus label it. The text snippet is then categorically tokenized.
After the entire text of a book has been tokenized, the lexer finds matching patterns and labels
the book’s running text.

Parsing text conforming to regular grammars is straightforward, as is compiling records.
The compiler knows how to relate the values in the attribute-value pairs because every binary
relation is formed by relating the value associated with the record-head attribute with the
value associated with each of the other attributes, and every 𝑛-ary (𝑛 > 2) relation is formed by
relating the value associated with the record-head attribute with the group of 𝑛 − 1 values of
the other 𝑛 − 1 attributes in the 𝑛-ary relation.

Note that parse errors are valuable in this application. For example, when parsing the Person
grammar, encountering a second birth date is a parse error as is a second of all the other
functionally dependent attributes. These errors help us detect missing record heads. If, for

Figure 4: Three Miller Funeral Home Records [8].

example, we are parsing Person records in Fig. 2 and find that child Ellen Dwight has birth dates
of 1832 and 1834, we know that Daniel Cady’s name has not been found and labeled. Another
kind of parse error can occur in the Marriage grammar. Note that in the Marriage grammar
the star in the record scheme becomes a plus, and thus it is a syntax error if there is no Spouse.
Detecting these types of errors is valuable in our quest to find and extract name instances for
all mentioned persons in a book.

The key idea that makes parsing and compiling straightforward is that all grammars begin
with a terminal symbol, which we call the record head (i.e. respectively, Name, Name, Parent1,
Parent1, Child for the five grammars above). Then for a recognized record-head object every
other recognized object has a direct relationship to the head (in the case of Marriage it is each
spouse’s Name-MarriageDate-MarriagePlace group that relates to the record-head object).

This principle lets us group grammars together so long as it holds. Consider the text snippet in
Fig. 4, which is a record for persons who have died and who have been taken care of by a funeral
home. Observe that for each person 𝑝 all information in 𝑝’s record has a direct relationship
to 𝑝. In this case we can group grammars for Person, Marriage, ParentOf, and ChildOf as one
grammar:

Record Scheme: Individual(Name, BirthDate, BirthPlace, ChristeningDate, ChristeningPlace,
DeathDate, DeathPlace, BurialDate, BurialPlace, (Spouse, MarriageDate, MarriagePlace)*,
(Child)*, Parent1, Parent2)

Grammar: <Individual> → Name [BirthDate, BirthPlace, ChristeningDate, ChristeningPlace,
DeathDate, DeathPlace, BurialDate, BurialPlace, ([Spouse, MarriageDate, Marriage-
Place])*, (Child)*, Parent1, Parent2]

From Fig. 4 we can extract the following attribute-value pairs for Catherine Teegarden by
parsing the text according to the grammar above:

Individual((Name, [TEEGARDEN, CATHERINE (@343,20,2)]), (DeathDate, [6 May 1941]),
(DeathPlace, [Greenville OH]), (BurialPlace, [Greenville]), (BurialDate, [8 May 1941]),
(BirthDate, [20 Nov 1865]), (BirthPlace, [Greenville Twp Dke Co OH]), (Parent1, [JOHN
SWAC? HERSHEY]), (Parent2, [ANNA YOUNG]), ((Spouse, [W.W. TEEGARDEN]), (Mar-
riageDate, []), (MarriagePlace, [])), ((Child, [ROLAND]), (Child, [HAROLD]), (Child,
[CHESTER]), (Child, [LORENE TEEGARDEN])))

Figure 5: Text snippet from Flögeln [10] with Wwe. reference.

As with most theoretical formulations, real-world practicalities (in our case mostly author
nuances) can inject irregularities which must be considered. For this approach to succeed the
text must be semi-structured and have two properties: (1) sufficient context to unambiguously
form attribute-value pairs for every sequence of tokens of interest, and (2) for each record type 𝑅,
there exists an 𝑅-record partitioning of the book’s text rewritten as a sequence of attribute-value
pairs applicable to 𝑅.

A number of irregularities often make this process interesting. For example, in the Kilbarchan
book [9], twins James and William share the same birth date and are listed as “James and
William, 9 April 1654”. This construction violates our semi-structured record partitioning
principle. However, the twins James and William are both on Page 25, Line 53, and there is
only one token, namely “and”, between them. Our record compiler for Person can and does
check for twins, and even triplets and quadruplets with shared birth information by finding
consecutive names on the same page and line with only one or two tokens between them and
birth or christening information following only the last.

3. Theoretical Extensions

In this section we show that we can make the theory more generally applicable, (1) by relaxing
the semi-structured requirements and (2) by extending our coverage to include all conceptual-
modeling features in [3]. We only need to add aggregation and recursive relationship sets to
obtain full coverage of all OSM data modeling constructs described in [3]. Thus the theory
extends to record extraction from semi-structured text for any application modeled by OSM.
New grammars are introduced, but they remain regular, Chomsky type 3 grammars and thus
execution remains linear.

3.1. Labeling Issues

An example of a “labeling issue” occurs in Fig. 5 where “geboren” (abbreviated “geb.”) indicates
that Beke Dröge’s birth surname is Renken. We can capture this information by representing
Name using an aggregation as Fig. 6 shows. This aggregation is for what we call canonical
names—a name with categorized sub-parts. Canonical names are parsed as a record type of
their own according to the following grammar:

<CanonicalName> → NamePrefix [Title, FirstName, BirthSurname, MarriedSurname, Suffix]

NamePrefix is the label for the token immediately preceding the name (whatever it is). NamePre-
fix serves as the record head and is used to associate the canonical name specification with the
name to which it applies.

BirthSurname MarriedSurname SuffixTitle FirstName

PersonName

Figure 6: Name Aggregate Extension for the Conceptual Model Diagram in Fig. 3.

Figure 7: Text snippet from Familienbuch des Kirchspiels Flögeln [10]—a record book of families in the
Flögeln Parish in Lower Saxony, Germany (∼1670–1900).

3.2. Record Anomalies

“Anomalies” sometimes occur within the textual space of a record, including reference identifiers,
parenthetical remarks, and context switches in which the document’s text provides information
within the textual space of a record about some other person beside the record head.

The Flögeln snippet in Fig. 7 shows that each household has an identifier that the author uses
to refer to related persons. For example, Hans Böse is declared to be “aus B024”—thus asserting
that Hans is a member of the household B024. Indeed, he is the same person as the first child
in household B024 and hence the reader knows that he is the son of Casten and An Böse. A
reverse reference also appears, as Hans in household B024 has a reference to B025, a marriage
to Könke Ütjen (or Itken or Itjen). Indeed, his first marriage and the matching marriage date,
20.10.1704, assure us that his spouse has been correctly identified.

The lexer labels these in-line identifiers according to the role they play: B025 is Hans’s wife
and is labeled as Spouse, and B024 is Hans’s parent (meaning the head of the household in B024)
and is labeled as Parent1. Then to process in-line reference identifiers, we seek to replace them
by the names of the persons referenced (along, of course, with their book coordinates). This
requires that we build an inverted index of reference identifiers to households and then reason
about which member of the household is being referenced. Then we replace references with
the corresponding names as appropriate.

Figure 8: Text snippet from Flögeln [10] with Context Switches.

Flögeln has “context switches” in the sense that a person can be embedded (nested) within
another person’s text partitioned record space. This nesting constitutes a violation of the
semi-structured assumption. Fig. 8 shows an example. Observe that Claus von Dehsen has a
spouse, Anna Margaretha Stürcken (as indicated by the o-o symbol, denoting an illegitimate
union), and Anna has a child (with Claus, of course, but within Anna’s record space) who was
born illegitimately (as indicated by the (*) symbol) in the village of Alfstedt on 13.6.1812. The
death date 6.5.1857 (indicated by the + symbol) belongs to Claus and thus the record information
for both Anna and Gesche is nested textually within Claus’s record about his birth and death. It
is the parentheses that help us understand the limits of the nesting. Note, however, that the
parenthetical remark following Gesche Joost does not contain record information, but rather
only her father, Martin J. and her mother Thrine Margarethe Hollwegs as denoted by the symbol
“To.” (daughter of).

The key to creating a single grammar for semi-structured family documents like Flögeln is to
label household members that have two roles in such a way that the parser can recognize both
roles. We choose to label them with role names in all-capitalized letters using their role name
to designate their relationship to the household head and all-CAP letters to designate that they,
themselves, can be record heads. Ontologically, the roles are those non-lexical object sets that
denote subsets of Person, and thus for our application we have CHILD, SPOUSE, PARENT1, and
PARENT2. The Flögeln Person grammar is:

<Person> → Name [BirthDate, BirthPlace, ChristeningDate, ChristeningPlace, DeathDate,
DeathPlace, BurialDate, BurialPlace, LPAREN, RPAREN] <PersonRelation>?

<PersonRelation> → (SPOUSE | CHILD | PARENT1 | PARENT2) [BirthDate, BirthPlace, Chris-
teningDate, ChristeningPlace, DeathDate, DeathPlace, BurialDate, BurialPlace, LPAREN,
RPAREN] <PersonRelation>?

Other grammars for Marriage, ParentOf, Family, and ChildOf are extended in similar fashion.

3.3. Recursive Relationships

In some cases, recursive relationships are needed to process textual records that violate the
semi-structured properties we assume. For example, consider the Mullinix snippet in Fig. 9,
where Lee Ann Hinds is a daughter of Perry and Elizabeth Allred Hinds; Lee Ann’s children
include Nova Eunice Smith and five others. There is no a priori limit on how deeply nested
family records could be.

Grammars for Mullinix include the following:

Figure 9: Text snippet from Delaware Mullinixes [11].

<Person> → Name [BirthDate, BirthPlace, ChristeningDate, ChristeningPlace,
DeathDate, DeathPlace, BurialDate, BurialPlace]

<Marriage> → Name [([Spouse, MarriageDate, MarriagePlace])+] STOP?

<MultipleSpouseMarriage> → Name [([Spouse, MarriageDate, MarriagePlace])+] STOP?

<ParentOf> → Parent (CHILD_GEN𝑖)+

<ChildOf> → Child [Parent1, Parent2]

The grammar notation CHILD_GEN𝑖 in the ParentOf grammar denotes any one of the ter-
minals CHILD_GEN1, CHILD_GEN2, ..., CHILD_GEN𝑛 where 𝑛 is a positive integer. Unlike
most grammars, it is possible to write grammatically correct sentences that are semantically
meaningless. The parser, however, knows that for sentences to be semantically meaningful, (1)
𝑖 = 1 in the first-encountered CHILD_GEN terminal and (2) after encountering CHILD_GEN𝑛,
we must have 𝑖 = 𝑛 or 𝑖 = 𝑛 + 1 or 𝑖 < 𝑛. It therefore rejects semantically meaningless records
and otherwise builds parse trees as usual. STOP? is an optional terminal symbol used to stop
processing “runaway” lists (e.g. child lists) in cases where there is otherwise insufficient context.

These grammars are all regular, type 3 Chomsky grammars. For any inter-generational book
like Mullinix, the subscript 𝑖 on CHILD_GEN𝑖 can be fixed (e.g. 𝑖 = 2 in Fig. 9 and 𝑖 = 4 over
pages 80–173, the pages with these inter-generational families in Mullinix [11]). Thus the
grammar can be rewritten as:

Figure 10: An Extraction Template using an Example from Fig. 7.

<ParentOf> → Parent [CHILD_GEN1, CHILD_GEN2, CHILD_GEN3, CHILD_GEN4]

3.4. Real-World Violations of Semi-structured Assumptions

Flögeln’s reference identifiers violate the partitioning property of our semi-structured assump-
tion, because text that is not in linear book-text sequence is grafted into extracted records. But
the labeled reference identifiers themselves do not violate the partitioning property. It is only
in a post-processing step that we replace reference identifiers with the text they reference.

In general, when the linear flow of the text violates our semi-structured requirements, we
may nevertheless still be able to process the text. We accommodate violations in two ways: (1)
in a post-processing step, substitute referenced out-of-line text for extracted text (e.g. Flögeln
reference identifiers), and (2) report parse errors for user correction (e.g. two birth dates for a
person, indicating a missed labeling for a record head).

4. Evaluation

We program our extraction engine by-example [12, 13]. As Fig. 10 shows, a programmer
chooses a text segment containing a token sequence to be extracted (e1 through e2) and labeled
(SpouseName) such that the segment has sufficient left and sometimes also right context to
uniquely classify the extracted text. The text in the example is then abstracted (e.g. the second
line in Fig. 10) and generalized (e.g. abstract text patterns generated as a cross product of the
set of marriage symbols and the set of common name forms). To form label-value pairs, the
lexer matches these abstract patterns to the abstracted book text.

The effort to program the extraction engine depends on the number of examples a user must
specify to achieve a desired level of precision and recall. To avoid requiring the programmer to
hunt for needed examples, we apply the following strategy: (1) specify all the extraction tem-
plates needed for complete coverage of a single typical page and (2) identify for the programmer
the examples needed to complete the potentially long tail of additional extraction templates.
We identify these examples by noting functional-dependency violations (e.g., no one can have
two birth dates), vacuous extractions (e.g., a marriage symbol must have an associated spouse).

We applied this strategy beginning with Flögeln [10], page 15, which has seven households
(the first two of which are in Fig. 7). After giving 31 examples, we achieved 100% precision and
recall for page 15 and 97% precision and 89% recall against a complete ground truth containing
18,898 facts taken from all 111 pages of families in the Flögeln book. In our application, we
are particularly interested in identifying persons—all of them if possible. For person names
alone, the recall was 94% with a precision of 99%. Then, following only the system-generated
suggestions, we added 45 more examples resulting in 98% precision and 93% recall overall and

97% recall for person names with 99% precision. Although 76 examples may seem like a lot, it is
certainly far fewer than 18,898.

In our final step, we are particularly interested for our application in increasing recall for
record heads, people for whom vital or relationship information exists. We identify additional
needed examples in two ways: (1) recognized household identifiers for which there is no
household head and (2) household members for whom we found more than one birth event date
or more than one death event date in their information space (e.g., we know that there must be
a missed person name if an extracted record has two birth dates for the record-head person).
In addition, our ground truth requires names that contain no stray non-name characters. The
important point here is that all these names, missing or defective, can be found automatically.

5. Conclusion and Future Work

Although NRR has been studied at length for many years [14], to the best of our knowledge no
one except Nagy [15] has taken the approach we present here. Results for the Ely [2], Kilbarchan
[9], and Miller [8] books for both our variation and Nagy’s [15] are similar (both achieving
F-scores above 95%). However, the record compilation algorithm of [15] does not generalize for
books like Flögeln [10] because it does not rely on the basic assumption for compiling records
that underlies our grammars: for each record type 𝑅, every compiled relationship among the
field values of 𝑅 includes the ontologically committed object of the field value associated with
the grammar’s first terminal symbol of the production rule that begins with the start symbol
(the record-head object described in Section 2).

There are several directions for future work that we would like to pursue. By processing
more Ortsfamilienbücher (books about families from a specific location, of which the Flögeln
text [10] is an example) and other Latin-based language books, we may discover refinements
that could improve our process. There are also non-Latin books such as Chinese Jiapu records
and books of handwritten records that will likely need different techniques to be developed
in order to apply our process and successfully extract structured records. There are also large
numbers of layout-based documents such as tables and forms that may be able to be parsed
according to ontologically generated grammars if the tables and forms are rewritten first.

We have demonstrated that it is possible to extract large numbers of records from semi-
structured text sources with high accuracy and minimal effort and expertise required by follow-
ing a strategy of parsing using ontologically generated grammars and marking up a relatively
small set of examples for each source. Using a conceptual modeling foundation is key to the
success of this approach. Because we rely on a well-defined conceptual model and established
relational scheme generation and normalization theory, the approach we have presented of
parsing based on ontologically generated grammars generalizes for any application where a real-
world conceptual model describes the application domain and where data-rich semi-structured
text sources are available.

Acknowledgements

We owe a debt of gratitude to our long-time friend and colleague, Emeritus Professor George
Nagy (Rensselaer Polytechnic Institute), for blazing the trail to the work presented here.

References

[1] J. Akoka, I. Comyn-Wattiau, S. Lamassé, C. duMouza, Contribution of conceptual modeling
to enhancing historians’ intuition - application to prosopography, in: Proceedings of ER
2020, Springer, Vienna, Austria, 2020, pp. 164–173.

[2] G. Vanderpoel, The Ely Ancestry: Lineage of RICHARD ELY of Plymouth, England, The
Calumet Press, New York, New York, 1902.

[3] D. Embley, B. Kurtz, S. Woodfield, Object-oriented Systems Analysis: A Model-driven
Approach, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992.

[4] W. Mok, J. Fong, D. Embley, Generating the fewest redundancy-free XML scheme trees
from acyclic conceptual-model hypergraphs in polynomial time, Information Systems 41
(2014) 20–44.

[5] D. Embley, Object Database Development: Concepts and Principles, Addison-Wesley,
Reading, Massachusetts, 1998.

[6] N. Chomsky, Three models for the description of language, IRE Transactions on Informa-
tion Theory 2 (1956) 113–124.

[7] M. Sipser, Introduction to the Theory of Computation, second ed., Thomson Course
Technology, Boston, Massachusetts, USA, 2006.

[8] MillerRecords90, Miller Funeral Home Records, 1917 – 1950, Greenville, Ohio, Darke
County Ohio Genealogical Society, Greenville, Ohio, 1990.

[9] F. Grant, Index to The Register of Marriages and Baptisms in the Parish of Kilbarchan,
1649–1772, J. Skinner & Company, LTD, Edinburgh, Scotland, 1912.

[10] E. Friedrichs, A. Pech, Familienbuch des Kirchspiels Flögeln: bestehend aus den Dör-
fern Flögeln und Fickmühlen ; vom Beginn der Kirchenbücher 1700 bis 1900, Deutsche
Ortssippenbücher. Reihe A, E. Friedrichs, Bremerhaven, 2000.

[11] M. Blanck, Delaware Mullinixes and their Descendants’ Migrations, 1698–1900, Marilyn
Mullinix Blanck, Alhambra, California, 2008.

[12] D. Embley, G. Nagy, Green interaction for extracting family information from OCR’d
books, in: Proceedings of the 13th IAPR International Workshop on Document Analysis
Systems, DAS 2018, IEEE Computer Society, Vienna, Austria, 2018, pp. 127–132.

[13] G. Nagy, Green information extraction from family books, SN Computer Science 1 (2020)
1–23. doi:10.1007/s42979-019-0024-x.

[14] N. Bach, S. Badaskar, A review of relation extraction, 2006. URL: https://www.cs.cmu.edu/
~nbach/papers/A-survey-on-Relation-Extraction.pdf.

[15] G. Nagy, Near-perfect relation extraction from family books, in: Proceedings of the
International Conference on Document Analysis and Recognition (ICDAR 2021), volume
Lecture Notes in Computer Science 12823, Springer Verlag, 2021, pp. 477–491.

http://dx.doi.org/10.1007/s42979-019-0024-x
https://www.cs.cmu.edu/~nbach/papers/A-survey-on-Relation-Extraction.pdf
https://www.cs.cmu.edu/~nbach/papers/A-survey-on-Relation-Extraction.pdf

	1 Introduction
	2 Theoretical Foundations
	3 Theoretical Extensions
	3.1 Labeling Issues
	3.2 Record Anomalies
	3.3 Recursive Relationships
	3.4 Real-World Violations of Semi-structured Assumptions

	4 Evaluation
	5 Conclusion and Future Work

